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1. Introduction

Thediscrete dipole approximation (DDA, also called coupled dipole method) is a general com-
putational method that is widely used to study scattering problems in electrodynamics and
photonics. The method was introduced by Purcell and Pennypacker [1, 2] to address the scatte-
ring of light by interstellar grains with arbitrary shapes. Since its initial formulation, the DDA
been generalized to study the scattering of light by periodic structures [3, 4], spontaneous emis-
sion [5, 6, 7, 8], optical forces [9, 10, 11, 12, 13] and optical torques [14]. A recent overview of
the DDA can be found in Ref. [15].

In the standard formulation of the DDA the electromagnetic fields are computed in the fre-
quency domain. While this is most appropriate for finding the steady state solution of an elec-
tromagnetic problem, this restriction means that one cannot exploit the advantages of the DDA
(ability to consider arbitrary scatterers, spatial discretization limited to the scatterer and its im-
mediate neighborhood) to explore transient phenomena. This is a particularly limiting factor
for optomechanical studies where one might be interested in modelling the optical force expe-
rienced by a scatterer illuminated by a time-varying electromagnetic (EM) field.

Previously we developed a formulation of the DDA to study light scattering, in time domain,
by a linear, dispersive, lossy objects [16]. More recently, we generalized the time-domain DDA
to address optical forces innon-magneticsystems [17]. In this article we describe how these
two aspects (time varying fields and optical forces on magnetodielectric scatterers) can be com-
bined in a more general formulation of the DDA, that can be used to study optical forces on
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arbitrary three-dimensionalmagnetodielectricobject with material dispersion and/or losses,in
time domain.

2. DDA for optical force in time domain

Consider an object (scatterer) in vacuum. We start by discretizating the object, over a cubic
lattice, into a collection ofN polarizable subunits. If the lattice spacing is small enough com-
pared to the spatial variation of the electromagnetic fields, one can treat each subunit within the
dipole approximation. Hence, to compute the optical force on an arbitrary object we first need
to derive the optical force on a subunit, in the dipole approximation. Consider a small (com-
pared to the spatial variations of the fields) particle located at positionr with permittivity ε and
permeabilityµ (we assume that the background medium is vacuum). The particle is illuminated
by an arbitrary, time-dependent incident EM field{E (r, t),H (r, t)}. Let P(r, t) [M (r, t)] be
the time-dependent electric (magnetic) dipole moment induced in the particle by the electric
(magnetic) field of the incident EM wave, then thei-th component of the force experienced by
the particle is the sum of the force on the electric dipole [18] plus the force on the magnetic
dipole [19, 20]:

Fi(r, t) = [P(r, t).∇]Ei(r, t)+
1
c

[∂tP(r, t)×H (r, t)]i

+[M (r, t).∇]Hi(r, t)−
1
c

[∂tM (r, t)×E (r, t)]i (1)

wherei, j, andk stand for eitherx, y or z and∂t denotes the derivative with respect to time.
This is a generalized form of the Lorentz force [21, 22]. Using Maxwell’s equations thei-th
component of the electric and magnetic forces can be written as:

Fi(r, t) = P j(r, t)[∂iE j(r, t)]+
εi jk

c
∂t [P j(r, t)Hk(r, t)]

+ M j(r, t)[∂iH j(r, t)]−
εi jk

c
∂t [M j(r, t)Ek(r, t)]

= F
he(r, t)+F

pe(r, t)+F
hm(r, t)+F

pm(r, t) (2)

whereεi jk is the Levi-Civita tensor. However, the above expression for the force is incomplete.
We need to add the radiative reaction force,i.e. the flux of momentum lost by the particle when
it radiates electromagnetic waves [23, 24]

F
recoil
i (r, t) = −2

3

εi jk

c4

[

∂ 2
t P j(r, t)

][

∂ 2
t M j(r, t)

]

. (3)

Therefore, the optical force experienced by the particle is the sum of five contributions. The
first [F he(r, t)] and third terms[F hm(r, t)] on the right-hand-side of Eq. (2) correspond to the
“standard” terms that appears in the time harmonic case for the electric dipole and magnetic
dipole, respectively. The second[F pe(r, t)] and fourth terms[F pm(r, t)] of Eq. (2) whose time
average vanish if the incident wave is time harmonic are related to the Poynting vector. In the
absence of material dispersion, these two terms are proportional to the time derivative of the
Poynting vector. The last term, Eq. (3) which does not vanish for a time harmonic wave [25], is
a self-interaction term.

