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a b s t r a c t 

The ability to model the backward and forward scattering by large inhomogeneous samples is of major 

importance especially for computational imaging applications. Unfortunately, when the sample dimen- 

sions exceed hundreds of wavelengths, a rigorous solving of the Maxwell Equations becomes difficult. In 

this work, we compare the scattered field estimated by a rigorous Maxwell equation solver, based on 

the discrete dipole approximation, with that given by several approached methods, Rytov, Born and a 

revisited Beam Propagation Method. We show on many examples, that BPM outperforms all the other 

techniques and accurately handles field distortion and moderate multiple scattering. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The last fifteen years have seen the rise of several optical imag-

ng techniques in which the three-dimensional inhomogeneous

ermittivity is reconstructed numerically from measurements of

he field (or intensity) reflected or transmitted by the sample [1–

] under various illuminations. Their increased resolution and their

bility to correct for aberrations and provide quantitative informa-

ion make them an interesting alternative to classical analogical

icroscopes. In particular, they have appeared as a promising tool

or label-free imaging of cells and biological tissues in the context

f medical screening [3,6,7] . 

All these computational imaging techniques are based on a

ight-matter interaction model which links the measured reflected

r transmitted field to the sample characteristics. For weakly con-

rasted biological specimen, most studies have focused on the Born

r Rytov approximations and, more recently, on the Beam Propa-

ation Method. Now, although these models have been developed

 long time ago, their formulation is not always adapted to the

maging problem [8] . In particular, neither the Rytov nor the Beam

ropagation Method have been considered when imaging in the

eflection configuration (which corresponds to Optical Coherence

omography and its numerous avatars). In addition, the accuracy

f these models for biological applications have never been inves-
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igated due to the lack of reference methods. Indeed, the size of

he samples (at least hundreds of wavelengths for biological tis-

ues [6] and the multiscale and random nature of the permittivity

nhomogeneities [9] make the rigorous modeling of the light prop-

gation within these media particularly difficult. 

In this work, we first show in a unified way how the Rytov,

orn and Beam Propagation methods can be used to estimate the

ectorial reflected and transmitted field in an imaging experiment.

hen, using the discrete dipole approximation method as a ref-

rence for solving rigorously the Maxwell Equations, we analyze

heir accuracy on samples made of random medium with increas-

ng thickness and varying correlation lengths and permittivity vari-

nce based on the values of biological specimen. 

. Theory 

.1. Rigorous model 

We consider a sample described by its relative permittiv-

ty ε( r ) = n 2 ( r ) that is illuminated by a monochromatic incident

eld with wavenumber k 0 , E inc . The electric field satisfies the

ippmann-Schwinger equation, 

 ( r ) = E inc ( r ) + k 2 0 

∫ 
�

G ( r , r ′ ) χ( r ′ ) E ( r ′ )d r ′ . (1) 

here � is the domain where the dielectric contrast χ = ε − 1 is

on-zero, and G is the Dyadic Green’s function solution of 

 × ∇ × G ( r , r ′ ) − k 2 G ( r , r ′ ) = δ( r , r ′ ) I , (2) 
0 

https://doi.org/10.1016/j.jqsrt.2019.106816
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Fig. 1. (a) Map of the random relative permittivity with l c = 3 λ, σ = 0 . 05 and L = 60 μm. (b) Intensity of the macroscopic field inside the sample calculated rigorously with 

the DDA. 
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that satisfies out-going boundary condition. One can notice that

the Green function is singular, hence the quadrature should be per-

formed with precautions as it is detailed in Refs. [10,11] . In our

case we treat the singularity as Draine in Ref. [12] to satisfy the

optical theorem. We introduce the scattered field as E − E inc and

the scattered far-field in the direction 

ˆ k as, 

e ( k ) = k 2 0 

[ 
1 − ˆ k ̂

 k . 

