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Abstract. An ensemble of spherical particles with arbitrary dielectric permittivity and magnetic
permeability was considered in the dipole approximation. Each particle was described by com-
plex electric and magnetic polarizabilities. A computational approach based on the coupled
dipole method, also called the discrete dipole approximation, was used to derive the optical
force experienced by each particle due to an incident electromagnetic field and the fields scat-
tered by all other particles. This approach is general and can handle material dispersion and
losses. In order to illustrate this approach, we studied the case of two spherical particles sepa-
rated by a distance d, and illuminated by an incident plane wave whose wave vector is normal
to the axis of the particles. We computed the optical force experienced by each particle in the
direction of the beam (radiation pressure), and perpendicular to the beam (optical binding) for
particles with positive and negative refractive indices. We also considered the effect of material
losses.

1 INTRODUCTION
Radiation pressure is perhaps the most commonly known manifestation of optical forces [1–5].
When an electromagnetic wave is reflected off the surface of an object, momentum is imparted
to the object such that the total momentum of the system (wave+object) is conserved. In the
general case, however, optical forces are not governed simply by reflections, but also depend
on whether the fields vary rapidly in space (gradient force) and/or whether the materials are
lossy [6]. When two or more objects are present, the multiple scattering between the objects
can, under certain conditions, lead to optically bound states. This is often referred to as optical
binding, and the first experimental demonstration was carried out by Burns et al. on a system of
two plastic spheres in water, for which a series of bound states was observed [7]. More recently
extended optically bound chains of microparticle were created with the use of counterpropagat-
ing waves [8]. Optical binding has been studied theoretically for two dielectric particles, in free
space or put upon a flat dielectric substrate [9], for systems of metallic nanoparticles [10], and
more recently, between a large number of dielectric spheres [11]. The interest in optical binding
lies in its ability to create extended structure whose geometric, and by extension, electromag-
netic characteristics can be tailored by an incident field. Optical binding has traditionally been
studied with nonmagnetic particles, in which case the magnetic part of the electromagnetic field
can be ignored, however, for magnetic and metamaterials, magnetic contributions to the force
must be accounted for. This article addresses the optical force between two magnetodielectric
particles, in the dipole approximation.



2 OPTICAL FORCE ON AN ELECTRICALLY SMALL
MAGNETODIELECTRIC SPHERE
When an arbitrary electromagnetic wave {E0(r, ω),H0(r, ω)} (where ω is the angular fre-
quency) impinges on a particle with permittivity ε and permeability µ, it generates a force that
results from the exchange of momentum between the particle and the fields. Assuming a time
harmonic dependence (i.e., e−iωt) and omitting the dependence of the fields on ω, the time
averaged total force F on the particle can be written as [12]:

F =
1
8π

Re
[ ∫

S

[
(E(r).n)E∗(r) + (H(r).n)H∗(r)− 1

2
(|E(r)|2 + |H(r)|2)n]

dS

]
, (1)

where S is a surface enclosing the particle, the unit vector n defines the local outward normal to
S, ∗ denotes the complex conjugate, and Re represents the real part of a complex number. E(r)
and H(r) are the total fields, i.e. the sum of the incident EM fields {E0(r),H0(r)} and the
EM fields scattered by the object {Ed(r),Hd(r)}. Let p and m be the electric and magnetic
dipoles induced by the incident EM wave, and let r̂ be the unit vector in the direction of r. The
fields scattered by the object are [13, 14]:
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= Tme · p + Tmm ·m, (5)

where k is the wave vector. The quantities T are field susceptibility tensors [15] and the super-
scripts relate to the electric or magnetic nature of the field and the source. Notice that in cgs the
field susceptibility tensors satisfy Tee = Tmm and Tem = −Tme. After some manipulations,
the total force experienced by the particle can be written as [13]:

F i =
1
2
Re

[
pj∂iE∗j

0 + mj∂iH∗j
0 − 2k4

3
εijkpjm∗k

]
. (6)

where εijk is the Levi-Civita tensor, ∂i denotes partial differentiation with respect to the ith

