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The discrete dipole approximation is an efficient technique for simulating the field
radiated by a particle of any shape. In this approach, the object is viewed as a collection
of radiating electric dipoles. The field scattered by the particle is obtained by summing the
fields radiated by each dipole. When the particle size is much larger than the wavelength,
this technique is time consuming. We propose a Fourier based method which permits a
significant reduction of the computation time.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Electromagnetic scattering by an arbitrary three-
dimensional object can be simulated rigorously with differ-
ent methods: finite difference in time domain method, finite
element method, and volume integral method [1]. All these
methods solve numerically the Maxwell equations without
any approximation (except the numerical discretization and
truncation). In this paper we focus on the volume integral
method or more particularly on the discrete dipole approx-
imation (DDA) [2–4]. This method has the advantage to be
applicable to inhomogeneous, anisotropic objects.

The DDA can be described as a two step process. The first
step, which is the main bottleneck of the approach, consists
in finding the field inside the object by solving a self
consistent equation discretized into a dense linear system.
Intensive research, combining the use of symmetry proper-
ties, fast Fourier transforms (FFT) for the matrix vector
products [5] and iterative solvers [6–9], has permitted to
accelerate significantly this calculation. The DDA, once lim-
ited to objects of typical volume comparable to the incident
wavelength cubed, can now tackle objects larger than a
Chaumet).
thousand wavelength cubed in a reasonable time (depending
on their permittivity contrast) [9,10].

The second step consists in computing the scattered field
at the required observation points. Recently Flatau and Draine
have proposed a very efficient numerical scheme for calculat-
ing the field radiated close to the object [11] but, to our
knowledge, no effort was brought on the far-field calculation.

Now, while a straightforward computation of the far-field
takes very little time for small objects, it becomes time-
consuming when the object size reaches hundreds of wave-
length cubed and when many observation points are required.
For large weakly contrasted objects it can even last longer than
the calculation of the field inside the object. This situation is
encountered for example in optical microscopy, in holography
[12–14], or in flow cytometry [15] applications, which require
to calculate the far-field of soft optical objects (generally
biological samples) on a large grid of scattering angles. Thus,
improving the DDA far-field computation is now necessary for
extending the application domain of this approach. In this
work, we propose a means to diminish drastically its compu-
tational cost by using Fast Fourier transforms.

2. Theory

In this section, we briefly sketch the DDA principles
[16,17] and investigate the use of Fast Fourier transforms
for accelerating the far-field computation.
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2.1. Expression of the field inside the object with the DDA

The object, in free space, is described by its permittivity ε
at the nodes of a regularly discretized box with dimension
Lx ¼Nxdx, Ly ¼Nydy and Lz ¼Nzdz where dx, dy and dz are the
sizes of the discrete dipole along the different axis. Hereafter,
for simplicity we will assume that the mesh is cubic with
dx ¼ dy ¼ dz ¼ d but the derivation applies also to cuboid
mesh [18].

The object is illuminated by a monochromatic incident
wave E0 with wavenumber k0 ¼ω=c where ω is the
frequency and c denotes the speed of light in vacuum.
The local fields at subunit ix; iy; iz is

EðrfigÞ ¼ E0ðrfigÞþ
XfNg

fjg;figa fjg
Tðrfig; rfjgÞpfjg: ð1Þ

where fig ¼ ix; iy; iz and fNg ¼Nx;Ny;Nz. T denotes the
dyadic field-susceptibility tensor of free-space, p is the
dipole moment of each subunit of discretization, such

pfjg ¼ 0 if rfjg =2Ω ð2Þ

pfjg ¼ αðrfjgÞEðrfjgÞ if rfjgAΩ; ð3Þ

where αðrfjgÞ is the polarizability of the subunit fjg with the
radiative reaction term [16] and Ω is the three dimen-
sional region occupied by the scatterer. If we write Eq. (1)
for all N¼NxNyNz subunits forming the object, we get a
linear system of size 3N � 3N which is solved iteratively.
2.2. Expression of the scattered field under the DDA

Once the local field is known at each subunit position,
the scattered field is classically computed for any observa-
tion point r outside the object as

