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Optical forces in time domain on arbitrary objects
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We develop a general theoretical and computational framework to describe, in time domain, the exchange of
momentum between light and arbitrary three-dimensional objects. Our formulation can be used to study the time
evolution of optical forces on any object with linear material response, including inhomogeneous, dispersive, and
absorbing dielectrics and metals. We illustrate our approach by studying the behavior of the Abraham force on
an object illuminated by a sequence of electromagnetic pulses.
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The mechanical coupling between light and matter is at
the heart of many fundamental and applied research areas.
Since the original formulation of the concept of optical
tweezers by Ashkin [1], optical forces have led to numerous
applications in a variety of disciplines, including atomic
physics [2], biophysics [3], and nanophotonics [4–6]. In most
cases matter-light interactions are studied in the time-harmonic
regime where nonstationary contributions to the optical force
vanish. However, when an object is illuminated by an arbitrary
time-dependent electromagnetic wave, a full description of
the exchange of momentum between light and the object
requires a rigorous formulation of the electromagnetic forces
that accounts for the nonstationary terms in the force. Recently,
Hinds and Barnett presented a rigorous treatment of the
interaction between an electromagnetic pulse and a two-level
atom [7]. These authors showed that a nonstationary term
involving the cross product of the electric dipole moment of
the atom with the magnetic field, a term seldom considered
in the treatment of optical forces, is not only important but
also essential in understanding the fundamental difference
between the Minkowsky and the Abraham formulations of
optical momentum [8]. Hence, the work by Hinds and Barnett
illustrates the necessity to use a rigorous treatment of optical
forces when dealing with time-dependent electromagnetic
fields. The question of the transfer of momentum between
electromagnetic waves and matter has been studied ana-
lytically for special geometries [9] and numerically using
the finite difference in time domain (FDTD) method for
two-dimensional structures [10]. However, to the best of our
knowledge, no general time-domain treatment of the optome-
chanical interaction between light and a three-dimensional
object has been formulated that can handle arbitrary shapes,
as well as dispersive and/or absorbing dielectrics and
metals.

The aim of this Rapid Communication is first to provide
a general treatment of optical forces on three-dimensional
objects under arbitrary, time-dependent illumination. Our
approach can handle a wide variety of scatterers, from a single
atom in the two-level approximation to a large scatterer, several
wavelengths in size. Second, we aim to illustrate how the
Abraham force manifest itself for time-varying fields. This
force which can be ignored in the time-harmonic case plays
a subtle yet important role in the exchange of momemtum
between the electromagnetic fields and the scatterer. We
highlight the effect of the Abraham force by considering

the interaction of a scatterer with a short pulse. Hence we
hope that the general method presented in this article for
the description of momentum exchange between light and
three-dimensional structures will stimulate new experimental
investigations, in particular regarding the Abraham force
[11].

We start by describing the electromagnetic properties of our
scattering object using the coupled dipole method (CDM, also
called the discrete dipole approximation). This method was
proposed by Purcell and Pennypacker in the 1970s [12,13]
to study the scattering of light in time harmonic regime
by interstellar grains with arbitrary shapes. Since then, the
method has been used to study, in the frequency domain, a
variety of electrodynamic problems, including optical forces
and torques [14], near-field optical nanomanipulation [15],
and optical trapping near a photonic crystal cavity [16]. In
the CDM an arbitrary object is discretized as a collection
of N dipolar subunits. One significant advantage of the
CDM versus other computational electromagnetic techniques
is that it possesses the versatility of a discrete formula-
tion of Maxwell’s equations (hence any geometry can be
considered), while preserving a semianalytic description of
the interaction between the subunits forming the object.
Furthermore, space is discretized only over the scatterers
thus allowing an analytical derivation of the electromag-
netic fields outside the object, once the internal fields are
known.