] 
F 3 D [ χE ]( k ) , (3)

where F 3 D [ f ]( k ) = 

1 
8 π3 

∫ 
f ( r ) exp (−i k . r )d r is the three dimen-

sional Fourier transform and k = k 0 ̂  k and 

ˆ k is the unit vector in

the scattering direction. Eq. (3) shows how the field scattered by

the sample in any backward or forward direction can be obtained

once the field E inside the sample is known. 

The field inside � can be estimated rigorously by solving the

self-consistent equation Eq. (1) . This approach corresponds to the

Discrete Dipole Approximation also called coupled dipole method

and is based on a Volume Integral Method, see Ref. [11] for more

details and appendix A. Eq. (1) is transformed into a linear sys-

tem by discretizing � into cubic sub-units over which the field

and dielectric contrast are assumed to be constant [13] . A conju-

gate gradient scheme is then used to estimate the field at each

subunit. The absence of perfectly matched layers and the restric-

tion of the meshing to the dielectric contrast support make the

DDA [12,14] particularly adapted to the free-space scattering of

moderately large samples [15] but it requires an important com-

putation time. To have more details on the capabilities and limita-

tions of DDA, the readers can read Ref. [16] . 

For applications where many direct problems need to be solved,

as in computational imaging, or when the samples are too big, an

approximate estimation of the field inside � is often used. 

2.2. Born approximation at order 0 and 1 

The simplest approximation for E is given by the zero order of

the Born series (Born) obtained from Eq. (1) , E ( r ) ≈ E inc ( r ). It is

valid for samples that weakly perturb the incident field (small per-

mittivity contrast and small size compared to the wavelength). This

approximation is used in many computational tomography tech-
ique as it provides a one to one correspondence between the

cattered field, Eq. (3) , and the 3D Fourier coefficient of the di-

lectric contrast [17,18] . 

To improve the estimation of the internal field, one can take the

rst order of the Born series (Born 1), 

 ( r ) ≈ E inc ( r ) + k 2 0 

∫ 
�

G ( r , r ′ ) χ( r ′ ) E inc ( r 
′ )d r ′ , (4)

hich is computationally more expensive but accounts for some

ultiple scattering. 

.3. Rytov approximation 

A more sophisticated model, the Rytov approximation, has been

roposed to describe the field propagation in samples that are

eakly contrasted but with dimensions that can be large compared

o the wavelength [19–21] . In this model the β = (x, y, z) compo-

ent of the field reads E β ( r ) ≈ E 
β
inc 

( r ) e 

β ( r ) with 

β ( r ) = 

[ 
k 2 0 

∫ 
�

G ( r , r ′ ) χ( r ′ ) E inc ( r 
′ )d r ′ 

] β
/E 

β
inc 

( r ) . (5)

ote that the Rytov computation time is the same as that of the

orn approximation at first order. 

.4. Beam propagation method 

The beam propagation method (BPM) has been developed to

escribe the propagation of the field inside inhomogeneous media

n which forward scattering is dominant, Refs. [22–24] . Assuming

hat the medium is illuminated by a collimated beam propagating

owards positive z and neglecting backward scattering, the field at

lane z = z 0 + δz, E z 0 + δz (x, y ) , is deduced from the knowledge of

he field at plane z = z 0 , E z 0 (x, y ) via, 

 z 0 + δz (x, y ) ≈ e ik 0 n (x,y,z 0 + δz) δz F 

−1 
2 D 

[
F 2 D [ E z 0 ](k x , k y ) e 

−i (k 0 −k z ) δz 
]
, (6)

here F 2 D is the 2D Fourier transform in the ( x, y ) plane and

 z = 

√ 

k 2 
0 

− k 2 x − k 2 y . If � is included in the z > 0 half-space, The

eld at z = 0 is taken equal to the incident field. Hereafter, we de-

ote by Born0, Born1, Rytov and BPM the different approximations
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Fig. 2. (a) Relative error on the internal field for a random sample of width l = 

20 μm, σ = 0 . 01 and l c = 3 λ as a function of the length L . (b) same as (a) with 

