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Efficient iterative solution of the discrete dipole
approximation for magnetodielectric scatterers
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The discrete dipole approximation (DDA) has been widely used to study light scattering by nonmagnetic
objects. The electric field inside an arbitrary scatterer is found by solving a dense, symmetric, linear system
using, in general, an iterative approach. However, when the scatterer has a nonzero magnetic susceptibility,
the linear system becomes nonsymmetric, and some of the most commonly used iterative methods fail to
work. We study the scattering of light by objects with both electric and magnetic linear responses and dis-
cuss the efficiency of several iterative solvers for the nonsymmetric DDA. © 2009 Optical Society of America
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The scattering of an electromagnetic (EM) wave by
an arbitrary object can be described using the dis-
crete dipole approximation (DDA, also called the
coupled dipole method) [1]. In the traditional form of
the DDA, a nonmagnetic scatterer is discretized into
a collection of electric dipoles over a cubic lattice
[2–4]. At the heart of the DDA lies the resolution of a
dense, symmetric, linear system of size 3N�3N,
where N is the number of electric dipoles. Often the
system is too large to be solved by direct inversion,
and iterative methods are used. A comparison of the
efficiency of iterative methods in the DDA for non-
magnetic scatterers was done by Flatau [5], using the
parallel iterative methods (PIM) package [6]. Note
that there were errors in the implementation of some
of the methods within PIM (missing complex conju-
gates in inner products), most notably the quasi-
minimal residual (QMR) method. Indeed, while Fla-
tau reported that QMR often failed to converge, in
our experience, QMR is one of the most robust and
efficient iterative methods for the DDA. Recent stud-
ies by Fan et al. also confirm the efficiency of QMR
[7].

The DDA can also be used with magnetic materi-
als, provided it is modified to include magnetic di-
poles [8,9]. Consider a scatterer discretized into N
polarizable subunits. For a given incident electro-
magnetic field �Einc ,Hinc�, the local fields at the ith
subunit, located at ri, are given as

E�ri� = Einc�ri� + �
j�i

�Gee�ri,rj��e�rj�E�rj�

+ Gem�ri,rj��m�rj�H�rj�� �1�

H�ri� = Hinc�ri� + �
j�i

�Gme�ri,rj��e�rj�E�rj�

+ Gmm�ri,rj��m�rj�H�rj��, �2�

where the G quantities are field susceptibility ten-
e m
sors (FSTs) [10] and � and � are the electric and
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magnetic polarizabilities of subunit i [8], which for
the sake of simplicity we will take as scalars. Notice
that in cgs the FSTs satisfy Gee=Gmm and Gem

=−Gme. The size of the linear system is now 6N
�6N, and because of the cross terms (electric field
created by the induced magnetic polarization and
vice versa) the system is no longer symmetric. As a
consequence, some of the standard iterative methods,
such as the conjugate gradient method, are no longer
suitable.

Formally, deriving the local fields amounts to solv-
ing the linear system

Ax = b, �3�

where vectors x and b have length 6N and contain
the induced EM local fields and the incident EM
fields, respectively. The nonsymmetric matrix A is
constructed from the FSTs [8] and can be written as

A = � I 0

0 I	 − � M K

− K M	��e 0

0 �m	 , �4�

where M is a 3N�3N symmetric matrix block con-
taining the linear response of the electric (magnetic)
field to the electric (magnetic) polarization induced
inside the scatterer, and K, a 3N�3N antisymmetric
matrix block, describes the cross responses (electric
field response to a magnetic polarization and vice-
versa). �e and �m contain the electric and magnetic
polarizabilities associated with the polarizable sub-
units forming the scatterer [8]. If the scatterer is
made of isotropic materials, matrices �e and �m are
diagonal. Note that unlike the nonmagnetic case, it is
not generally possible to solve for the dipole moments
rather than the fields, because this would mean hav-
ing the inverse of the polarizabilities on the diagonal
of the matrix, which is sound only if all the polariz-
abilities are nonzero. This means that the permittiv-
ity and the permeability must be different from 1 (or
their corresponding values for the background me-

dium) for every single subunit forming the scatterer.
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We now proceed to solve Eq. (3) using two catego-
ries of algorithms. We first consider four of the more
standard iterative methods [11]: the stabilized ver-
sion of the biconjugate gradient (BICGSTAB), the
QMR, the transpose-free quasi-minimal residual
(TFQMR), and the restarted version of the general-
ized minimal residual method (GMRES) with 50 ba-
sis functions. We implemented these methods from
the corresponding algorithms given in the PIM paper
[6]. We also consider “hybrid” methods that combine
the properties of two or more traditional methods.
Two algorithms labeled QMRCGSTAB1 and
QMRCGSTAB2 are QMR variants of the BICGSTAB
algorithm [12]. The two final methods we consider
are labeled GPBICG and GPBICG�m , l�, which are
refinements of the biconjugate gradient method [13].
For a given approximate solution x

*
to Eq. (3), we de-

fine the residual as

r = 
Ax
*

− b
/
b
. �5�

For each method the iterative process is terminated
once r��, where � is a prescribed tolerance. All the
iterative algorithms require two main types of com-
putations: vector inner products and matrix-vector
products (MVPs). Since for a large number of dipoles
the most time-consuming operation is the MVP, our
metric will be the number of MVPs required by each
method to achieve r��. Notice that depending on the
iterative method, one or two MVPs are computed per
iteration.