Within the framework of the DDA let us consider an arbitrary object illuminated by a time-
dependent electromagnetic wave with envelopI (t) (Fourier transformI(ω) = G [I (t)]), and
a spectrum centered at frequencyf0. The general aspects of the time-domain formulation of the
DDA have been detailed in a previous article, therefore only a brief description will be given
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here [16]. We first solve the linear system associated to the time-harmonic DDA, forM values
of the frequency with the incident fieldI(ω)E(ω), to find the value the electric dipole and
magnetic dipole at each subunits location for the time harmonic problems [26, 27]. Then we
compute the temporal inverse Fourier transform of the fields in accordance with the Nyquist-
Shannon sampling theorem such thatE (r, t) = G−1[I(ω)E(r,ω)] [16].

We now focus on how to compute the optical force in time domain on a subunit located atr.
The terms related to the harmonic force can obviously be computed through:

F
he
i (r, t) = G

−1[I(ω)p j(r,ω)]G−1[I(ω)∂iE j(r,ω)] (4)

F
hm
i (r, t) = G

−1[I(ω)mj(r,ω)]G−1[I(ω)∂iH j(r,ω)] (5)

The derivation of the terms related to the time derivative of the Poynting vector is slightly more
involved. We first compute these terms without the time derivative:

P j(r, t)Hk(r, t) = G
−1[I(ω)p j(r,ω)]G−1[I(ω)Hk(r,ω)] (6)

M j(r, t)Ek(r, t) = G
−1[I(ω)mj(r,ω)]G−1[I(ω)Ek(r,ω)] (7)

The time derivative is calculated in the frequency domain using the inverse Fourier transform:

F
pe
i (r, t) =

εi jk

c
G

−1{−iωG [P j(r, t)Hk(r, t)]} (8)

F
pm
i (r, t) = −εi jk

c
G

−1{−iωG [M j(r, t)Ek(r, t)]} (9)

The recoil term can also be obtained by performing the differentiation in the frequency domain:

F
recoil
i (r, t) = −2

3

εi jk

c4 G
−1[−ω2I(ω)p j(r,ω)]G−1[−ω2I(ω)mk(r,ω)] (10)

Using the DDA, once the contributions to the optical force are known for each subunit, the opti-
cal force on the scatterer is obtained by adding the optical force on theN subunits. We can also
define the momentum imparted to the object by the electromagnetic field asQi(t) =

∫ t
0 Fi(t)dt

where we have assumed that the origin of time is chosen such that the electromagnetic fields at
the object are zero fort < 0.

3. Advantages of the DDA for the computation of optical forces in time domain

Traditionally, the finite difference time domain (FDTD) method has been used to study electro-
magnetic scattering problems in time domain [28, 29, 30]. In the FDTD, the differential forms
of the time-dependent Maxwell equations are discretized in both space and time. As a result,
the entire computational window must be discretized and not just the scatterer. Moreover, in
the FDTD, boundary conditions at the edges of the computational window must be handled
carefully (usually using perfectly matched layer techniques). Furthermore, numerical disper-
sion and/or instabilities may occur when the fields are propagated over large distances (large
object compared to the wavelength).

By contrast, the DDA circumvent many of these issues. First, there is no computational
window per sesince only the scatterer is discretized. Once the fields inside the scatterer are
computed, the fields anywhere outside can be computed in a straightforward way using a free-
space susceptibility tensor that is known analytically. In the FDTD, the fields are computed
either within the computational window or in the far-field limit using near-to-far-field trans-
formations. Furthermore, since unlike the FDTD, the DDA is based on the integral form of
Maxwell’s equations and, therefore, is ”built” around the concept of field susceptibility tensor,
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certain type of geometries such as a semi-infinite substrate, or a multilayer stack can be handled
analyticallywhich is not possible with the FDTD.

