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1. Introduction

The coupled-dipole method (CDM), also called discrete dipole approximation or DDA, is widely used to study the
scattering of light by single particles, or clusters of particles of arbitrary shapes [1–11]. A recent review on this method is
given in [12]. In the CDM, arbitrary scatterers are discretized over a spatial grid and represented as a collection of electric
dipoles. The electromagnetic fields are first derived self-consistently inside the scatterer. The fields anywhere outside the
scatterer can be computed by propagating the internal fields using an appropriate field-susceptibility tensor.

Beyond the standard problem of the scattering of light by a dielectric particle, the method has been successfully used to
study a number of other problems in electrodynamics, including spontaneous emission near a structured substrate [4],
Purcell effect in microcavities [13,14], optical forces and torques [15–17], optical binding [18], near-field optical
nanomanipulation [19,20], optical trapping near a photonic crystal cavity [21], plasmon enhanced Raman scattering [22],
optical tomography [23], and light scattering by particles larger than the wavelength [24,25].

Traditionally, the CDM has been used to study light scattering problems involving non-magnetic materials. In the past,
magnetic dipole terms have generally been introduced as a means of improving the convergence of the method for large
dielectric particles, rather than to describe materials with magnetic properties [26,27]. However, Lakhtakia considered a
non-trivial magnetic permeability in his treatment of bianisotropic scatterers [28] and recently, You et al. presented a
derivation of the DDA with a magnetic permeability different from one to study the electromagnetic cloakingproperties of
coated spheres [29]. However, no study of the convergence of the CDM for magnetic and negative-refraction materials has
been performed yet.

In this paper, we present a detailed derivation of the CDM for materials with arbitrary dielectric permittivity and
magnetic permeability based on the field-susceptibility tensors associated to the electromagnetic fields. We consider
different prescriptions of the polarizabilities, including the one resulting from a rigorous integration of the field-
susceptibility tensors over the discretization cells. This means that our formulation takes into account the variations of the
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tensors across each cells which, as we showed in [3], is instrumental in improving the performance of the DDA for
scatterers with a large refractive index. We compare our cross-section calculations to the rigorous Mie theory in the case of
spherical scatterers; in particular we examine the convergence of the CDM for magnetic and negative-refraction materials.

2. CDM for magnetic and electric medium

We first start by deriving the self-consistent electric and magnetic field in terms of the electric and magnetic properties
of the scatterer.

From Maxwell’s equations in CGS unit, we can write [30]

ð=2
þ k2

0ÞEm ¼ �4p½k2
0Pþ=ð= � PÞ� � 4pik0=�M (1)

ð=2
þ k2

0ÞHm ¼ �4p½k2
0Mþ=ð= �MÞ� þ 4pik0=� P (2)

where PðrÞ ¼ veðrÞEmðrÞ is the polarization, MðrÞ ¼ vmðrÞHmðrÞ is the magnetization, and Em and Hm are the macroscopic
electric and magnetic fields. Consider a scatterer with relative permittivity tensor eðrÞ and relative permeability tensor lðrÞ,
in vacuum, illuminated by an electromagnetic wave fEincðrÞ;HincðrÞg. The electromagnetic field inside and outside the object
can be expressed as

EmðrÞ ¼ EincðrÞ þ

Z
V

Gee
ðr; r0Þveðr0ÞEmðr

0Þdr0 þ

Z
V

Gem
ðr; r0Þvmðr0ÞHmðr

0Þdr0 (3)

HmðrÞ ¼ HincðrÞ þ
Z

V
Gme
ðr; r0Þveðr0ÞEmðr

0Þdr0 þ
Z

V
Gmm
ðr; r0Þvmðr0ÞHmðr

0Þdr0 (4)

where V correspond to the volume of the object and the integrals are to be taken as principal values. The dyadic tensors
G are obtained by application of the appropriate differential operator to the free-space Green’s function Gðr; r0Þ ¼
eik0 jr�r0 j=jr� r0j associated to the source terms PðrÞ ¼ pdðr� r0Þ and MðrÞ ¼mdðr� r0Þ [30]:

Gee
ðr; r0Þp ¼ ½k2

0pþ=ð= � pÞ�Gðr; r0Þ (5)

Gem
ðr; r0Þm ¼ ½ik0=�m�Gðr; r0Þ (6)

Gme
ðr; r0Þp ¼ ½�ik0=� p�Gðr; r0Þ (7)

Gmm
ðr; r0Þm ¼ ½k2

0mþ=ð= �mÞ�Gðr; r0Þ (8)

