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Electromagnetic forces on a discrete spherical invisibility cloak under time-harmonic illumination
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We study electromagnetic forces and torques on a discrete spherical invisibility cloak under time-harmonic
illumination. We consider the influence of material absorption and losses, and we show that while the impact
of absorption on the optical force remains confined to frequencies near the absorption peak, its impact on the
electromagnetic torque experienced by the cloak is spectrally broader and follows the spectrum of the absorption
cross section of the cloak. We also investigate the mechanical shielding of a test particle within the cloak. We
find that even an imperfect cloak can reduce the radiation pressure on the particle significantly; however, under
certain conditions the force on the particle can be stronger than it would be in the absence of the cloak.
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I. INTRODUCTION

Recent studies have focused on the electromagnetic forces
experienced by an electromagnetic cloak in either the fre-
quency domain (time-harmonic regime) or the time domain.
For the time-harmonic case, it has been shown that the optical
force on an ideal electromagnetic cloak is exactly zero [1,2]
and that the cloak remains at rest. On the other hand, in the
time domain, an electromagnetic cloak, initially at rest and
illuminated by an electromagnetic pulse, would experience
a nonzero electromagnetic force and hence move while it
interacts with the pulse. By the time the pulse has died out,
however, the cloak would have acquired a zero net momentum
and experienced a zero net displacement [3].

In this article we deal with the time-harmonic regime, and
we study how a nonideal cloak interacts optomechanically with
an electromagnetic wave. Any actual cloaking device, even in
the absence of fabrication imperfections, can achieve only
partial cloaking due to two main factors: material dispersion
and absorption, and the composite (i.e., discrete) geometry of
the metamaterial forming the cloak. Although the effects of
dispersion and absorption are sometimes taken into account
in the definition of the permittivity and permeability of the
cloak, the discrete geometry is more difficult to account for
and therefore seldom considered. Our goal is to study the
effect of the composite geometry of the cloak on optical
forces, without having to worry about the specifics of the
metamaterial implementation used to describe the cloak. To
this end we use a generic model of a discrete (i.e., composite)
cloak based on the discrete dipole approximation (DDA) [4–6].
In the DDA formalism, the computation of the electromagnetic
force on a discrete cloak amounts to computing the force
on a collection of anisotropic magnetodielectric particles.
Recent studies have addressed optical forces on isotropic
magnetodielectric particles [7–9]. In this article we start by
briefly describing, in Sec. II, how particles with tensorial
permittivity and permeability can be handled in optical force
calculations. In Sec. III we present the results obtained
for a discretized cloak. We also discuss the influence of
material dispersion and absorption on the electromagnetic
force experienced by the cloak, and we investigate how well
a particle inside the cloak is protected from optical forces. In
Sec. IV we present our conclusion.

II. OPTICAL FORCES AND TORQUES ON AN
ANISOTROPIC, MAGNETODIELECTRIC OBJECT

Consider an object whose electromagnetic properties are
described by position-dependent permittivity and permeability
tensors. We discretize the object into a set of N polarizable
subunits over a cubic lattice with period d [10,11]; i.e.,
d is the mesh size for the discretization. Each subunit is
characterized by an electric polarizability tensor αe and
a magnetic polarizability tensor αm. When the object is
illuminated by an incident electromagnetic field (Einc,Hinc)
the local fields at a subunit located at ri can then be written as

E(ri ,ω) = Einc(ri ,ω) +
N∑

j=1

[Tee(ri ,rj ,ω)αe(rj ,ω)E(rj ,ω)

+ Tem(ri ,rj ,ω)αm(rj ,ω)H(rj ,ω)], (1)

H(ri ,ω) = Hinc(ri ,ω) +
N∑

j=1

[Tme(ri ,rj ,ω)αe(rj ,ω)E(rj ,ω)

+ Tmm(ri ,rj ,ω)αm(rj ,ω)H(rj ,ω)], (2)

where ω is the angular frequency, and the quantities labeled T
are free-space field susceptibility tensors [7,12]. For the sake
of brevity we will omit the dependence on ω henceforth. The
polarizabilities of the subunits, in the anisotropic case, are
defined from the Clausius-Mossotti relation:

αe
0(ri) = 3d3

4π
[ε(ri) − I][ε(ri) + 2I]−1, (3)

αm
0 (ri) = 3d3

4π
[μ(ri) − I][μ(ri) + 2I]−1. (4)