Cartesian component, and repeated indices are summed over. If we introduce the electric and
magnetic polarizabilities of an electrically small sphere of radius a, we have p = αeE0 and
m = αmH0 with the polarizabilities written as:

αe = αe
0/

(
1− 2

3
ik3αe

0

)
and αm = αm

0 /

(
1− 2

3
ik3αm

0

)
, (7)

where

αe
0 = a3 ε− 1

ε + 2
and αm

0 = a3 µ− 1
µ + 2

, (8)

and the ith component of the total force can be written as:

F i =
1
2
Re

[
αeEj

0∂
iE∗j

0 + αmHj
0∂iH∗j

0 − 2k4

3
εijkαeEj

0

(
αmHk

0

)∗ ]
. (9)



Compared to the case of a single electric dipole [16], we now also have a contribution to the
optical force that comes from the magnetic dipole, as well as a self interaction term involving
the electric and magnetic dipole moments.

3 OPTICAL FORCE IN A SYSTEM OF N MAGNETODIELECTRIC
PARTICLES
Consider N particles. The local fields at particle l is the sum of the incident field and the field
scattered by the other spheres and then can be written as [17]:

El = E0l +
N∑

n=1

[Tee
lnαe

nEn + Tem
ln αm

n Hn] (10)

Hl = H0l +
N∑

n=1

[Tme
ln αe

nEn + Tmm
ln αm

n Hn] , (11)

where the terms T are the field susceptibility tensors defined in Eqs. (2)-(4). If we write the
equations for the local fields for all N particles, we get a linear system of size 6N × 6N which
can be solved using, for instance, iterative methods [18]. We now have the fields, however we
also need their spatial derivatives to derive the optical forces. The spatial derivatives of the
fields at particle l are obtained through:

∇El = ∇E0l +
N∑

n=1

[∇Tee
lnαe

nEn + ∇Tem
ln αm

n Hn] (12)

∇Hl = ∇H0l +
N∑

n=1

[∇Tme
ln αe

nEn + ∇Tmm
ln αm

n Hn] . (13)

From this point, the force on each particle is derived using Eq. (9). Note that this approach
can also be used to derive electromagnetic forces on an arbitrary object (dielectric object in
presence of a substrate [19, 20], or close to a photonic crystal [21], metallic object [22] or
magnetic object [13]).

4 ELECTROMAGNETIC BINDING BETWEEN 2 MAGNETODIELECTRIC
PARTICLES
To illustrate our approach we consider 2 spheres (radius λ/50) illuminated by a plane wave
traveling in the z direction and we calculate the force experienced by each particle as a function
of the distance between them (normalized to the wavelength of the incident wave in the subse-
quent plots) (Fig. 1). We consider two polarization states of the incident wave. In p polarization
the electric field of the incident wave is polarized along the direction (x) defined by the two par-
ticles. In s polarization, the electric field of the incident wave is polarized along the y direction
(and the magnetic field is along the x axis).

On the plots below, the black and red curve are associated with the left and right particle,
respectively. This means that when the force along x is positive for the black curve and negative
for the red curve, the particles are attracted toward each other.

In Fig. 2 we start by considering the case of two identical particles. In Figs. 2(a)-(b) we
have two non magnetic particles with ε = 2 and µ = 1 for the two polarizations of the incident
wave (solid curves). We also consider the effect of losses by adding an imaginary part of 0.5 to
the permittivity (dashed curves). For both polarization we observe the usual oscillations of the
force that result from the interference between the fields scattered by the particles (retardation
effect) as the distance between them is varied. However, we also notice a significant difference
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Fig. 1. Schematic of the configuration

in the near field (i.e., short range) behavior of the force for the two polarizations. For the p po-
larization, the short range optical force is attractive whereas it is repulsive for the s polarization.
We also note that, in the present case, the overall effect of losses is to only increase slightly
the magnitude of the force. Similarly, the magnitude of the force along z (not show) increases
when losses are introduced. This increase is the result of a scattering contribution to the force
(radiation pressure) due to the material absorption [6].