Traditionally the CDM operates in the frequency domain
(fields are assumed to be time-harmonic); however, recently
we developed a time-domain formulation of the CDM to study
light scattering by arbitrary objects [17]. Using our recent
work as a starting point, we now develop a new time-domain
method to study optical forces based on the CDM. The i-th
component of the force on a small particle with electric
dipole moment P , due to an electromagnetic field {E,B},
is [18]:

Fi(r, t) = Pj (r, t)[∂iEj (r, t)] + εijk

c
∂t [Pj (r, t)Bk(r, t)],

(1)

where εijk is the Levi-Civita tensor and i, j , and k stand for
either x, y, or z. In the time harmonic regime the second term of
Eq. (1) vanishes; however, in the general case, its contribution
to the force cannot be neglected [7].
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Let us now consider the case of an arbitrary object
illuminated by a time-dependent electromagnetic wave with
envelop H(t), and a spectrum centered at frequency f0. Let
H (ω) be the Fourier transform of H(t). The linearity of
Maxwell’s equations ensures that solving the time-harmonic
scattering problem with incident field H (ω)E0(r, ω), and
computing the inverse Fourier transform of the resulting time
harmonic scattered fields yields the correct time evolution for
the scattered fields [17]. The self-consistent electric local field
at subunit I is given by:

E(rI , ω)

= E0(rI , ω) +
N∑

J=1,J �=I

↔
T (rI , rJ , ω)

↔
α(rJ , ω)E(rJ , ω), (2)

where
↔
α (rJ , ω) is the polarizability of the dipolar

subunits,
↔
T (rI , rJ , ω) is the field susceptibility tensor, and

p(rI , ω) = ↔
α(rJ , ω)E(rJ , ω) the dipole moment associated to

the subunit located at rI . In practice Eq. (2) is solved for a finite
set of frequencies in accordance with the Nyquist-Shannon
sampling theorem. See Ref. [17] for an efficient way to solve
for the fields across many frequencies. The spatial derivative
of the local electric field can also be obtained as [19]:

∂E(rI , ω) = ∂E0(rI , ω)

+
N∑

J=1,J �=I

∂
↔
T (rI , rJ , ω)

↔
α (rJ , ω)E(rJ , ω). (3)

Notice that, unlike the two-level atom case considered in
Refs. [7,20], here we account for retardation effects across the
object and morphological (i.e., geometric) resonances. The
first term in the expression of the optical force [Eq. (1)] on a
dipole located at rI can therefore be expressed as:

Fh
i (rI , t) = G−1[H (ω)pj (rI , ω)]G−1[H (ω)∂iEj (rI , ω)],

(4)

where G denotes the temporal Fourier transform. The
derivation of the contribution to the force from the second term
in Eq. (1) is slightly more involved. First we note that we can
use Maxwell’s equations to express the electric field in terms
of the magnetic field. We can also write the cross product of
the dipole moment and the magnetic field, in time domain, as:

Ai(rI , t) = εijk

c
G−1[H (ω)pj (rI , ω)]G−1[H (ω)Bk(rI , ω)].

(5)

Taking the temporal Fourier transform of Ai(rI , t) yields
A(rI , ω). The second term of the optical force in time domain
can now be expressed as:

Fp

i (rI , t) = ∂tAi(rI , t) = G−1[−iωAi(rI , ω)]. (6)

Finally, the time evolution of the total force on the arbitrary
object is obtained by adding the partial forces acting on the
subunits forming the object:

Fi(t) = Fh
i (t) + Fp

i (t) =
N∑

I=1

Fh
i (rI , t) +

N∑
I=1

Fp

i (rI , t).