EdðrÞ ¼
XfNg
fjg ¼ 1

Tðr; rfjgÞpfjg: ð4Þ

If r is far from the object (r⪢l2=λ where l is the
characteristic size of the object and λ the illumination
wavelength), the dyadic field-susceptibility tensor can be
replaced by its asymptotic form and the Eq. (4) reads

Ed rð Þ ¼ k20
eik0r

r

XfNg
fjg ¼ 1

e� ik�rfjg pfjg �n n � pfjg
� �h i

ð5Þ

where n¼ r=r and k¼ k0n.
The field at the image plane of an optical microscope

requires the evaluation of Ed for all the observation
directions k allowed by the numerical aperture of the
objective. The phase function of a particle necessitates to
calculate the differential scattering cross-section (which is
proportional to jrEdðrÞj) for all k. In practice, a finite
number No of directions k is taken with a sampling related
to the object size (the bigger the object the finer the
sampling rate). Now, if N and No are large, the computation
time required by the sum in Eq. (5) which is proportional
to N � No may become prohibitive. Thus it can be useful to
perform this sum using the fast Fourier transform.
2.3. Computation of the scattered far-field using two-
dimensional fast Fourier transforms

Eq. (5) can be rewritten as

Ed rð Þ ¼ k20
eik0r

r

XNz

jz ¼ 1

e� ikzzjz

�
XNx ;Ny

jx ¼ 1;jy ¼ 1

e� iðkxxjx þkyyjy Þpfjg

2
4

�n n �
XNx ;Ny

jx ¼ 1;jy ¼ 1

e� iðkxxjx þkyyjy Þpfjg

0
@

1
A
3
5: ð6Þ

In Eq. (6) the sum
PNx ;Ny

jx ¼ 1;jy ¼ 1 e
� iðkxxjx þkyyjy Þpfjg can be

calculated with two-dimensional fast Fourier transform
routine via,

bpðkx; kyÞ ¼ XNx ;Ny

jx ¼ 1;jy ¼ 1

e� iðkxxjx þkyyjy Þpfjg

¼
XbNx ;bNy

jx ¼ 1;jy ¼ 1

e� iðkxxjx þkyyjy Þpfjg; ð7Þ

where ðbNx; bNyÞ are the number of points used by the FFT
along the x or y direction. Notice that pfjg ¼ pfjg if jxrNx

and jyrNy else pfjg ¼ 0. This implies that the step in the
frequency domain along the x and y directions, ΔkxðyÞ are

equal to 2π=ðdbNxðyÞÞ. Hence bpðkx; kyÞ is computed for

kx ¼ ixΔkx and ky ¼ iyΔky for ix ¼ � bNx=2;…; bNx=2�1 and

iy ¼ � bNy=2;…; bNy=2�1, respectively.
Once bpðkx; kyÞ is obtained it is easy to deduce Ed in the

direction kx and ky from Eq. (6) using kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20�k2x �k2y

q
.

2.4. Computation of the scattered far-field using three-
dimensional fast Fourier transforms

Eq. (5) can be also written as

Ed rð Þ ¼ k20
eik0r

r

XNx ;Ny ;Nz

jx ¼ 1;jy ¼ 1;jz ¼ 1

e� iðkxxjx þkyyjy þkzzjz Þpfjg

2
4

�n n �
XNx ;Ny ;Nz

jx ¼ 1;jy ¼ 1;jz ¼ 1

e� iðkxxjx þkyyjy þkzzjz Þpfjg

0
@

1
A
3
5: ð8Þ

One may use a three dimensional fast Fourier transform of
p by casting Eq. (8) in the form:

bpðkx; ky; kzÞ ¼ XNx ;Ny ;Nz

jx ¼ 1;jy ¼ 1;jz ¼ 1

e� iðkxxjx þkyyjy þkzzjz Þpfjg ð9Þ

bpðkx; ky; kzÞ ¼ XbNx ;bNy ;bNz

jx ¼ 1;jy ¼ 1;jz ¼ 1

e� iðkxxjx þkyyjy þkzzjz Þpfjg: ð10Þ

This technique may be interesting if the object has similar
dimensions in the x; y; z directions. On the other hand, it
yields only an approximation of the far-field. Indeed, for a
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given kx ¼ jxΔkx; ky ¼ jyΔky one cannot find kz ¼ jzΔkz that

is exactly equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20�k2x �k2y

q
.

