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In this paper, we introduce a formalism to determine the relationship between the full vectorial electric field
existing at the object plane of a microscope and that existing at the image plane. The model is then used to
quantitatively simulate, in both phase and intensity, the image of a radiating electric dipole placed either in a
homogeneous medium or in the vicinity of a substrate. These simulations are compared with experimental mea-
surements on single gold nanoparticles carried out by quadriwave lateral shearing interferometry. © 2019Optical

Society of America
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1. INTRODUCTION

The point spread function (PSF) of a microscope, defined as
the image of a point source, such as a nanoparticle, a fluorescent
bead, or a molecule [1,2], is a key concept of image formation
theory. Several approaches have been developed to calculate the
theoretical PSF of a microscope. The first models were based on
a scalar diffraction theory, like in the work of Richards and
Wolf in 1959 [3] and others [4,5]. These models were limited
to unpolarized point sources imaged with low numerical aper-
ture objectives. Thus, they did not provide complete informa-
tion about the imaged nano-object [6]. To take into account
the polarization state of the dipole and generalize the develop-
ment to high numerical apertures, more accurate models
based on vectorial diffraction theory have been proposed [7–9].
However, most of the above-mentioned formalisms do not use
Cartesian coordinates, but polar coordinates, as a legacy of the
time where the fast Fourier transform did not exist and where
calculating a simple integral was simpler than performing two-
dimensional Fourier transforms. In addition, the calculations
are rarely carried out quantitatively. They give the intensity
at the image plane up to a given constant factor [9], which pre-
vents its use in metrology applications. Yet, the latter is neces-
sary for interpreting the results of quantitative phase imaging
techniques, such as digital holographic microscopy, shearing
interferometries, or polarization microscopy [10].

In this work, we introduce a full-vectorial theory to quan-
titatively calculate the image of a radiating electric dipole, in
intensity and phase, through a standard microscope in a 4-f
mounting. Our approach, using Cartesian coordinates and
electromagnetic treatment, is close to that developed in [11]

for Cassegrain objectives and microspectroscopy applications.
An introductory section of this paper derives the transforma-
tion of a simple plane wave with a given incidence angle
through a microscope. As any beam propagating in free space
can be expanded into a sum of plane waves, this first part allows
us to draw the link between any vectorial field at the object
focal plane of a microscope and that at the image focal plane.
This approach is applied in a second section to determine the
field radiated by an electric dipole in a homogeneous medium
and in the presence of a substrate. Finally, results of simulations
using this model are compared with experimental images of
gold nanoparticles obtained by quadriwave lateral shearing
interferometry (QLSI). The Matlab code corresponding to
the model introduced in this work is provided (see Code 1,
Ref. [12]).

2. DESCRIPTION OF THE THEORETICAL
MODEL

A. Image of a Plane Wave through a Microscope

We consider a microscope with an objective of focal length f o
and numerical aperture NA, and a tube lens with focal length
f t in a 4f configuration satisfying the Abbe sine condition
[13]. We call �Oz� the optical axis of the system, oriented from
the objective to the tube lens (see Fig. 1), and M the magni-
fication factor defined by M � −f t∕f o. M is a negative quan-
tity as the image is inverted with respect to the object. The
object focal plane is located at z � zo while the image focal
plane is placed at z � zi. We call object space the homo-
geneous medium before the objective and we assume that it
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has a refractive index n. We call image space the homogeneous
medium that lies between the tube lens and the sensor and as-
sume that it has a refractive index of 1 as it usually consists
of air.

We first consider the action of the microscope on a mono-
chromatic plane wave characterized by its wave vector k �
�k∥, γ� with k∥ � �kx , ky�, γ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2k20 − k

2
∥

q
, and k0 � 2π∕λ

is the wavenumber in vacuum. In the object space, the incom-
ing electric field reads

Eob�r∥, z� � e�k∥� exp�ik · �r − ro��, (1)

where ro � �0, 0, zo� is the object focal point, which sets the
phase origin in the object space. The complex vectorial ampli-
tude e�k∥� of the plane wave can be decomposed on the polari-
zation basis �s, p� defined as s � z×k

jz×kj and p � k×s
jk×sj (see Fig. 1).