In Figs. 2(c)-(d) we consider two particles with ε = µ = 2 (solid curves) or ε = µ =
2 + 0.5i (dashed curves). This time we notice that the short range interaction leads to an
attractive (binding) force for both polarizations. This result is quite different from the case
of two dielectric spheres for which we get antibonding states and bonding states in the near
field depending on the polarization of the incident field [9]. In fact, the evolution of the force
experienced by the particles versus their separation is identical for s and p polarizations. This
symmetry is a consequence of the symmetry of the optical constants of the two particles. Indeed,
when we exchange the polarizations it is equivalent to exchanging the roles of ε and µ in the
expression of the force. Since we have ε = µ, the force for the two polarizations are identical.
With this in mind, when the particles are identical and we have ε = µ we will plot the x
component of the force for one polarization only, since the other polarization would give the
same result. We also note that similar to the previous case, the introduction of losses leads to an
overall increase of the magnitude of the force.

In Figs. 3(a)-(b) we consider two particles with ε = µ = −2 (solid curves). Note that
these values correspond to the “plasmon resonance” for both the electric and the magnetic
polarizabilities. Incidentally, we note that Lakhtakia has recently shown that mixing of electric
and magnetic dipole contributions occurs for low ka spheres [23]. We also consider the effect
of losses. However, because the polarizabilities of the particles exhibit a resonant behaviour
when ε and/or µ are near −2, we can expect that the influence of losses on the force will be
stronger than in the previous, non resonant cases. To illustrate this, we consider two level of
losses: ε = µ = −2 + 0.01i (dashed curves) and ε = µ = −2 + 0.1i (dashed dotted curves)

We plot in Fig. 3(a) the x component of the force. We first note that in the lossless case, due
to the aforementioned resonances the magnitude of the force is several orders of magnitudes
larger than in the previous case (ε = µ = 2). We also observe that the force between the
particles is strongly repulsive for a separation of about 0.3 wavelengths and it is also repulsive,
albeit in a smaller way, at very short distances. To find whether stable binding configurations
exist, one would have to look at the trapping potential for a given incident power of the trapping
laser and compare that to the effect of Brownian motion when the particles are in a fluid. This
is beyond the scope of this work.

An interesting effect is illustrated in Fig. 3(b) where we plot the z component of the force
(radiation pressure). We observe that when the particles are far apart they both experience a
strong radiation pressure (the force along the z direction is the same for the two particles due
to the symmetry of our configuration). However, as the distance between the two particles is
reduced the z component of the force decreases rapidly. This is due to the resonant effect we
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Fig. 2. x component of the force on left (black) and right (red) particles as a function of the
separation along x. The particles are identical. ε = 2, µ = 1 (solid curves); ε = 2+0.5i, µ = 1
(dashed curves), (a): p polarization , (b): s polarization ; ε = 2, µ = 2 (solid curves); ε =
2 + 0.5i, µ = 2 + 0.5i (dashed curves) , (c): p polarization, (d): s polarization.

mentioned previously. One way to think about the radiation pressure effect is to consider not
the physical size of the particle, but its effective size (extinction cross section [1]). When the
particles are far apart they behave pretty much like two isolated particles with a large effective
size and therefore a large radiation pressure. When the particles are close to each other, their
mutual coupling reduces the effective size of the the system of two particles resulting in a
weaker radiation pressure.

We also see that whereas in the previous, non resonant cases the effect of material losses was
to increase the magnitude of the force, in the present case, the presence of material loss entails a
damping of the resonance of the polarizabilities of the particle which leads to an overall weaker
optical force when the losses increase.