3. Results

The computation of the far-field using Fast Fourier
transforms is particularly well-adapted to applications in
microscopy or holography [12] as it yields the scattered
far-field on a rectangular grid of transverse wavevectors
ðkx; kyÞ which is exactly what is obtained on the pixels of a
camera. This sampling is also very efficient for estimating
the scattering pattern of an object as it paves quite
regularly the observation sphere.

In this section, we compare the accuracy and computation-
time of the far-field calculation using the FFT approaches (Eqs.
(6) and (8)) as compared to that of the classical estimation (Eq.
(5)). To simplify the analysis, we do not provide here a study
of the angular distribution of the scattered far-field but focus
on useful integrated values, the total scattering cross-section
and asymmetry factor which give a good idea of the global
accuracy of the far-field calculation.

Several techniques have been developed to estimate
these quantities with the DDA approach depending on the
technique used for their estimation [10,19]. One of them
consists in integrating the flux of scattered Poynting vector
through a sphere enclosing the particle and thus requires to
calculate the scattered far-field (Eq. (5)) along many direc-
tions. Generally the integration is performed in spherical
coordinates (with constant polar and azimuthal angular
spacing) [16] so that the total scattering cross section reads

Csca ¼
k40

jE0j2
Z π

0

Z 2π

0
sinθ

�����
XfNg
fjg ¼ 1

pfjg�n n � pfjg
� �h i

e� ik�rfjg

�����
2

dθ dϕ:

ð11Þ

If fast Fourier transforms are used for calculating the far-
field, Eqs. (6) and (8), an integration in Cartesian coordi-
nates is more natural. In this case, the scattering cross-
section reads

Csca ¼
k40

jE0j2
Z
S1 þS2

1
k0kz

�����
XfNg
fjg ¼ 1

pfjg�n n � pfjg
� �h i

e� ik�rfjg

�����
2

dkx dky;

ð12Þ

where the integral
R
S1 þS2

denotes a surface integration over

two discs of radius k0 with kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20�k2x �k2y

q
for S1 and

kz ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20�k2x �k2y

q
for S2.

In the following, we study the scattered cross-section
Csca and the asymmetry parameter g of spheres of refrac-
tive index 1.1 in air illuminated by a plane wave along the z
axis estimated by the three different approaches. The
accuracy of the results is estimated by forming the relative
error with respect to Mie theory.

We first compare the accuracy of the integration in
spherical coordinates, Eq. (11), to that of the integration in
Cartesian coordinates (Eq. (12)) for calculating the scatter-
ing cross-section and the asymmetry parameter of a sphere
of diameter 5λ. The same number of discretization points
were taken for both integration schemes. We observe in
Fig. 1 that the Cartesian discretization yields much better
results than the spherical discretization. This was to be
expected since the Cartesian coordinates samples the inte-
gration sphere more regularly than the spherical one.

Hereafter, all the integrals are performed in Cartesian
coordinates, Eq. (12), with the same sampling rateΔk. Hence,
the only difference between the different approaches stems
from the estimation of the far-field which is performed either
by the classical approach (Eq. (5)), the 2D FFT technique (Eq.
(6)) or the 3D FFT (Eq. (8)). Note that, if the same mesh size d
is taken for both the classical and 2D FFT approach, the far-
field estimated along the same direction by Eq. (5) is identical
to that given by Eq. (6) as we compute exactly the same
integral. Thus, when the integrals are performed in Cartesian
coordinates, the accuracy of the classical technique is the
same as that of the 2D FFT approach.