Taking radiation reaction [5] into account and introducing the
wave number k0, the polarizabilities tensors in Eqs. (1) and (2)
can be written as

αe(rj ) = [
I − (2/3)ik3

0α
e
0(ri)

]−1
αe

0(ri), (5)

αm(rj ) = [
I − (2/3)ik3

0α
m
0 (ri)

]−1
αm

0 (ri). (6)

Ultimately, the scattering problem is cast as a 6N × 6N linear
system, which can be solved for the electric and magnetic
fields inside the object. For large objects (with respect to the
wavelength), the linear system should be solved iteratively
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using a solver adapted to the magnetodielectric nature of the
object [13]. Once the fields inside the object are known, the
fields anywhere outside the object can be calculated by adding
the contributions of all the subunits to the scattered field. Since
we are not merely interested in the scattered fields but in the
electromagnetic force and torque as well, we also need the
spatial derivatives of the fields. These spatial derivatives at
subunit i are obtained as [14]

∇E(ri) = ∇Einc(ri) +
N∑

j=1

[∇Tee(ri ,rj )αe(rj )E(rj )

+∇Tem(ri ,rj )αm(rj )H(rj )], (7)

∇H(ri) = ∇Hinc(ri) +
N∑

j=1

[∇Tme(ri ,rj )αe(ri)E(ri)

+∇Tmm(ri ,rj )αm(rj )H(rj )]. (8)

Once the local field and their spatial derivatives are known at
each subunit, the kth Cartesian component of the optical force
experienced by the ith subunit of the discretized object can be
written as (repeated indices are summed over) [7]

Fk(ri) = 1

2
Re

{
pl(ri)∂

k[El(ri)]
∗ + ml∂k[Hl(ri)]

∗

− 2k4
0

3
εklnpl(ri)[m

n(ri)]
∗
}
, (9)

where εkln is the Levi-Civita tensor, k, l, or n stands for either
x, y, or z, and * denotes the complex conjugate of a complex
variable. As discussed in Ref. [7] the third term in Eq. (9)
becomes negligible if the object under study is discretized in
small enough subunits.

To compute the optical torque we must add up the intrinsic
and extrinsic torques experienced by each subunits. However,
as emphasized in Refs. [15–17], to satisfy the conservation of
angular momentum one should include the radiation reaction
term in the intrinsic part of the optical torque. Hence the optical
torque, on an anisotropic subunit, can be written as

�(ri) = ri × F(ri) + 1
2 Re

{
p(ri) × [

E(ri) + 2
3 ik3

0p(ri)
]∗

+ m(ri) × [
H(ri) + 2

3 ik3
0m(ri)

]∗}
, (10)

where 2
3 ik3

0p(ri) and 2
3 ik3

0m(ri) are the electric and magnetic
reaction fields for a small polarizable particle, respectively
[12].

III. RESULTS

Throughout this article we assume that the cloak is illumi-
nated by a plane wave, traveling in the positive z direction with
linear or left circular polarization; see Fig. 1. In this section
the optical force and torque are normalized to to 4πε0|Einc|2.
Hence optical forces and torques are given in squared meter
and cubic meters, respectively.

FIG. 1. (Color online) Sketch of the geometry. A cloak with outer
radius twice the inner radius. Illumination by a plane wave traveling
in the positive z direction and with either linear polarization (electric
field along the x axis) or left circular polarization.

A. Optical force and torque on a cloak without material losses

To get a sense of the influence of the discrete geometry of
the cloak on optical forces, we first study the optical force on a
lossless spherical invisibility cloak illuminated by a plane wave
at wavelength λ. For this type of cloak the relative permittivity
and permeability can be written as [18]

ε(r) = μ(r) = a

a − b

(
I − 2br − b2

r4
r ⊗ r

)
, (11)

where the cloak is centered on the origin with inner radius b and
outer radius a chosen such that a/b = 2. We recall that for an
ideal cloak (made of continuous, nondispersive, and nonlossy
materials) the incident wave experiences no scattering, and
there would obviously be no net optical force on the cloak, as
was shown recently in Ref. [1].