(7)

We have separated the force into two parts. The first part
Fh

i (t) is the standard term that appears in the time-harmonic
treatment of optical forces, while the second part Fp

i (t) is a
term that vanishes in a time-harmonic picture and which has
seldom been considered in the treatment of optical forces on
complex objects. We can also define the momentum imparted
to the object by the electromagnetic field as:

Qi(t) =
∫ t

0
Fi(t)dt = Qh

i (t) + Qp

i (t), (8)

where we have assumed that the origin of time has been chosen
such that the electromagnetic fields at the object are zero for
t < 0. We will now consider several examples that will help us
illustrate the contribution of each term. Let us start by assuming
that the incident field is a plane wave with a Gaussian envelop
of the form:

H(t) = exp

[
−16

(
t − τ

τ

)2
]

sin(2πf0t), (9)

where f0 = ω0/2π = c/λ0 is the central frequency of the
pulse and τ = 8/f0 is the duration of the pulse. The spectral
and time profiles of the incident pulse are plotted in Fig. 1(a)
and Fig. 1(b), respectively. Note that on the plots, the frequency
is normalized to f0 and the time is normalized to τ . The
scattering object is a homogeneous sphere, initially at rest,
with radius a and permittivity ε = 2.25. We compute the time
evolution of the force and the particle momentum for a dipolar
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FIG. 1. (Color online) Spectral (a) and time (b) profiles of the
incident field. (c) Force experienced by a dipolar sphere versus time.
(d) Momentum transfer from the pulse to the dipolar sphere versus
time. (e) and (f) same as (c) and (d) but with radius a = λ0/2.
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sphere [ka � 1, Figs. 1(c) and 1(d)] and for a sphere with
radius a = λ0/2 [Figs. 1(e) and 1(f)].

It can be easily shown that for the dipolar sphere the
oscillations of Fh are due to the gradient force and that
the amplitude of these oscillations is half the amplitude of
the oscillations of Fp, which is consistent with the result of
Hinds and Barnett on two-level atoms [7]. Since the term Fp

corresponds to the time derivative of the Poynting vector, its
contribution to the momentum of the object is only nonzero
over the duration of the pulse. This is not the case for the
other contribution to the optical force, which comprises the
so-called radiation pressure. However, for a small particle in
the dipole approximation, the strong oscillations of the
gradient force result in a zero net momentum transfer to the
particle (but a finite displacement). After the pulse has passed
over the particle it will have imparted to the particle a small
momentum increase corresponding to the radiation pressure.
Figures 1(e) and 1(f) represent the time evolution of the force
and the momentum for a sphere with a diameter equal to
the central wavelength of the pulse. The sphere is discretized
with N = 4224 subunits. In this case we find that during the
interaction with the leading edge of the pulse the momentum
imparted to the sphere is predominantly due toFp, whereasFh

remains very weak. Then, as the tail of the pulse passes over
the object, Qp, the contribution of Fp to the momentum of
the object tends toward zero. However, during the second half
of the pulse Qh increases and as a result the total momentum
imparted to the object increases over the duration of the pulse,
while exhibiting small oscillations. Because our approach is
general we can investigate more complex geometries and/or
material dispersions. In Fig. 2 we consider a cube in gold
with a spectrum of the incident field in the visible range as
shown in Fig. 2(a). The permittivity of gold is taken from
experimental data [21]. The central frequency f0 corresponds
to the plasmon mode of a dipolar sphere, i.e., ε(f0) ≈ −2. For
a cube of side a = λ0/10, Fh oscillates but always remains
positive. In fact, the optical force is mainly due to the Fourier
component of the pulse at the resonance frequency f0. At this
frequency, the oscillations of the dipole moment induced in
the small cube are in quadrature with the oscillations of the
incident electric field, hence the induced dipole moment is
in phase with the spatial derivative of the field, which results
in a positive Fh term. For the larger cube [side of a = λ0/2,
discretized with N = 125, 000 subunits, Figs. 2(e) and 2(f)]
we observe a similar behavior with the net-momentum of
the particle being mainly due to Fh. Notice that with for an
irradiance of 1 mW/µm2 at the peak of the pulse, the force
experienced by the larger (smaller) cube is 0.4 nN (20 f N). If
we assume that the cube does not move significantly during
its interaction with the pulse, from the momentum we get a
velocity of 3.4 ms−1 (12.7 ms−1) after the sequence of the
pulse. Assuming the particle is in water and a low Reynolds
number, this corresponds to an overall spatial displacement of
about 450 nm (132 nm).