Another advantage of the DDA is how easy it is to account for material dispersion as showed
in the next section which deals with plasmon resonance. This is because each frequency com-
ponent is dealt with separately, and therefore there is no risk of error propagation in time.
Anisotropic scatterers are also easily accounted for as they only amount to the introduction of a
dyadic tensor for the electric and/or magnetic polarizabilities. While the computation of optical
forces in time domain has been done using FDTD for a 2D structure with a permeability equal
to one (non-magnetic case) [22], we are not aware, at the present time, of a general FDTD
treatment of optical forces in time domain for a 3D magneto-dielectric scatterer with material
dispersion and losses.

Finally, let us mention that in the DDA one needs to solve linear systems of size 6N×6N
whereN is the number of discretization subunits for the scatterers under study. Except for
the smallest values ofN these systems cannot be solved by direct matrix inversion, rather,
one should use an efficient iterative scheme [26] with an appropriate initial estimate of the
solution [16].

4. How many contributions to the time-dependant optical force?

Before considering the case of a discretized scatterer with material dispersion and losses in
Sec. 5, to help us understand why we have introduced five force terms, in this section we take
a closer look at the different contributions to the time-dependent optical force in the simpler
case of a dipole scatterer in the presence of a time-harmonic incident plane wave. Consider a
spherical scatterer with radiusa (in the dipole approximation) illuminated by a time-harmonic
plane wave with normalized amplitude [Ex = Hy = cos(kz−ωt)]. For the sake of simplicity
we assume that the sphere is homogeneous with real permittivity and permeability. We also
neglect material dispersion. Taking into account the radiative reaction term necessary to satisfy
the optical theorem [2, 31], we can write the five terms of the time-dependent force introduced
previously as:

F
he(z,t) = −αe

0k
sin(2kz−2ωt)

2
+

2
3
(αe

0)
2k4sin2(kz−ωt) (11)

F
hm(z,t) = −αm

0 k
sin(2kz−2ωt)

2
+

2
3
(αm

0 )2k4sin2(kz−ωt) (12)

F
pe(z,t) = αe

0ksin(2kz−2ωt)+
2
3
(αe

0)
2k4cos(2kz−2ωt) (13)

F
pm(z,t) = αm

0 ksin(2kz−2ωt)+
2
3
(αm

0 )2k4cos(2kz−2ωt) (14)

F
recoil(z,t) = −2

3
k4αm

0 αe
0 cos2(kz−ωt) (15)

whereαm
0 andαe

0 are the quasistatic polarizabilities. Notice that in the time harmonic regime,
it is common to split, artificially, the optical force into two contributions: the gradient force and
the radiation pressure (or scattering force) [32]. In the time domain, however, such a decom-
position of the optical force into two terms only is no longer adequate as other contributions
emerge. In the time domain picture, the counterparts to the gradient force and radiation pres-
sure are included in the time-dependent termsF

he andF
hm but as seen in Eqs. (11)-(12) the

spatial derivatives of the electromagnetic field introduce a term proportional to sin(2kz−2ωt)
which vanishes on average (there is no gradient force with a plane wave illumination), and a
term proportional to sin2(kz−ωt) which gives the radiation pressure when the time average
is performed. The three other terms [Eqs. (8)-(10)], on the other hand, are obtained by differ-
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Fig. 1. Spectral (a) and time (b) profiles of the incident field.

entiationof the fields with respect to time and are not related to the concept of gradient force
or radiation pressure of the time-harmonic regime. Notice that in Eq. (15) we have neglected
terms in(ka)7 and(ka)10. Therefore, the total force, in time domain, on a dipole illuminated by
a time-harmonic plane wave is:

F (z,t) = (αe
0 +αm

0 )k
sin(2kz−2ωt)

2
+

2
3

k4[(αe
0)

2 +(αm
0 )2−αm

0 αe
0]cos2(kz−ωt), (16)

where the second term cannot be neglected since its time-average is not zero (contrary to the
first term). In other words, when dealing with a particle in the dipole approximation (or an
actual collection of dipoles) it is essential to take into account terms beside the usual gradient
force and radiation pressure in calculating the total momentum imparted by the electromagnetic
wave to the dipole.