If k∥ ≤ NAk0, the microscope transforms the plane wave
with wavevector k into a plane wave with wavevector k 0

with k 0 � �k 0
∥, γ

0�, where k 0
∥ � �kx∕M , ky∕M� and γ 0 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20 − k
02
∥

q
(the image space being air). This transformation pre-

serves the s component of the field throughout its propagation
and rotates the p component (see Fig. 1). Thus, in the image
space, i.e., after the tube lens, the field reads

Eim�r∥, z� �
1

M

ffiffiffiffi
γ

γ 0

r
h�k∥�e 0�k∥� exp�ik 0 · �r − ri��, (2)

where ri � �0, 0, zi� is the image focal point (the conjugate
point of ro ), which sets the phase origin in the image space,

e 0�k∥� � ��e�k∥� · s�s� �e�k∥� · p�p 0�, (3)

where p 0 � k 0×s
jk 0×sj, and h�k∥� is the cutoff function of the micro-

scope objective. In the case of a perfect microscope, this func-
tion is defined as h�k∥� � 1 for jk∥j < k0NA, and 0 elsewhere.
However, it should be noted that real microscope objectives
exhibit an appodization effect that should be taken into account
in the cutoff function for accurate predictions [14]. This effect
depends on the microscope objective characteristics [15,16].

The leading factor M −1
ffiffiffi
γ
γ 0

q
in Eq. (2) ensures energy conser-

vation between the object space and the image space. Its expres-
sion is derived in Appendix A.

Note that Eq. (3) is equivalent to the rotation of e�k∥�:
e 0�k∥� � R�k∥�e�k∥�, (4)

where R, the rotation matrix, is given in Appendix B.

B. Link between the Image and Object Fields in a
Microscope

Equations (1) and (2) are sufficient to thoroughly describe the
image of any object through the microscope, as any electromag-
netic beam propagating toward the positive z in the object
space can be written as a sum of plane waves:

Eob�r� �
ZZ

e�k∥� exp�ik · �r − ro��dk∥: (5)

In this case, the field at any point in the image space (after the
tube lens) reads

Eim�r� �
1

M

ZZ ffiffiffiffi
γ

γ 0

r
h�k∥�e 0�k∥� exp�ik 0 · �r − ri��dk∥: (6)

We now focus on the expression of the field at the image plane
[r − ri � �r∥, 0� in Eq. (6)] as it normally corresponds to the
detector place. Since k∥ � Mk 0

∥ and dk∥ � M 2dk 0
∥, the

electric field at the image plane reads

Eim�r∥, zi� � M
ZZ ffiffiffiffi

γ

γ 0

r
h�Mk 0

∥�e 0�Mk 0
∥� exp�ik 0

∥ · r∥�dk 0
∥:

(7)

Thus, the electric field at the image plane is the 2D Fourier

transform of
ffiffiffi
γ
γ 0

q
h�Mk 0

∥�e 0�Mk 0
∥�, which is related to the elec-

tric field in the Fourier space of the microscope (i.e., the back
focal plane of the objective).

C. Point Source in a Homogeneous Medium

We now consider the case of the image of a radiating dipole.
The field radiated by a point source Q in a homogeneous space
is the well-known solution of the equation [8]

∇ × �∇ × EQ� − n2k20EQ � Qδ�r − rQ�, (8)

which satisfies outgoing wave boundary conditions. The source
Q relates to the electric dipole moment μ via

Q � k20
ε0

μ: (9)

EQ can be decomposed as a sum of plane waves using the Weyl
expansion (i.e., the angular spectrum representation) [8,17]:

EQ�r��
i

8π2

ZZ
1

γ
�Q −�k̂ ·Q�k̂�e�ik∥·�r−rQ ��iγjz−zQ j�dk∥: (10)

In the object space, z is larger than zQ . Thus, the absolute value
is removed and the field can be written as Eq. (5), with e�k∥�
given by

e�k∥� �
i

8π2
1

γ
�Q − �k̂ ·Q �k̂� exp�−ik · �rQ − ro��, (11)

where k̂ � k∕�nk0�. It is worth noting that this expression is
valid no matter the position of the source with respect to the
object focal plane.

Finally, the image field EQ ,im�r∥, zi� is obtained by replacing
Eq. (11) in Eq. (3) and in Eq. (7).

A Matlab code simulating the image of a radiating dipole is
provided (see Code 1, Ref. [12]).