These tensors represent the linear electric and magnetic susceptibilities associated with an electric or a magnetic dipole.
Incidentally, one of the advantages of using CGS instead of MKSA units is that symmetry rules between electric and
magnetic quantities are preserved, i.e. Gee

¼ Gmm and Gem
¼ �Gme . To solve Eqs. (3)–(4) the object is discretized into a set

of N subunits arranged on a cubic lattice. If the subunits are small compared to the wavelength inside the object, one can
assume that the linear electric (magnetic) susceptibility and the electric (magnetic) field are uniform over the subunit, then
Eqs. (3)–(4) for the macroscopic field at subunit i inside the object can be written as

EmðriÞ ¼ EincðriÞ þ
XN

j¼1

Z
Vj

Gee
ðri; r

0Þdr0 veðrjÞEmðrjÞ þ
XN

j¼1

Z
Vj

Gem
ðri; r

0Þdr0 vmðrjÞHmðrjÞ (9)

HmðriÞ ¼ HincðriÞ þ
XN

j¼1

Z
Vj

Gme
ðri; r

0Þdr0 veðrjÞEmðrjÞ þ
XN

j¼1

Z
Vj

Gmm
ðri; r

0Þdr0 vmðrjÞHmðrjÞ (10)

We will use the notation Gintðri; rjÞ ¼
R

Vj
Gðri; r

0Þdr0. When iaj the integration can be done directly whereas when i ¼ j

(interaction of the subunit with itself) the integral must be rewritten in a form more suitable to numerical integration. In
Ref. [3] we presented an detailed derivation of the exact form of

R
Vi

Gee
ðri; r

0Þdr0, however, many approximation of this term
have been used in the past [2,29,31–33]. It is obvious that

R
Vi

Gmm
ðri; r

0Þdr0 ¼
R

Vi
Gee
ðri; r

0Þdr0 since the two field-
susceptibility tensors are identical. Regarding the mixed terms, i.e. Gem and Gme, from the parity of the tensors it follows
that Z

Vi

Gem
ðri; r

0Þdr0 ¼
Z

Vi

Gme
ðri; r

0Þdr0 ¼ 0 (11)

At this stage we can rewrite Eqs. (9)–(10) in terms of the local fields (E and H), i.e. the fields at a given subunit in the
absence of the subunit:

EðriÞ ¼ EincðriÞ þ
XN

j¼1

0
½Gee

intðri; rjÞaeðrjÞEðrjÞ þ Gem
int ðri; rjÞamðrjÞHðrjÞ� (12)
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HðriÞ ¼ HincðriÞ þ
XN

j¼1

0
½Gme

int ðri; rjÞaeðrjÞEðrjÞ þ Gmm
int ðri; rjÞamðrjÞHðrjÞ� (13)

The prime symbol indicates that the case i ¼ j is excluded from the sum because the contribution form the corresponding
self-term has been absorbed in our definition of the polarizability tensors (see Eqs. (17) and (18) below). The local fields are
linked to the macroscopic fields by

EðriÞ ¼ I� Gee
intðri; riÞ þ

4p
3

I

� �
ae

0ðriÞ

d3

� �
eðriÞ þ 2I

3
EmðriÞ (14)

HðriÞ ¼ I� Gmm
int ðri; riÞ þ

4p
3

I

� �
am

0 ðriÞ

d3

� �
lðriÞ þ 2I

3
HmðriÞ (15)

with

ae
0ðriÞ ¼

3d3

4p ½eðriÞ � I�½eðriÞ þ 2I��1 and am
0 ðriÞ ¼

3d3

4p ½lðriÞ � I�½mðriÞ þ 2I��1 (16)

where d is the lattice spacing of the discretization grid. The polarizability tensors used in Eqs. (12)–(13) are then defined as

aeðrjÞ ¼ ae
0ðriÞ I� Gee

intðri; riÞ þ
4p
3

I

� �
ae

0ðriÞ

d3

� ��1

(17)

amðrjÞ ¼ am
0 ðriÞ I� Gmm

int ðri; riÞ þ
4p
3

I

� �
am

0 ðriÞ

d3

� ��1

(18)

Notice that the standard form of the CDM, including the effect of radiation reaction [2], is obtained by neglecting magnetic
effects (l ¼ I), making the approximation Gee

intðri; riÞ � ð�4p=3þ ð23Þik
3
0d3
ÞI, and assuming that when iaj the spatial variation

of the field-susceptibility tensor within subunit j can be neglected, i.e. Gintðri; rjÞ ¼ Gðri; rjÞ.
3. Numerical implementation