1. Influence of the discretization on the force experienced
by a discrete cloak

We now use the DDA to study the influence of the size of the
discretization, or equivalently of the number of subunits, on
the optical force experienced by the cloak. In Fig. 2(a) the net
optical force on the cloak is plotted versus the number of layers
of discretization of the cloak (Nl = 2a/d, where d is the size of
the discretization mesh) for three different radii of the cloak. As
Nl increases the net optical force decreases to zero; i.e., the dis-
crete cloak tends toward an idealized, continuous cloak. How-
ever, it is interesting to note that even with a coarse discretiza-
tion the optical cloaking effect is noticeable. To better appre-
ciate this and quantify the cloaking effect, consider the optical
force that a homogeneous dielectric sphere of the same size as
the cloak but with ε = 2.25 and μ = 1 would experience (see
Table I; notice that the computation of the optical force experi-
enced by the sphere is done exactly using a Mie series). For the
two smallest radii, a discrete spherical cloak with only Nl = 16
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FIG. 2. (Color online) Optical force and torque on a discrete cloak
of outer radius a (inner radius b = a/2). Solid line a = λ, dashed
line a = λ/2 and in dash-dotted line a = λ/4. (a) Optical force on
the cloak due to a linearly polarized plane wave versus the number
of layer Nl . (b) Optical torque on the cloak due to a left circularly
polarized plane wave versus the number of discretization layer Nl .

discretization layers can reduce the optical force by more
than three orders of magnitude compared to the homogeneous
dielectric sphere. This strong decreases of the electromagnetic
force shows that a discrete cloak with this level of discretization
is quite effective as a shield against electromagnetic forces. For
a = λ the larger radius means that we must discretize the cloak
more finely (Nl = 40) in order to observe the same attenuation
of the force compared to the homogeneous sphere (notice that
Nl = 16 and Nl = 40 correspond to 1896 and 29 328 subunits
to represent the cloak, respectively).

For a linearly polarized incident plane wave the invisibility
cloak experiences a zero optical torque, but this is no longer
true for a circularly polarized incident wave [see Fig. 2(b)].
In that case we see that for small values of Nl the cloak
experiences an optical torque resulting from the anisotropy
of the permittivity [19] and permeability of the cloak. When
Nl increases the optical torque vanishes as, once again, the
discretized cloak tends toward an ideal (continuous) cloak.

TABLE I. Comparison between the optical force experienced by
a homogeneous dielectric sphere (ε = 2.25, μ = 1) and a spherical
cloak for different radii and level of discretization for the cloak.

Radius a = λ/4 a = λ/2 a = λ

Homogeneous sphere 1.1 × 10−15 1.1 × 10−14 4.4 × 10−14

Cloak Nl = 16 1.2 × 10−19 2.8 × 10−18 2.0 × 10−15

Cloak Nl = 40 3.6 × 10−21 1.3 × 10−19 7.0 × 10−17

2. Density of optical force and torque inside the cloak

It is interesting to look at the optical force (torque) on each
element of the composite structure as it gives us an insight in
the mechanical stress inside the cloak. Moreover, if the optical
force (torque) experienced by each element forming the cloak
is normalized to its volume, we obtain the density of force
(torque) inside the cloak. In Figs. 3(a)–3(c) [Figs. 3(d)–3(f)] we
plot the density of force (torque) as a vector field with Nl = 23
for a = λ/4 and a = λ/2 and Nl = 41 for a = λ. On the same
graphs [Figs. 3(a)–3(f)] the color scale represents the density
of electromagnetic energy. Figure 3 highlights the fact that the
density of energy is uniform outside the cloak and negligible
within the cloak. Notice that the energy density is largest near
the outer boundary of the cloak. Thus, even if the net optical
force experienced by the cloak vanishes as the metamaterial
elements become smaller, there remains nonetheless a nonzero
density of optical force (DOF), which means that the cloak
is subject to mechanical stress, a result in agreement with
the study of an ideal, continuous cloak presented in Ref. [1].
Figures 3(a)–3(c) show that for all three sizes of cloaks, the
mechanical stress “stretches” the cloak in the z direction and
“compresses” it in the x direction. Note that the amount of
stress decreases with the radius of the cloak, which can be
understood intuitively in terms of the curvature imposed by
the cloak on the incident wave.