L = 20 μm and l c = 3 λ as a function of σ ; (c) same as (a) with σ = 0 . 03 and L = 

20 μm as a function of l c . 
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Fig. 3. (a) Density of energy in the cross polarization in per cent for a random 

sample of size l = L = 20 μm, σ = 0 . 05 and l c = 3 λ. (b) For the same sample map 

of the relative error in per cent for the field modulus between DDA and BPM. 
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or the field inside �. Note that contrary to Born1, Born0, Rytov

nd BPM models are not able to account for any cross-polarization,

f E 
β
inc 

( r ) = 0 then E β ( r ) = 0 . All the methods used in this article

ave been implemented by meshing � in cubit sub-units of side

00 nm Refs. [25,26] . 

. Numerical results 

.1. Description of the geometry 

The validity of the models is studied on scattering objects with

arying contrast and varying lengthscales to approach the mul-

iscale nature and the composition diversity of biological sam-

les [9] . We consider a cuboid of random medium with transverse

imensions l × l and thickness along z, L . The cuboid of random

edium is placed in an index-matching background to limit the

nfluence of the cuboid boundaries on the scattered field and focus

n the role of the correlation length and index variance of the ran-

om medium. The relative permittivity of the random medium is

 Gaussian distributed random variable of mean εbg and variance
2 , with a Gaussian correlation function, [27] , 

ε ( r ) , ε ( r ′ ) 
〉
= ε 2 bg + σ 2 exp 

(
−‖ r − r ′ ‖ 

2 

l 2 c 

)
, (7) 

here < > stands for the ensemble average and l c is the corre-

ation length, see Fig. 1 (a) for an illustration of the sample. The
uboid is embedded into the homogeneous background of per-

ittivity εbg . Increasing the thickness L from a few microns to

undreds of microns, permits to investigate the accuracy of the

odels when most of the ballistic light disappears. In the follow-

ng, the samples are illuminated by an incident plane wave lin-

arly polarized along y and propagating along z with wavelength

= 632 . 8 nm and the transverse width of the cuboid is kept fixed

o 20 × 20 μm 

2 for the rigorous computation to be tractable. The

eshsize is about 100 nm which gives a good precision for the

DA as shown in the appendix A. To illustrate the complexity of

he scattering inside these objects, we plot in Fig. 1 (b) the field

odulus obtained with the rigorous DDA inside the cuboid of ran-

om medium depicted in Fig. 1 (a). It is seen that the permittiv-

ty inhomogeneities perturbs significantly the illumination, the in-

ensity resembling a speckle after 10 μm of propagation inside the

ample. 

.2. Accuracy of born, rytov and BPM for modeling the field inside 

he sample 

To analyze quantitatively the accuracy of the different field ap-

roximations, we introduce the relative error on the internal field,

rr nf , with obvious notations, 

rr nf = 

∫ 
�

∥∥E rig ( r ) − E approx . method ( r ) 
∥∥d r ∫ 

�

∥∥E rig ( r ) 
∥∥d r 

. (8) 
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Fig. 4. Error on the scattered far-field with a width l = 20 μm and increasing (a), (b) thickness L with σ = 0 . 05 and l c = 3 λ; (c), (d) σ for l c = 3 λ and L = 20 μm; (e), (f) 

l c with σ = 0 . 05 and and L = 20 μm. (a), (c) and (e) for k z > 0 (b), (d) and (f) for k z < 0. The label BPM-C indicates that the transmitted field as been estimated using the 

free-space propagator while BPM indicates that it has been estimated using Eq. (3) . The errors on the far-field are calculated using the complex field values, except when 

Int is added to the label, in which case the error is calculated using the intensity values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Computation time required to estimate the internal 

field in a sample of size 20 × 20 × 20 μm 

3 with 

random permittivity, variance σ = 0 . 05 and correla- 

tion length l c = 3 λ. The processor used is an Intel(R) 

Xeon(R) CPU E5-2687W at 3.40GHz. 