It is worth mentioning that the development of the phase
term of the electric field of the dipole in the image space

Fig. 1. Illustration of the effect of an optical microscope on a plane
wave with a wavevector k.
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[injecting Eq. (11) in Eq. (6)] enables the derivation of a
counterintuitive effect regarding the optimal position of the
camera for a defocused object, as demonstrated in Appendix D.

D. Point Source before an Interface

We now consider the common case of a vectorial point source
placed in the vicinity of the interface of two semi-infinite media
(see Fig. 2). This configuration typically corresponds to the im-
aging of a small object in water or air, deposited on a glass cov-
erslip, and imaged by an oil-immersion objective. We introduce
ε�z� the permittivity of the layered medium before the objec-
tive, where ε�z < 0� � n2b and ε�z ≥ 0� � n2. We recall that
the objective is placed somewhere at z > 0. The point source is
located at rQ with zQ < 0 in the medium of refractive index nb.
We now define the object space as the domain that lies between
z � 0 and the objective with refractive index n, while the image
space remains unchanged. As previously, one needs to calculate
the plane wave expansion of the field radiated by the point
source in the object space, Eob. The field is the solution of
the equation

∇ × �∇ × EQ� − ε�z�k20EQ � Qδ�r − rQ�, (12)

which satisfies outgoing boundary condition. The source in the
medium of refractive index nb generates for 0 > z > zQ a sum
of plane waves propagating toward positive z, with wavevector

kb � �k∥, γb �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2bk

2
0 − k

2
∥

q
� and amplitudes eb�k∥� given by

Eq. (11) with n replaced by nb. Each plane wave is transmitted
into the medium of refractive index n at z � 0 into a plane
wave of amplitude e�k∥� with wavevector k � �k∥, γ�, where
γ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2k20 − k

2
∥

q
. Introducing the polarization basis �s, p� re-

lated to k and �sb, pb� related to kb, together with the trans-
mission coefficients related to s and p polarizations, t s � 2γb

γb�γ,

tp � 2nbnγb
n2γb�n2bγ

, respectively, the amplitude of the transmitted

plane wave e�k∥� can be written as

e�k∥� � t s�eb�k∥� · sb�s� tp�eb�k∥� · pb�p: (13)

The field in the object space radiated by a source in the vicinity
of an interface can thus be written as Eq. (5) with [8,18]

e�k∥� �
i

8π2
1

γb
�Q s �Q p� exp�−ikb · rQ � ik · ro�, (14)

where

Q s � t s ��Q − �k̂b ·Q �k̂b� · sb�s, (15)

Q p � tp��Q − �k̂b ·Q �k̂b� · pb�p: (16)

To calculate the field at the image plane, it suffices to apply the
transformation between e and e 0 given by Eq. (7).

A Matlab code simulating the computation of the image of a
dipole in presence of a substrate is provided (see Code 1,
Ref. [12]).

3. ILLUSTRATION WITH A SPHERICAL METAL
NANOPARTICLE

To support and illustrate the quantitative model of the image of
a point source through a microscope, we compare in this sec-
tion simulated images of nanoparticles to measurements.

We considered gold nanospheres deposited on a glass sub-
strate and covered with glycerol using an oil-immersion objec-
tive with M � −100 and NA � 1.3. Because the refractive
indices of oil and glycerol match that of the glass slide, we
can assume that the spheres are in a homogeneous medium
of refractive index n � 1.5. The particles were illuminated
by a collimated laser beam at wavelength λ � 590 nm, which
is assimilated to a linearly x-polarized plane wave propagating
along the optical axis.

We use QLSI [19] to measure the intensity and phase of the
image field. More precisely, we measure a complex transmission
coefficient,

t im �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T �x, y�

p
ei

2π
λ δl�x,y�, (17)

where T �x, y� is the intensity of the image total field divided by
the intensity of the image incident field (i.e., the incident colli-
mated beam). It is usually called the transmittance of the object.
The length δl�x, y� is related to the phase of the field compo-
nent directed along x and represents the optical path difference
(OPD) induced by the object.

To simulate the transmission coefficient, we introduce
Eex,ob, the incident field that excites the nanoparticle. In the
object space, the latter reads Eex,ob�r∥, z� � E0 exp�ink0z�x̂.
Using Eq. (2), the incident field at the image plane is given by

Eex,im � 1

M
ffiffiffi
n

p
E0 exp�−ink0zo�x̂: (18)

The total field at the image plane is the sum of the incident
field and the field scattered by the particle, Etot,im �
Eex,im � EQ ,im. The transmission intensity reads T �
E2
tot,im∕E2

ex,im, while the phase is extracted from the complex
function, Etot,im · x̂∕Eex,im · x̂.