For the three cloaks the maximum of DOF is more or
less the same, i.e., about 2×107 Nm−3. One can see that the
stress is stronger close to the interior edge (particularly for
the larger cloak) where the density of energy vanishes. Thus,
although the density of energy and the density of force are
both quadratic forms in the fields, they behave differently.
Regarding the density of optical torque, Figs. 3(d)–3(f) shows
that it vanishes overall for the cloak, but there remains a
nonzero density of optical torque inside the cloak. Notice that
one cannot obtain the density of optical torque directly from
Figs. 3(a)–3(c) with r × F as one should add the intrinsic part
of the optical torque Eq. (10).

3. Optical force on a particle inside the cloak

In this section we study the optical force experienced
by a minute test particle of radius λ/72 located within the
discrete cloak. We emphasize that the presence of the test
particle is self-consistently taken into account. This means
that the electromagnetic coupling between the test particle
and the cloak is taken into account to compute the optical
force experienced by the test particle. Figure 4(a) shows the
z component of the optical force experienced by the particle
(either lossless or absorbing) versus its position along the z axis
inside the cloak (x = y = 0). For both particles, we see that
when the particle is close to the inner boundary of the cloak
it experiences a repulsive force that pushes it away from the
boundary. Note, however, that this is not a general behavior.
If we look at the optical force experienced by a particle as
it moves inside the cloak (not represented) we observe one
common feature: The magnitude of the optical force is weak
when the particle is far from the internal edge and increases
dramatically near the edge. As for the specific spatial profile of
the force on the particle, it will depend on several parameters
such as the polarizability of the particle and the size of the
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FIG. 3. (Color online) Cross sections in the y = 0 plane. Vector fields representing the density of force (first row: a, b, c) for a cloak
illuminated by a linearly polarized plane wave and the density of optical torque (second row: d, e, f) on a cloak illuminated by a left circularly
polarized plane wave. A sketch of the polarization state of the incident wave is given on the left side of the figure. In all figures, the color scale
represents the density of electromagnetic energy. The scale bar for the density of force or torque is given in the bottom left corner of each
figure. (a) and (d) a = λ/4 and Nl = 23. (b) and (e) a = λ/2 and Nl = 23. (c) and (f) a = λ and Nl = 41.

cloak; the particle can be attracted toward or pushed away
from the internal edge of the cloak. However, we notice that,
inside the cloak, the force on the absorbing particle is stronger
than the one on the lossless particle, irrespective of the location
inside the cloak. This is due to a stronger in radiation pressure
on the absorbing particle [20,21].

To better see the influence of the cloak on the force experi-
enced by the particle we plot in Fig. 4(b) the force normalized
to the force the particle would experience in the absence of
the cloak, i.e., in free space. For the absorbing particle the
result is as expected: The cloak hides the particle, and
the optical force experienced by the particle decreases when
the particle is within the cloak. This, however, is not the case
for the lossless particle as the optical force experienced by
the particle increases when it is located within the cloak. This
somewhat counterintuitive effect is due to the difference be-
tween radiation pressure and gradient force. When the particle
is inside the cloak, the electromagnetic field is weak (at the cen-
ter of the cloak the density of energy is less than 0.4% of that of
the incident field), hence the radiation pressure is weak. How-
ever, the spatial gradient of the fields is not negligible inside
the cloak, particularly close to the interior edge. The particle
therefore experiences a gradient force (which is proportional
to the real part of the polarizability), and the optical force ex-
perienced by the particle is stronger within the cloak (near the
interior edge), than in free space (no gradient force). Of course,
at the center of the cloak, the total optical force experienced by
the lossless particle is indeed weaker than in free space as the
gradient force vanishes there. When absorption is present we
also have a contribution to the optical force that is proportional
to the imaginary part of the polarizability. The combination of

gradient force and absorption results in, first, a shift between
the two curves’ [solid line for the lossless particle and dashed
line for the absorbing particle in Fig. 4(a)] and, second, a
weaker normalized force due to a stronger force on the absorb-
ing particle in the free-space case [dashed line in Fig. 4(b)].