Method rigorous B B1 R BPM 

Time (s) 450 0.5 19 18 12 

t  

D  

m  

g  

l

 

i  

B  

t

In Figs. 2 (a–c) we plot the errors on the internal field Err nf for the

Born zero and first order, Rytov and BPM models as a function of

the thickness L of the sample, the correlation length l c and the

permittivity variance σ . It is observed on several realizations of

the random cuboid that, whatever the parameters of the random

medium, BPM outperforms all the other methods. Interestingly, if,

as expected, BPM is well adapted to random medium with large

l c / λ for which the forward scattering is dominant, it is also ac-

curate when l c is inferior to λ, when scattering is less forward-

peaked. Thus, BPM is a good approach for simulating the propaga-

tion in multiscale media such as biological tissues in which large

medium fluctuations co-exist with small structures. Its computa-

tion time being similar or smaller than that of Rytov and Born 1

(for l = L = 20 μm, σ = 0 . 05 , l c = 3 λ, BPM time is about 20 s

while the rigorous calculation time is 450 s), it should always be

preferred to the latter, see Table 1 . 

As previously remarked, BPM does not account for any cross

polarization. We plot in Fig. 3 (a) the map of density of energy in

the cross polarization divided by the total density of energy in per

cent for σ = 0 . 05 , l c = 3 λ and L = 20 μm. It is observed that the

cross polarization increases with the penetration of the beam in
he medium. In Fig. 3 (b), the relative error in percent between the

DA and BPM fields is plotted. We notice that the error is maxi-

um when the cross polarization is important. This analysis sug-

ests that BPM inaccuracy lays in the overlooking of the cross po-

arization (which is a marker of strong multiple scattering). 

We now turn to a more precise analysis of the accuracy of BPM

n the context of imaging applications and focus on the ability of

PM to simulate the reflected and transmitted far-field which are

he only data that are accessible experimentally. 
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Fig. 5. (a) Incident field propagating in the homogeneous background. It is a Gaussian beam, at λ = 632 . 8 nm, with waist 6 μm, linearly polarized that is focused at the 

entrance of the sample box. (b) Map of the relative permittivity with l c = 3 λ, σ = 0 . 05 and L = 200 μm. Macroscopic field inside the sample calculated (c) rigorously with 

the DDA and (d) with the BPM. 
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.3. Accuracy of BPM for estimating the reflected and transmitted 

cattered field 

We define the relative error between the rigorous scattered far-

eld and the BPM scattered in the same way as the relative error

n the internal field, 

rr ff = 

∫ ∥∥∥e rig ( ̂  k ) − e approx . method ( ̂  k ) 

∥∥∥d�

∫ ∥∥∥e rig ( ̂  k ) 

∥∥∥d�
, (9) 

here the integral is performed over the directions of observation

n 2 π str with k z > 0 for the transmission configuration and k z < 0

or the reflection configuration. This relative error Err ff depends on

oth the amplitude and phase of the far-field as measured in holo-

raphic experiments [1,2,4,5,28] . In certain experiments, however,

uch as ptychography [3,29] , we have access only to the far-field

ntensity I = | e | 2 and a relative error on the intensity similar to

rr ff is more pertinent. 

rr Int . = 

∫ ∣∣∣I sca ( ̂  k ) − I sca 
approx . method 

( ̂  k ) 

∣∣∣d�

∫ 
I sca ( ̂  k )d�

. (10) 

n computational microscopy, accurate reconstructions have been

btained when the relative error between the noisy experimen-

al data and the theoretical field of the target was above 0.8 [1,2] .

hus, an error of 0.8 for an approximate model is a priori accept-

ble for this kind of application. 