In Figs. 3(c)-(d) we consider two particles with ε = µ = −1. The force along x exhibit a
sharp attractive (binding) behavior when the particles are brought together before switching to a
strongly repulsive force at very close range. Unlike in the previous (resonant) case, the force in
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Fig. 3. Electromagnetic force (s polarization) on left (black) and right (red) particles as a func-
tion of the separation along x. The particles are identical. ε = −2, µ = −2 (solid curves);
ε = µ = −2 + 0.01i (dashed curves); ε = µ = −2 + 0.1i (dashed dotted curves), (a): Fx, (b):
Fz; ε = µ = −1 (solid curves); ε = µ = −1 + 0.01i (dashed curves), (c): Fx, (d): Fz .

the z direction, in the near field regime, increases monotonically when the particles are brought
together. Also, the effect of absorption (only shown for the force along z) is similar to what was
observed in Fig. 2 and leads to an increase of the radiation pressure.

So far we have considered identical particles, mainly because it leads to an evolution of the
optical force with the separation between the two particles that is easier to analyse. However,
our approach of course still applies for particles with different optical constants. In Fig. 4 we
consider the case of two particles with optical constants (ε1 = −2, µ1 = −1) (particle on the
left) and (ε2 = −3, µ2 = −2) (particle on the right). These optical constants correspond to
a resonance of the electric polarizability for the first particle, and a resonance of the magnetic
polarizability for the second particle. Figures 4(a)-(b) show the x and z components of the
force for a p polarized incident plane wave. If we focus on Fig. 4(a) first, we observe the usual
oscillations of the force with the distance between the particles except that, when the particles
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Fig. 4. Electromagnetic force on left (black) and right (red) particles as a function of the sep-
aration along x. ε1 = −2, µ1 = −1, ε2 = −3, µ2 = −2, (a): Fx, p polarization, (b): Fz , p
polarization; (c): Fx, s polarization, (d): Fz , s polarization.

are far apart, the force is stronger on the second particle. This is, of course, a consequence of
the asymmetry between the two particles. Similar to the case of two particles with ε = µ = −2
(Fig. 3), we observe a strong repulsive force for a separation of about 0.4 wavelengths, however
in the present case, the x component of the force reaches its maximum (or minimum for the
particle on the left) at shorter distances, indicating a strong binding effect. The z component of
the force Fig. 4(b) exhibit quite strong oscillations. What is interesting here is that the two par-
ticles experience a different radiation pressure. This means that, were we to allow the position
of the particles to evolve under the influence of the optical force, they would no longer remain
aligned along the x direction. In fact, we can see in Fig. 4(b) that for a small range of particle
separations (between 0 and 0.25 wavelengths) the particle on the right experiences a negative
force along z whereas the particle on the left is pushed along the direction of propagation of the
incident wave. Let us emphasize here that the negative force along z on the particle on the right
is not indicative of a negative radiation pressure effect (which would be expected for a particle



in a background medium with negative ε and µ). Rather, it is the result of the multiple scattering
between the two non identical particles. If we switch to the s polarization 4(c)-(d) we no longer
get a simple exchange of the red and black curves as we would with two identical particles. In
fact, the x component of the force now shows that the interaction between the two particles is
always repulsive (no binding is possible) for the range of particle separation considered. On the
other hand, the z component of the optical force does indeed look similar to the p polarization
case with an exchange of the two particles, at least when the separation between the particles
is larger than half a wavelength. This is a reflection of the fact that when the particles are far
apart the leading contribution to the force comes from the electric dipole resonance for particle
1 and from the magnetic dipole resonance for particle 2. Accordingly, given the symmetry of
the problem, outside the near field regime, the behavior of the force experienced by particle 1
in p polarization is similar to that of the force experienced by particle 2 in s polarization.

5 CONCLUSION
We have developed a general theory of electromagnetic forces for a collection of magnetodi-
electric particles. We have used our method to study the electromagnetic force experienced by a
system of two particles, and we showed the characteristics of the force and the binding behavior
depends strongly on the electric and magnetic responses of the particles. The present treat-
ment of particles in the dipole approximation also provides a foundation for the study of optical
forces in the case of more complex magnetodielectric nanostructures within the framework of
the coupled dipole method (also called discrete dipole approximation) [24–27].
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