We study in Fig. 2 the influence on the computation-time,

Fig. 2(a), and accuracy, Fig. 2(b), of the number bN of points
taken in the FFT for estimating g and Csca for a sphere of

diameter D¼ 10λ and mesh size d¼ λ=10. For a given bN , the

sampling step Δk is equal to 2π=ðdbNÞ so that the total
number of points taken in the integration, No, is roughly equal

to π dbN=λ
� �2

. Unsurprisingly, we observe that the errors on g

and Csca diminish with bN . The improvement is particularly
visible with the 3D FFT approach and comes from a better

approximation of kz ¼ 7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20�k2x �k2y

q
by jzΔk with jz rela-

tive integer. The computation time of the classical approach

increases linearly with No and is proportional to N3
x
2 π dbN=λ

� �2

where N3
x
2 is approximatively the number of dipoles that are

needed to discretize the sphere. The computation time of the

2D FFT approach is proportional to 2Nx
bN2

logðbNÞ (the multi-
plication by Nx is due to the integration along the z axis) while
that of the 3D FFT approach is directly proportional to

3bN3
logðbNÞ. Despite, these different behaviors, we observe

that the computation-time of the FFT approaches, and espe-
cially that of the 2D FFT, is always much smaller than that of
the classical approach by several orders of magnitude.

We now fix the number of points of the FFT to bN ¼ 256,
the mesh size of the sphere to d¼ λ=10 (yielding
No � 8200) and study the computation time Fig. 3(a) and
accuracy Fig. 3(b) and (c) of the asymmetry parameter g and
scattering cross-section Csca of spheres of increasing dia-
meter for the three different techniques. It is observed in
Fig. 3 that, for a diameter range of the particles from 0 to
20λ, the 2D Fourier Method is always the most appropriate
technique for estimating the scattering patternwith the less
computation time. Indeed, the 3D approach has always a
computational time larger that the 2D Fourier method
approach due to the fact that Nx is always smaller than bN
and moreover the relative error of the 3D FFT approach is
significantly higher than that of the 2D technique due to the
error made on kz which is approximated by the nearest
jzΔk. As said previously, we note that the dashed line and
the dotted line are confounded in Fig. 3(b) and (c) as the
two approaches compute exactly the same integral.
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Fig. 1. Comparison of the integration performed in spherical coordinates (Classic) and Cartesian coordinates (Classic k) for estimating the scattering cross-
section and the asymmetry parameter of a sphere of diameter 5λ of refractive index 1.1. (a) Relative error with respect to Mie result on the scattering cross
section versus the number of points taken for calculating the integral. (b) same as (a) for the asymmetry parameter.
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Fig. 2. Calculation of the scattering cross-section and asymmetry parameter of spheres with a diameter D¼ 10λ versus N̂ with three different methods (2D Fourier
Transform (dashed line), 3D Fourier Transform (dot dashed line), classical integration in Cartesian coordinates (dotted line)). (a) Computation time required for the
calculation as a function of N̂ . (b) Relative error in percent on the scattering cross-section. (c) Relative error in percent on the asymmetry parameter.
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It is worth noting that, if the problem requires an estima-
tion of the scattered field along only a few observation
directions, it still may be advantageous to use the Fourier
approach rather than the classical estimation. Indeed, if the
sphere diameter is bigger than 20λ, the computation time of
the estimation of 100�100 scattered-fields with the 2D
Fourier Transform approach is comparable to that of 10
scattered fields with the classical approach. Notice that the
2D Fourier approach can be extended readily to more complex
configurations where the scattering object is deposited on an
interface or is buried in a multilayer. In this case, we observed
exactly the same time gain as that presented in Fig. 3(a).
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for the calculation as a function of the sphere diameter. (b) Relative error in percent on the scattering cross-section. (c) Relative error in percent on the
asymmetry parameter.

P.C. Chaumet et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 165 (2015) 88–9292
4. Conclusion

In conclusion, we have dramatically accelerated the
computation of scattered far-field in DDA by using Fast
Fourier Transforms. This implementation should be most
useful in configurations where the calculation of the scat-
tered field is an important part of the total computation
time, i.e. when the scattering object is large and weakly
contrasted and when many observation angles are required
(as in microscopy or flow cytometry experiments on biolo-
gical objects).
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