We now assume that the particle is small enough so that its
scattered field is similar to that radiated by a vectorial point
source [20], Q , whose amplitude is related to the excitation
field at the position of the particle center rQ, with
Q � k20αEex,ob�rQ �, and α is the complex polarizability of
the nanoparticle. In our calculation, the polarizability of the
nanoparticle α � i 6π

nk3o
a1 [21] is determined using Mie theory,

where a1 is the dipolar Mie coefficient, given in Appendix C.

Fig. 2. Illustration of a point source Q in a layered medium. One
radiated plane wave is transmitted at the interface, z � 0, between two
media of refractive indices nb and n.
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Under these hypotheses, EQ ,im is easily computed using
Eqs. (11) and (7).

Figure 3(a) displays the measured and simulated OPD and
intensity images and their profiles for several positions zQ of the
particle with respect to the object focal plane (mechanically dis-
placed by step of about 500 nm). To accurately compare sim-
ulations and experiments, three parameters have to be
optimized: (i) In theory, for a perfect objective, the phase profile
in the microscope objective pupil is supposed to be uniform.
The analysis of the experimental images in the Fourier space
revealed that the phase profile of the microscope objective pupil
was not uniform near the edges of the objective aperture, i.e., at
high numerical apertures. This is due to some aberrations cre-
ated by the optical components and the microscope coverslip,
which could be included in the apodization function [15].
Thus, in order to discard these aberrations effects and improve
the comparison of our experimental results with simulations,
we cropped the field at the microscope entrance pupil calcu-
lated from the experimental images at a numerical aperture
of 0.9, instead of leaving it at 1.3. (ii) The precision of the

measurements of zQ positions were not enough, as a modifi-
cation of a few tens of nanometers can already markedly affect
the images [22]. For these reasons, the different zQ have been
considered free parameters in the numerical simulations, and
the values indicated in Fig. 3 are those that make simulations
fit the experimental profiles. (iii) Finally, the nanoparticles we
used are supposed to have a diameter of 100 nm, but only in
average. We determined the size of the nanoparticle by com-
paring the experimental and simulated images obtained close to
the focus. The best agreement between simulations and theory
were obtained for a nanoparticle diameter of 74 nm. Under all
these considerations, we have found an excellent quantitative
agreement between the experiments and the theory, as
shown in Fig. 3.

In addition, we plot in Fig. 4 the simulation of the scattered
intensity along x of a gold nanoparticle as a function of
z � zQ − zo, as well as to the total intensity and OPD images.
One can see that the contrast of the OPD image is inverted
with respect to a certain axial plane z close to the focus (see
dashed line on Fig. 4), while the contrast on the intensity

(a)

(b)

Fig. 3. (a) OPD and (b) intensity images and the corresponding profiles of a 74 nm gold nanoparticle embedded in a homogeneous medium
(n � 1.5) at different z positions. The experimental results measured by QLSI are compared to the computed results using the formalism developed
in this paper (the homogeneous medium Matlab code provided with this article; see Code 1, Ref. [12]). For both theory and measurements, the
illumination wavelength is λ � 590 nm, with an objective of 100× magnification and a corrected numerical aperture of 0.9. The scale bar is 2 μm.
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images remains approximately the same. Note that the position
of the symmetry (or anti-symmetry) plane depends on the char-
acteristics of the nanoparticle (composition, size …) as well as
the illumination wavelength (at or off resonance). For example,
for a gold nanoparticle illuminated at resonance, the plane is
located exactly at the focus plane z � 0.

It should be noted that in the above analysis, we have
considered nanoparticles with sizes much smaller than the
illumination wavelength in order to satisfy the dipolar approxi-
mation. However, our model can be applied to larger objects. In
this case, one needs first to calculate the plane-wave expansion of
the scattered electromagnetic field in the object space with a
solver of Maxwell equations. One can use, for example, the dis-
crete dipole approximation, which consists of discretizing the
object into an assembly of interacting dipoles [23]. Then, the
sample image is obtained as a coherent sum of the field image
of each dipole. For a simulator of microscope images based on a
rigorous solving of the light–sample interaction, see [24].