5. Time-dependant optical force on a discretized object

5.1. Contributions to the force: single dipoleversusdiscretized scatterer.

As we discussed, the foundation of the DDA is the description of the various scattering pro-
cesses at the level of a single dipole (subunit). However, most of the time the underlying struc-
ture of the scatterer as a collection of dipoles must be viewed as a convenient numerical de-
scription as opposed to a true representation of the internal geometry of the scatterer. Because
of this, the self-term in Eq. (3) will lose its significance when a finite object is discretized
into a large collection of dipoles. To illustrate this point, consider a spherical scatterer made
of a double-negative medium for which the material responses are described by lossy Drude
models [33]. In the frequency domain, the permittivity and permeability are given by:

ε(ω) = 1− (ωpe)2

ω(ω + iΓe)
, µ(ω) = 1− (ωpm)2

ω(ω + iΓm)
(17)

whereωpe, ωpm, Γe andΓm denote the corresponding plasma and damping frequencies respec-
tively. Let us start by assuming that the incident field is a plane wave with a Gaussian time
envelop of the form:

I (t) = exp

[

−16

(

t − τ
τ

)2
]

sin(2π f0t). (18)

where f0 = ω0/2π = c/λ0 is the central frequency of the pulseτ = 8/ f0 is the duration of the
pulse. The spectral and time profiles of the incident pulse are plotted in Figs. 1(a) and 1(b).

#129020 - $15.00 USD Received 3 Jun 2010; revised 13 Sep 2010; accepted 4 Oct 2010; published 25 Jan 2011
(C) 2011 OSA 31 January 2011 / Vol. 19,  No. 3 / OPTICS EXPRESS  2471



1.2 1.4 1.6 1.8 2
−1

0

1

2

x 10
−3

Normalized time

F
or

ce

 

 
Fhe=Fhm

Fpe=Fpm

Ft

1.2 1.4 1.6 1.8 2

0

0.5

1

1.5

2
x 10

−12

Normalized time

M
om

en
tu

m

 

 
Qhe=Qhm

Qpe=Qpm

Qt

1.2 1.4 1.6 1.8 2
−4

−3

−2

−1

0

1

x 10
−6

Normalized time

R
ec

oi
l f

or
ce

 

 

N=33552
N=4224

10
3

10
4

10
51.9

1.92

1.94

1.96

1.98

2x 10
−12

Number of subunits

T
ot

al
 m

om
en

tu
m

1.2 1.4 1.6 1.8 2

−2.5

−2

−1.5

−1

−0.5

0
x 10

−15

Normalized time

R
ec

oi
l m

om
en

tu
m

 

 

N=33552
N=4224

10
3

10
4

10
5

−10
−14

−10
−15

−10
−16

Number of subunits

R
ec

oi
l m

om
en

tu
m

(a) (b)

(c) (d)

(e) (f)

Fig. 2. (a) Total force (solid line) versus time and its different contribution,i.e. F pm = F pe

(dashed line),F hm = F he (dot-dashed line). (b) Total momentum imparted to the object
and its contribution associated. (c) Total momentum imparted to the object by the pulse
versus the numbers of subunits to represent the sphere. (d) In solid line (dashed line)F recoil

with N = 33552 (N= 4224) subunits to represent the object. (e) Momentum imparted to the
object due toF recoil versus the time. (f) Momentum imparted to the object due toF recoil

versus the numbers of subunits to represent the sphere.
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Let us first consider a sphere with radiusa = λ0 discretized intoN = 33552 subunits. The
parameters for this computation aref0 chosen such that Re[ε(ω0)]=Re[µ(ω0)]=-1, i.e. ωpe =
ωpm = w0

√
2, and damping termsΓe = Γm = ωpe/10. This corresponds to a sphere made

of a lossy, negative-index material and exhibiting a resonance at frequencyω0, i.e. in the time-
harmonic case the time average of the optical force would be maximum forω = ω0. Notice that
due to the large size of the sphere the resonance does not occur for Re[ε(ω0)]=Re[µ(ω0)]=-
2 (plasmon resonance of a sphere much smaller than the wavelength) but is shifted toward
Re[ε(ω0)]=Re[µ(ω0)]-1 (surface plasmon resonance). We plot in Fig. 2(a) the total optical force
and its different contribution, as a function of time. Becauseε(ω) = µ(ω), and the equivalence
between the plasma frequencies and damping terms for the electric and magnetic parts of the
material response, we haveF pm(t) = F pe(t) andF hm(t) = F he(t). Note that, in the present
configuration, the oscillations of the total force are mainly due to the term associated with
the Poynting vector. In Fig. 2(b) we can see that the contribution of this term to the transfer
of momentum from the EM field to the object vanishes (as expected) at the end of the pulse
and only the harmonic contributions to the force remain. The convergence of the method is
illustrated in Fig. 2(c) which shows the momentum imparted by the EM wave to the object,
versus the number of subunits. The computed value of the momentum only changes by 1%
when the number of subunits is increased fromN = 4224 toN = 113104.