Several options are possible for estimating the scattered far-

eld e once the internal field E is known. It can be calculated by

umming the field radiated by the induced polarization within the

ample following Eq. (3) . It can also be computed by propagat-
ng in free space the total field minus the incident field obtained

t the entrance plane or the exit plane of the sample. These two

pproaches give the same results when Maxwell Equations are rig-

rously solved but differ when approximations are used. 

In classical BPM, the transmitted far-field is obtained through

ropagation in free-space of the field at the sample exit plane

BPM-C). In this work, we also estimate the transmitted far-field

rom the knowledge of the BPM internal field using Eq. (3 ) (BPM).

n Fig. 4 , the label BPM-C indicates that the transmitted field as

een estimated using the free-space propagator while the label

PM indicates that it has been estimated using Eq. (3) . The er-

ors on the far-field are calculated using the complex field values,

xcept when Int is added to the label, in which case the error is

alculated using the intensity values. 

Fig. 4 (a,c,e) display the transmitted far-field relative error of

hese different estimations as a function of thickness L , permittiv-

ty variance, and correlation length, respectively. It is observed that

he calculation of the transmitted far-field through the radiation of

he induced polarization, Eq. (3) (BPM curves), is much more ac-

urate than the free-space propagation (BPM-C curves) for estimat-

ng the phase of the field and (not shown) the amplitude far from

he specular direction. Since this approach requires only minor ad-

itional computational time, it should be preferred in general to

he classical free-space propagation. Its relative error is remarkably

ow (below 0.5) for most of the parameters. Note that the errors

n the intensity of BPM and BPM-C are close to each other, mean-

ng that the inaccuracy of the classical propagation scheme affects

ainly the phase of the transmitted beam. 

We now turn to the analysis of the reflected far-field. In clas-

ical BPM, the reflected field is generally not calculated (except

ith some advanced implementations which are significantly more

omplex than the one presented here [30] ). Here, we simply es-
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Fig. 6. Map of the scattered field modulus in reflection for (a) DDA and (b) BPM, (c) local error between (a) and (b) computed for each direction of observation as 

‖ e rig − e BPM ‖ / ‖ e rig ‖ . Total diffracted field in transmission for (d) DDA, (e) BPM, and (f) BPM-C. 
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B

timate the reflected far-field from the BPM internal field using

Eq. (3) . Fig. 4 (b,d,f) display its relative error as a function of thick-

ness, permittivity variance, and correlation length. The higher error

in reflection than in transmission leads one to believe that BPM

does not estimate the reflected field as accurately as the transmit-

ted one. Actually, this discrepancy stems mainly from the fact that,

due to the absence of any specular reflected field, the scattered

field at high angles weights more heavily on the total reflected

power than on the total transmitted one. Now, BPM accuracy on

the scattered field is about the same in reflection and transmis-

sion and it deteriorates with increasing angles. Interestingly, the

reflection error does not increase with the thickness of the sample

L . It was observed (not shown) that the reflected field depended

basically on the first 60 μm of the random medium. This thick-

ness corresponds roughly to the propagation length after which

the internal field becomes negligible due to the leakage through

the edges of the elongated cuboid. Actually, because of this leak-

age, the reflected power never exceeds 1%. Thus, forward propa-

gation remains dominant in the sample (even though the ballis-

tic light is significantly damped) which explains the accuracy of

BPM. Additional simulations (not shown) indicated that when the

reflected power exceeds a few percents, the error on the BPM field

increases drastically. 
Actually, the leakage at the boundaries of the cuboid is not re-

listic. In practice, the sample and the illuminating field extend

ver hundreds of microns in the transverse plane. To model such

 configuration, a possible approach, inspired from the study of

ough surfaces scattering [31] , consists in decomposing the wide

ncident beam into a sum of translated Gaussian beams with

mall waist and the random medium into an assembly of cuboids

ith small transverse dimensions. For this decomposition to be

alid, the field obtained for a small waist Gaussian beam, should

e negligible at the transverse boundaries of the cuboid. In the

ast example, we consider the thickest cuboid ( L = 200 μm, l =
0 μm) with σ = 0 . 05 and l c = 3 λ depicted in Fig. 5 (b). A Gaus-