B. Optical force and torque on a dispersive cloak

So far we have neglected material absorption in the cloak so
as to highlight the influence of the discrete geometry; however,
it is impossible to build a metamaterial with the required optical
properties over a wide frequency range without dispersion
and absorption. Therefore, in this section we study the
influence of dispersion and losses in the cloak by introducing
a dispersion profile in the definition of the permittivity and
permeability tensors associated with the discrete subunits
forming the cloak. Assuming a Lorentz dispersion profile [12],
which is commonly used to model the material dispersion of
metamaterial structures, we define [22,23]

f (ω) = f∞ − F

ω2 + i	ω − ω2
g

, (12)

where ωg and 	 are the transition frequency and damping rate,
respectively. Equation (12) satisfies causality and is Kramers-
Kronig consistent [12,24]. The permittivity and permeability
tensors defined in Eq. (11) are now multiplied by the function
f (ω) to account for material dispersion. Notice that if 	 = 0
and f (ω) �= 1, the cloak is no longer perfect although it is still
lossless. However, if 	 is different from zero, then f (ω) has a
nonzero imaginary part and the optical cloak is lossy as a loss
term is introduced in both the permittivity and permeability.
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FIG. 4. (Color online) Force on a minute particle of radius λ/72
inside the cloak with a = λ/2, b = a/2, and Nl = 45. Lossless
particle: ε = 2.25; solid line and left vertical axis in (b). Absorbing
particle: ε = 2.25 + i; dashed line and right vertical axis in (b). (a) z

component of the optical force is plotted versus z for x = y = 0. (b)
Same as (a), but the optical force is normalized to the optical force
experienced by the same particle located in free space.

1. Dispersive discrete cloak: force

We choose the illumination wavelength λ0 = 2πc/ω0 and
the parameters of the dispersion profile such that f (ω0) = 1
when 	 = 0. This means that at wavelength λ0 the relative
permittivity and permeability of the cloak matches Eq. (11).
With 	 = 0 at λ = λ0 the cloak is lossless, but if the
wavelength of illumination λ is changed from λ0, the cloak
is lossy. Figure 5 shows the optical force on a cloak with outer
radius a = λ0/4 versus the wavelength of illumination when
the cloak is dispersive. The solid line curve without circles
(dashed line curve without circles) gives the spectrum of the
force for 	 = 0 for an illumination frequency either below
the transition frequency ωg (ωg = 3ω0, F = 90ω2

0) or above
the transition frequency ωg (ωg = ω0/10, F = ω2

0/3) [the
inset in the bottom left (right) corner shows f (ω)]. When
λ = λ0 the cloak is an ideal discrete cloak, hence the weak
optical force. However, due to the dispersive nature of the
cloak, if the wavelength of illumination is moved away from
λ0, the optical force on the cloak increases by several orders of
magnitude. If we introduce a small amount of absorption, i.e.,
	 = 10−3, the real part of f (ω) is not noticeably changed over
the frequency range of interest and Im[f (ω)] ≈ 10−3. Figure 5
(plots with circles) shows that the introduction of losses entails
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FIG. 5. (Color online) Optical force on a dispersive cloak versus
wavelength for ωg = 3ω0 and 	 = 0 (solid line), ωg = 3ω0 and 	 =
0.001 (solid line with circles), ωg = ω0/10 and 	 = 0 (dashed line),
ωg = ω0/10 and 	 = 0.001 (dashed line with circles). The left (right)
inset is f (ω) when ωg = 3ω0 (ωg = ω0/10) and 	 = 0.

an increase of the optical force around λ = λ0, revealing a
weakening of the cloaking mechanism by absorption.

2. Dispersive discrete cloak: torque

The optical torque on the cloak, for the strongly dispersive
case ωg = 3ω0, is presented in Fig. 6. The cloak is illuminated
with a circularly polarized plane wave. One can see that
the introduction of a small amount of material absorption
(	 = 0.001) increases the torque significantly. Note, however,
the different effect material absorption has on the optical torque
and force. For the optical force the magnitude of the force is
altered significantly by material absorption only in a narrow
spectral region around λ0. On the other hand, for the optical
torque, the lossless (	 = 0) and lossy (	 = 0.001) cases
are noticeably different over a wider range of frequencies.
This is due to the fact that the optical torque consists of
two contributions: one from absorption and one from the
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FIG. 6. (Color online) Optical torque versus the wavelength on a
dispersive cloak when ωg = 3ω0, 	 = 0 (solid line), and 	 = 0.001
(dashed line). Circles: absorbing cross section of the cloak normalized
to 8π 2/λ.
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anisotropy of the permeability and permittivity tensors. In
Fig. 6 we plot, using circles (no line), the absorbing cross
section of the cloak normalized to 8π2/λ. Clearly the cross-
section spectrum follows very closely the spectral evolution of
the optical torque, showing that, as far as the optical torque is
concerned, the cloak behaves like an absorbing homogeneous
sphere [25], i.e., the optical torque is proportional to the
absorbing cross section.