The main difference between the optical force on a single dipole and on one subunit of a
discretized object comes from the recoil (self-interaction) of Eq. (3). The recoil (radiation reac-
tion) force showed Fig. 2(d) is very weak compare to the other terms. In fact the magnitude of
this term decreases as the number of subunitN increases as illustrated by the two curves plotted
for different values ofN, Figs. 2(d) and 2(e) for the force and the momentum respectively. This
is due to the fact that the radiation reaction force for each subunit scales as the volume of the
subunit squared (cross product of the electric and magnetic dipole moments), hence whenN,
the number of subunits, increases the contribution to the total force on the object of this recoil
term (summed over all the subunits) decreases like 1/Nas illustrated in Fig. 2(f). Note that this
term would vanish in the limit whereN tends to infinity, however, its contribution to the force
would then be taken into account through the other contributions of the force and the multiple
scattering between the subunits. In other words, the separation of the total optical force into 5
terms, while helpful in understanding the origin of the force experienced by a small particle, is
somewhat artificial in the case of a discretized object. As a result, as the number of discretized
subunits tend to infinity, the various contributions of the total forces can be grouped into four
terms instead of the five terms, which is consistent with the expression for the generalized
Lorentz force derived by Mansirupur [22].

However, we emphasize again that if one is interested in calculating the optical forces on a
single, or a collection of particles treated in the dipole approximation it is essential to take into
account the recoil term explicitly. This was illustrated in Sect. 4, where in Eq. (16) the recoil
term gives the term involving the product of the electric and magnetic polarizabilities which is
of the same magnitude as the other two terms in the square brackets.

5.2. Influence of losses and plasmon resonances

If a small sphere is illuminated with a plane wave at frequencyf0, the spectrum of the optical
force would exhibit peaks at two frequencies: the zero frequency and 2f0. This can be seen
in Eq. (16) where there is a term cos2(kz−ωt) in the expression of the total force. Accord-
ingly, for an homogeneous sphere with no dispersion and an illumination given by Eq. (18) we
observe two peaks: one at zero frequency and the second at 2f0. As showed in Fig. 3(b), an
increase in absorption (damping term) produces a slight redshift of the maximum around 2f0,
and a decrease of the magnitude of the two peaks, confirmed by Fig. 3(a) where the total mo-
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Fig. 3. (a) Total momentum imparted to the object and (b) spectrum of the force, for differ-
entvalues of the damping termΓ.
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Fig. 4. (a) Total momentum imparted to the object and (b) spectrum of the force, for differ-
entof ω p = ω pe = ω pm.

mentum imparted to the object is weaker for higher absorption. This decrease of the momentum
transfer with material losses is due to the fact that an increase of the damping term weakens the
resonance.

5.3. Influence of the value of the plasma frequency

As the resonance of the sphere is aroundε = µ = −1 whenω p = ω pe = ω pm go far
√

2ω0 the
total momentum imparted to the sphere decrease particularly whenω p is shifted toward the low
frequency, Fig. 4(a), as for the low frequencies(ε,µ) are close to one. If we compare the ration
between the maximum at the frequency 2f0 and the maximum at the null frequency is higher
when the central frequency of the pulse correspond to the resonance of the sphere showing that
the observation of oscillation of the force with the frequency of the pulse should be done at a
resonance.
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6. Conclusion

In conclusion we have presented a general framework based on the discrete dipole approx-
imation (DDA) for the computation of optical force on arbitrary magnetodielectric, three-
dimensional objects in time domain. The principal advantage of the method is that only the
scatterer and its immediate neighborhood need to be discretized, allowing analytic expressions
of the incident fields to be used. From its DDA foundation our approach inherits the ability
to handle any material with a linear response, including dispersive, anisotropic and/or lossy
magnetodielectric scatterers.
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