In summary, we have introduced a model to compute the
image, in intensity and phase, of an electric dipole moment
through a microscope. The model enables the conception of
simple numerical codes, based only on Fourier transforms, that
do not require the calculation of integrals. Note that Eq. (6)
even enables the calculation of the image of any object, not
only dipoles, from its decomposition in plane waves. A good
quantitative agreement was obtained with phase and intensity
measurements of a light beam obtained with QLSI. Our study
paves the way for the quantitative analysis of optical properties
of small scatterers, such as molecules or nanoparticles, and in
general should be useful for metrology applications involving
microscopy imaging.

Open-source code that permits calculation of the image
of a dipole through a microscope is provided (see Code 1,
Ref. [12]).

APPENDIX A: ENERGY CONSERVATION
BEFORE AND AFTER THE IMAGING SYSTEM

We demonstrate here how the factor A � 1
M

ffiffiffi
γ
γ 0

q
in Eqs. (2)

and (6) is obtained based on energy conservation considera-
tions. The field in the object space is given by

Eob�r� �
Z

e�k∥� exp�ik∥ · r∥ � iγz�dk∥, (A1)

while the field at the image space is given by

Eim�r� �
Z

Ae 0�k∥� exp�ik 0
∥ · r∥ � iγ 0z�dk∥, (A2)

with je�k∥�j � je 0�k∥�j. A is a factor that ensures the energy
conservation between the object space and image space. To de-
termine this factor, we calculate the transmitted power through
an infinite transverse plane S in the object space and image space:

Ps �
1

2

Z
Re�E ×H�� · ẑdr∥, (A3)

where H, the magnetic field, is expressed as a function of the
electric field as H � ∇ × E∕iμ0ω.

Let us first calculate the transmitted power in the object
space. The magnetic field is

Hob�r� �
1

iμ0ω

Z
ik × e�k∥� exp�ik∥ · r∥ � iγz�dk∥, (A4)

where μ0 is the vacuum permeability and ω � 2π∕λ. Thus, the
transmitted power at the object plane reads, with obvious
notations,

Psob �
1

2μ0ω

Z
Re

�Z
e��k∥1� exp�−ik∥1 · r∥ − iγ1z

�
dk∥1

×
Z

k2 × e�k∥2� exp�ik∥2 · r∥ � iγ2z�dk∥2�dr∥ · ẑ: (A5)

Exchanging the order of the spatial and frequency integrations,
one obtains

Psob �
1

2μ0ω
Re

�ZZ
e��k∥1� × �k2 × e�k∥2��

× exp�i�γ2 − γ1�z�

×
�Z

exp�i�k∥2 − k∥1� · r∥�dr∥ · ẑ
�
dk∥1dk∥2

�
: (A6)

Integrating the spatial variables, we get

Psob �
2π2

μ0ω
Re

�ZZ
e��k∥1� × �k2 × e�k∥2��

· ẑ exp�i�γ2 − γ1�z�δ�k∥2 − k∥1�dk∥1dk∥2

�
, (A7)

where δ is the Dirac function. Knowing that e��k∥� × �k ×
e�k∥�� � je�k∥�j2k and k · ẑ � γ, the transmitted power at
the object plane reads

Psob �
2π2

μ0ω

Z
je�k∥�j2γdk∥: (A8)

In the same manner, we calculate the transmitted power at the
image plane:

(a)

(b)

(c)

Fig. 4. Simulated images of a single gold nanoparticle (74 nm) in a
homogeneous medium (n � 1.5) as a function of z � zQ − zo.
(a) Normalized magnitude of the scattered field by the nanoparticle.
(b) Intensity of the normalized total field (Eex,im � EQ ,im) and (c) its
OPD.

482 Vol. 36, No. 4 / April 2019 / Journal of the Optical Society of America A Research Article

https://doi.org/10.6084/m9.figshare.7704494


Psim � 1

2μ0ω
Re

�ZZ
A2e 0��k∥1�

× �k 0
2 × e

0�k∥2��
�Z

exp

�
i
�
k∥2 − k∥1

M

�
· r∥

�
dr∥:ẑ

��

× exp�i�γ2 − γ1�z�dk∥1dk∥2: (A9)

The integration over the spatial coordinates is performed using
the change of variables, u � r∥∕M , dr∥ � M 2du, Eq. (A9):

Psim � 2π2

μ0ω
Re

�ZZ
A2e 0��k∥1� × �k 0

2 × e
0�k∥2��

· ẑ exp�i�γ2 − γ1�z�M 2δ�k∥2 − k∥1�dk∥1dk∥2

�
:

(A10)

The simplification of Eq. (A10) yields

Psim � 2π2

μ0ω
M 2

Z
A2je�k∥�j2γ 0dk∥: (A11)

The energy conservation between the object space and
image space states that Psob � Psim; thus, one can extract
the factor A as

A � 1

M

ffiffiffiffi
γ

γ 0

r
: (A12)

APPENDIX B: ROTATION MATRIX

The rotation matrix R�k∥� is given by

R�k∥�

�

0
BB@
u2�1 − cos θ�� cos θ uuy�1 − cos θ� uy sin θ

uuy�1 − cos θ� u2y �1 − cos θ�� cos θ −u sin θ

−uy sin θ u sin θ cos θ

1
CCA,

(B1)

where u � k̂×z
jk̂×zj is the rotation axis. Note that u has no com-

ponent along the z direction. θ is defined as cos θ � k̂ · k̂ 0 and
sin θ � jk̂ × k̂ 0j as shown in Fig. 5.

APPENDIX C: DIPOLAR MIE COEFFICIENT

The dipolar Mie coefficient for a nanosphere of radius r having
refractive index ns embedded in a medium with refractive index
n reads

a1 �
mψ1�w�ψ 0

1�v� − ψ1�v�ψ 0
1�w�

mψ1�w�ζ 01�v� − ζ1�v�ψ 0
1�w�

, (C1)

where m � ns∕n, v � kr, and w � mv. The functions ψ1, ζ
and their derivatives ψ 0

1, ζ
0
1 are given by

ψ1�x� � sin�x�∕x − cos�x�, (C2)

ζ1�x� � sin�x�∕x − i�cos�x�∕x � sin�x��, (C3)

ψ 0
1�x� � sin�x� − ψ1�x�∕x, (C4)

ζ 01�x� � sin�x� − i cos�x� − ζ1�x�∕x: (C5)

APPENDIX D: DEFOCUSING THE OBJECTIVE
OR THE CAMERA: IS IT THE SAME?

When a point source is located at the object focal plane, one
knows that the image of the source (i.e., the smallest intensity
spot) will be located at the image focal plane. In this appendix,
we discuss the case of a source placed before or after the object
focal plane. Is it possible to displace the detector out of the image
focal plane to retrieve a focused spot? In other words, can we find
a position where all the plane waves are in phase in the image
space? To this aim, we develop the phase term of the plane waves
emitted by a point source that are propagating in the image
space. The phase obtained by injecting Eq. (11) into Eq. (6) is

exp�ik 0 · �r − ri� − ik · �rQ − ro��

� exp

�
ik∥ ·

�
r∥
M

− r∥,Q

�
� iγ 0�z − zi� − iγ�zQ − zo�

�
: (D1)

Equation (D1) shows that if the point source is placed at the
object focal plane, zQ � zo, then all the plane waves in the image
space converge (i.e., have the same phase) at z � zi and
r∥ � M r∥,Q . As expected, we obtain a focused spot at the image
focal plane, and the transverse position has beenmagnified byM.

On the contrary, if the point source is placed before or after
the object plane, zQ ≠ zo, then there is no position in the image
space where all the plane waves interfere constructively. Thus, if
the point source is out of the object focal plane, one cannot
retrieve a focused spot in the image space that is as small as
that obtained when the point source is in the object focal plane.

Yet, in the case of the paraxial approximation where
k∥ ≪ nk0, using γ≈nk0−k2∥∕�2nk0� and γ 0≈ k0 −k2∥∕�2M 2k0�,
the phase term of the plane waves [Eq. (D1)] can be written, to a
constant, as

exp

�
ik∥ ·

�
r∥
M

− r∥,Q

�
− i

k2∥
2k0

�
z − zi
M 2 −

zQ − zo
n

��
: (D2)

Under this approximation, all the plane waves interfere construc-
tively when r � M r∥,Q � �zi �M 2�zQ − zo�∕n�ẑ. Thus, under
paraxial approximation, if a point source is located at a distance
d from the object focal plane, one retrieves its image (i.e., the best
possible focused spot) at a distance M 2∕nd from the image focal
plane, the magnification in the transverse direction remaining M .
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Fig. 5. Illustration of the rotation axis and rotation angle used in the
rotation matrix R�k∥�.
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