We now consider an inhomogeneous sphere with radius
a = 0.8λ0, and permittivity ε(r) = 2.25 + 2 sin2(πr2/a2),
where r is the distance from the center of the sphere. To
account for the spatial variation of the index we discretize the
sphere into N = 33, 552 subunits. Figures 3(a) and 3(b) show
the time evolution of the optical force and momentum with the
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FIG. 2. (Color online) Spectral (a) and time (b) profiles of the
incident field. (c) Force experienced by a cube with side a = λ0/10
versus time. (d) Momentum transfer from the pulse to the cube versus
time. (e) and (f) same as (c) and (d) but with a = λ0/2.

pulse defined as in Fig. 1. We observe a strong contribution
from Qp to the momentum when the pulse reaches the object.
At the same time a negative value of Qh is observed. This
is similar to the case of a homogeneous dielectric sphere
[Fig. 1(f)]. However, by contrast with the homogeneous case,
we also observe that the force remains nonzero long after the
incident pulse has passed over the object. This is a consequence
of the excitation, by the incident pulse, of creeping waves
at the surface of the sphere. Accordingly, the force, and
to a lesser extent the momentum, exhibit weak oscillations
at the optical frequency 2f0 and stronger oscillations at a
frequency corresponding to the reciprocal of the period of the
creeping wave (time required for the wave to travel around the
sphere).
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FIG. 3. (Color online) (a) Force experiences by a sphere in the
presence of a creeping wave. (b) Momentum imparted by the pulse
to the object.
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FIG. 4. (Color online) (a) Envelop of the incident pulse. (b) Zoom
on the incident pulse. (c) Spectrum of the incident pulse. (d) Optical
force experienced by the object. (e) Momentum imparted by the
pulse to the object for w1 = w0/10. (f) Same as in (e) but with
w1 = w0/15.

The strong initial contribution to the momentum of the
object from Fp in the presence of creeping waves may give us
an insight on how to observe experimentally the influence
of Fp. The idea is to achieve a coherent control of the
interaction between the incident wave and the creeping wave.
To see that let us construct a new incident field from a
sequence of pulses such that the envelop of the incident wave

is now:

H(t) =
[

1

1 + e10(−t+2τ )/τ
− 1

1 + e10(−t+8τ )/τ

]
× sin(ω0t) sin(ω1t), (10)

where ω0 is the frequency defined previously. We choose
ω1 = ω0/10 such that the time between two consecutive pulses
matches the period of the creeping wave. The time profile of
the envelop of the incident wave is shown in Fig. 4(a), and
a portion of the time profile of the amplitude of the electric
field is shown in Fig. 4(b). The spectrum of the incident field
in given in Fig. 4(c). The optical force experienced by the
sphere is plotted in Fig. 4(d). We observe the usual oscillations
at frequency 2f0 but we also have strong oscillations at the
frequency f0/5, with Fp and Fh oscillating 180◦ out of phase.
As a result, the total force exhibits oscillations at frequency
2f0 around a positive average value. As shown in Fig. 4(e)
this leads to a linear increase of Qt with time despite the
fact that the incident wave consists of a series of pulses. This
surprising result is due to the contribution from the Fp term
of the force as Qh alone would exhibit oscillations at the
frequency 2f1 = f0/5. Note that if ω1 = ω0/15 then the time
between two consecutive pulses is equal to 1.5 times the period
of the creeping wave. In this case, we clearly see in Fig. 4(f)
that Qt oscillates at frequency 2f1.

In conclusion we developed a general approach to optical
forces in the time domain. We illustrated our approach on
several objects, both at and beyond the dipole approximation.
In particular, we showed that if a particle supports a surface
state, by tailoring the time profile of the incident wave such that
it enhances or suppresses the contribution of the surface state
to the momentum exchange, the influence of the Abraham
term in the force can be highlighted. Therefore it would be
interesting to create the type of oscillations of the momentum
described in this letter at a slow-enough frequency to be
observed experimentally. This might be achievable by exciting
high-Q modes such as whispering gallery modes in spherical
particles.
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