To illustrate the performance of the various itera-
tive solvers we consider the scattering of an electro-

Fig. 1. (Color online) Number of MVPs versus �=� for a
homogenous sphere (see text for detail). (a) The sphere has

no absorption: Im���=Im���=0. (b) Im���=Im���=1.
magnetic plane wave (wavelength �) by a spherical
particle, and we compute the number of MVPs re-
quired to achieve a prescribed tolerance �. A lack of
data points for a given method indicates failure to
converge. The first scatterer is a sphere of radius a
=� /4, discretized in N=4224 subunits, and we study
the number of MVPs needed to solve the linear sys-
tem Eq. (4) versus the permittivity and permeability
of the sphere (Fig. 1). The prescribed tolerance is
fixed to �=10−5. Note that the computation is
also stopped if convergence has not been reached
after 5000 MVPs. Figure 1(a) pertains to a lossless
material, whereas Fig. 1(b) corresponds to a lossy
scatterer with Im���=Im���=1. In Fig. 1(a) we can
see that as � and � increase, the first methods
to fail to achieve convergence are BICGSTAB,
QMRCGSTAB1, and GMRES. The most robust meth-
ods are QMR and GPBICG, for which convergence is
achieved even for the larger values of the permittiv-
ity and permeability considered here. Notice that for
low values of � and � GPBICG requires less iteration
than QMR to converge, whereas for large values of �
and � the opposite is true. When we introduce mate-
rial losses [Fig. 1(b)] convergence is improved for all
the methods. This is a common feature of the DDA,
as losses help dampen the morphological resonances
of the scatterer, leading to a faster convergence.
Nevertheless QMR and GPBICG are still the most
efficient methods overall for large values of �� ,��.

In Fig. 2 we consider an inhomogeneous sphere of

Fig. 2. (Color online) Number of MVPs versus �1=�2 ��2
=�1=1� for an inhomogeneous sphere (see text for detail).
(a) The sphere has no absorption. (b) Im��1�=Im��2�=1.
radius a=� /2, discretized in N=4224 subunits. The
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upper half of the sphere (material 1) is a dielectric
��1=1�, and the lower half of the sphere (material 2)
is magnetic ��2=1�. This interesting case allows us to
illustrate the behavior of the methods when two ob-
jects with different natures (dielectric or magnetic)
are strongly coupled. The matrix containing the po-
larizabilities of the subunits now has many zeroes on
its diagonal. Unlike in the previous example, in this
case QMR performs very poorly, failing to converge
even for a moderate value of the optical constants
[Fig. 2(a)], and does not converge at all in the pres-
ence of absorption [Fig. 2(b)]. BICGSTAB and
GMRES also perform poorly. On the other hand,
the four remaining methods (QMRCGSTAB1,
QMRCGSTAB2, TFQMR, and GPBICG) behave in a
similar way, with GPBICG slightly better when ab-
sorption is present [Fig. 2(b)].

We now consider a larger sphere of radius a=2�
and discretized in N=268096 subunits with a pre-
scribed tolerance fixed to �=10−3. Notice that this
sphere has a large-size parameter (around 12). The
case of dielectric spheres with large-size parameters
has recently been studied, in the nonmagnetic case,
by Yurkin et al. [14]. These authors showed that
QMR was more robust than BICG and BICGSTAB
and that an increase in the permittivity dramatically

Fig. 3. (Color online) Sphere of radius a=2�. (a) Im���

=Im���=1. (b) Im��1�=Im��2�=1
decreases the performance of the iterative method.
Figure 3(a) shows that in the magnetic case only five
of the methods can potentially be used, although
BICGSTAB still performs poorly, and so does
QMRCGSTAB2. For this configuration the only
method that always converges is GPBICG. In Fig.
3(b) we consider a sphere with the same geometric
parameters as in the previous example but with one
half of the sphere made of nonmagnetic material and
the other half made of magnetic material (with the
same material constants as in Fig. 2). For this large,
inhomogeneous sphere, we find that only three of the
methods are able to deal with even very weak values
of �� ,��, and only GPBICG achieves convergence for
larger values of the permittivity and the permeabil-
ity.

Finally we note that there exists a hybrid method
based on BICGSTAB and GPBICG [13] called
GPBICG�m , l�. Roughly, the method consists in using
BICGSTAB for m steps and subsequently using
GPBICG for l iteration steps. Combination of m and l
should be chosen according to the nature of the prob-
lem. In our case we have tried all combinations for
m�3 and l�3. We have not plotted the correspond-
ing results, as it appears that the standard GPBICG
is always the most efficient iterative algorithm for
the cases we tested.

In conclusion, we have shown that GPBICG is the
most versatile and robust iterative method to solve
the nonsymmetric linear system associated with the
formulation of the DDA for magnetodielectric scatter-
ers.
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