ian beam [32] with waist 6 μm and polarized along y , illustrated

n Fig. 5 (a), is focused at the entrance of the sample. Fig. 5 (c,d)

isplay the modulus of the field inside the sample calculated with

he rigorous DDA solver and with the BPM. As expected, during

ropagation, the field spreads in the transverse directions until

t reaches the boundaries of the cuboid. We estimate the maxi-

al depth of the random medium for which the specific trans-

erse dimensions of the cuboid are sufficient to simulate an in-

nitely extended sample to be about 40 μm. The scattering, dis-

ortion and leakage of the field are accurately retrieved by the

PM. 
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Fig. A.1. Relative error for the extinction cross section, asymmetrical factor and op- 

tical force between Mie theory and DDA versus the relative permittivity for a sphere 

of radius a = 10 μm, with λ = 632 . 8 nm and meshsize of 100 nm for the DDA. 
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The similarity between the rigorous and approximate estima-

ions are retrieved in the far-field study. In Fig. 6 (a,b), we com-

are the DDA and BPM reflected far-field and observe that the

peckle features are accurately reproduced. The main discrepancies

etween BPM and DDA are found near the edge of the numerical

perture as seen in Fig. 6 (c). 

Fig. 6 (d) displays the rigorous total transmitted far-field (where

he incident Gaussian beam has been added to the scattered field)

hich corresponds to the field that would actually be measured

n an experiment. We observe speckle like features outside the

orward direction which are globally recovered by both the BPM

nd BPM-C. We also observe an important damping of the bal-

istic light, stemming from the leakage at the cuboid boundaries,

hich corresponds to the destructive interference between the

cattered field and the incident beam. This behavior is more dif-

cult to obtain as it requires a precise estimation of the scattered

eld phase. In this case, the BPM using the radiation equation,

q. (3) , is better suited, as previously noted in Fig. 4 (a,c,e), but still

nsufficient. 

. Conclusion 

In conclusion, we have shown that, BPM outperforms signifi-

antly Born and Rytov approximations for simulating the field in-

ide biological-like samples. Once the internal field is known, the

ar-field radiation equation permits to estimate the scattered field

n any direction, in particular in reflection. We have observed that

PM yielded accurate results as long as the reflected power re-

ained smaller than a few percents of the incident one. This study

aves the way towards imaging of complex samples that strongly

istort and scatter light. 

ppendix A. DDA 

In this work, the code IF-DDA [26] was used to compute the

eld with DDA and BPM as both options are available. The integral

quation Eq. (1) is discretized as, 

 ( r i ) = E inc ( r i ) + 

N ∑ 

j=1 

G ( r i , r j ) α( r j ) E ( r j ) , (A.1) 

here the polarizability reads as [12] 

0 ( r j ) = 

3 d 3 

4 π

ε( r j ) − 1 

ε( r j ) + 2 

, (A.2) 

( r j ) = 

α0 ( r j ) 

1 − 2 
3 

ik 3 α0 ( r j ) 
. (A.3) 

he field inside the object is obtained by solving iteratively the lin-

ar system represented by Eq. (A.1) using GPBICG [33,34] . 

To check the precision of our rigorous solver (DDA) we consid-

red a sphere in vacuum with a radius a = 10 μm and a refrac-

ive index which varies from 1.01 to 1.15 and a wavelength of il-

umination λ = 632 . 8 nm. The index variation has been chosen to

atch that of the random media under study. We compared the

xtinction cross section, [12] asymmetric factor [12] and optical

orce [35,36] obtained with Mie theory to that given by the DDA

ith a meshsize of 100 nm. 

In Fig. A.1 we plot the relative error in per cent between the

DA and the Mie theory. We see that for the three parameters

tudied the relative error remains always below that 4%, hence the

recision of the DDA with this discretization is enough to serve as

 reference for the other approximated methods. 
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