3. Effect of the dispersion on a hidden particle within the cloak

With invisibility cloaks the focus is traditionally on the
concealment of an object from electromagnetic probes. In
particular, a cloak is expected to induce very little (none in
the ideal case) scattering of electromagnetic waves. However,
as we have seen, the scattering of waves by the cloak is only
half the story. The electromagnetic probe can affect the cloak
mechanically through optical forces and torques. Therefore,
it would be interesting to assess the ability of a realistic
cloak (with discrete geometry and material dispersion and
absorption) to shield an object from optical forces. To this end
we introduce a minute test particle at the center of the cloak and
study how well the particle is protected from optical forces.
The computation of the force experienced by the test particle
is done self-consistently. Figure 7(a) shows the spectrum of
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FIG. 7. (Color online) We consider both a lossless and a lossy
cloak for two dispersion profiles: ωg = 3ω0, 	 = 0 (solid line), and
	 = 0.001 (solid line with circles); ωg = ω0/10, 	 = 0 (dashed line),
and 	 = 0.001 (dashed line with circles). (a) Spectrum of optical
force experienced by a test lossless particle (ε = 2.25 and μ = 1)
located at the center of a dispersive cloak. (b) The force is normalized
to the optical force the particle would experience in free space (in the
absence of the cloak).

the optical force experienced by a lossless dielectric particle
(ε = 2.25 and μ = 1) at the center of the cloak. In Fig. 7(b)
the optical force is normalized to the optical force the particle
would experience in the absence of the cloak. We consider
two dispersion profile parameters: ωg = 3ω0 (solid line) and
ωg = ω0/10 (dashed line) with 	 = 0. It can be seen that the
optical force increases dramatically when the wavelength of
illumination moves away from λ0 [recall that the dispersion
profile of the cloak is chosen such that f (ω0) = 1 in the lossless
case] due to the deterioration of the cloaking mechanism: If
the field inside the cloak is no longer negligible, the optical
force on the test particle increases. This is particularly obvious
in Fig. 7(b), where the normalized optical force is larger than
one, meaning that the sphere experiences a stronger optical
force inside the cloak than the force it would experience in
free space. Also, the test particle would not remain at the
center of the cloak and would move to another equilibrium
position or hit the edge of the cloak. Notice that if a weak
absorption is added to the permittivity and permeability of
the cloak (	 = 0.001, curves with circles), the optical force
does not change significantly. If the concealed particle is itself
absorbing, (ε = 2.25 + i and μ = 1), we see in Figs. 8(a) and
8(b) that the normalized optical force remains close to the
value obtained at λ0 and always less than one. This illustrates
the fact that with a leaky and dispersive cloak, the optical
force experienced by an absorbing particle is lower within the
cloak than in free space by two orders of magnitude in all the
range of wavelength studied, hence the particle is protected
by the cloak. This illustrates the more or less intuitive fact
that even with a leaky and dispersive cloak (i.e., a nonideal
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FIG. 8. (Color online) Same caption as in Fig. 7, but the test
particle is an absorbing particle: ε = 2.25 + i and μ = 1.
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cloak), an absorbing particle is sheltered by a cloak in contrast
to a lossless particle even if the net force experienced by an
absorbing particle were larger than that of a lossless particle.

IV. CONCLUSION

We have studied the influence of the discrete geometry of
a spherical invisibility cloak on the time-averaged force and
torque experienced by the cloak in the time-harmonic regime.
We found that a significant cloaking effect can be achieved
even with a relatively coarse discrete geometry. We also
considered the effect of material dispersion and absorption and
showed that a small amount of losses can lead to a significant

increase in the optical force and torque experienced by the
cloak. The capacity of a cloak to shield an object has been
investigated by considering a test particle inside the cloak, and
comparing the optical force on the particle to the force it would
experience in free space (in the absence of the cloak). While
even an imperfect (dispersive and lossy) cloak can reduce the
optical force on the particle, the “mechanical shielding” of
the particle will greatly depend on the particle’s location
inside the cloak and whether the particle is lossy. In particular,
because optical forces depend not only on the magnitude of the
fields but also on their gradients, near the the internal boundary
of the cloak, the optical force can exceed what it would be in
the absence of the cloak.
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