The local field at all lattice sites is found by solving the linear system comprising Eqs. (12)–(13). This linear system of
size of 6N � 6N can be written in matrix form as

I 0

0 I

� �
�

Gee Gem

Gme Gmm

 !
ae 0

0 am

� �" #
E

H

� �
¼

E0

H0

 !
(19)

If the material is isotropic, the matrix containing the polarizabilities is diagonal. Notice that once magnetic effects are
included, and even if the material is isotropic, the matrix containing the dyadic tensors is no longer symmetric. As the
number of subunits increases the linear system can become large and iterative methods should in general be used to find
the self-consistent local fields inside the scatterer. At each iteration we need to compute the product between the matrix
which contains the dyadic tensors and the vector which contains the electric and magnetic fields. This product can be
computed very efficiently using a fast Fourier transform (FFT) if we use the fact that the tensors actually depend on the
relative positions of the source and field points, rather than on their absolute locations: Gðri; rjÞ ¼ Gðri � rjÞ [34,35]. Note
that the matrix containing the tensors is only block Toeplitz. To use FFTs we need to embed each Toeplitz block into a
circulant matrix of twice the size. Each matrix–vector convolution product, i.e. GeeaeE, GemamH, GmeaeE, and GmmamH, can
then be computed by FFT after the vector is doubled in size and padded with zeros. Because of the symmetry of the field-
susceptibility tensors only nine FFTs are required to compute all the elements of the tensors. The result of the original
convolution product is then obtained by cropping the result of the cyclic convolution down to the size of the original vector.
This method allows us to compute efficiently matrix–vector products. The next step is to choose a ‘‘suitable’’ iterative
method to solve the linear system. By suitable we mean an iterative method which leads to a fast convergence of the CDM
for the particular problem under study. Although we did not perform an extensive comparison between all the standard
iterative methods as Flatau did in Ref. [36], we have noticed that a conjugate gradient approach does not converge very well
when both relative permittivity and permeability are different from one. On the other hand, we found that the quasi-
minimal-residual (QMR) method of Freund and Nachtigal [37] was more robust, a result in agreement with a recent
comparative study of the performance of iterative solvers in the DDA [38]. Incidentally, we point out that when Flatau [36]
notes that ‘‘QMR is never competitive’’ it is not because the QMR algorithm is inefficient, rather it is because the QMR code
referenced by Flatau, QMR from the parallel iterative method package [39], was not implemented correctly.

In order to study the efficiency of the CDM for material which present both a relative permittivity and relative
permeability different from 1, we consider the scattering of light by a sphere with material parameters e and m. For this
geometry an exact solution can be derived as Mie series [40] and used as a reference.
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4. Light scattering by a magnetic sphere

We start by considering the case of an isotropic material with ReðeÞ41 and ReðmÞ41. We use the CDM to compute the
extinction, scattering and absorption cross sections and we extract the relative error compared to Mie theory. In the CDM,
the extinction cross section is computed from the forward scattering amplitude using the optical theorem [2] for both
electric and magnetic polarizations:

Cext ¼
4pk0

jEincj
2

XN

i¼1

Im½pðriÞ � E
�
incðriÞ þmðriÞ �H

�
incðriÞ� (20)

where pðriÞ ¼ aeðriÞEðriÞ, mðriÞ ¼ amðriÞHðriÞ and the asterisk denotes the complex conjugate. The absorption cross section is
given by

Cabs ¼
4pk0

jEincj
2

XN

i¼1

jEðriÞj
2 Im½aeðriÞ� �

2

3
k3

0ja
eðriÞj

2

� ��

þjHðriÞj
2 Im½amðriÞ� �

2

3
k3

0ja
mðriÞj

2

� ��
(21)

The scattering cross section can be computed in two ways. The simplest one consists in using Csca ¼ Cext � Cabs. The second
way is based on the computation of the far-field scattered by the object [41]:

Csca ¼
k2

0

jEincj
2

Z XN

i¼1

e�ik0n�ri fpðriÞ � ½n � pðriÞ�n� n�mðriÞg

�����
�����
2

dO (22)

where n is an unit vector in the direction of scattering.
Within the CDM we consider different prescriptions for the polarizabilities: the one based on the Clausius–Mossotti

formula with the addition of radiation reaction [2] noted as CR, the prescription by Lakthakia [32] noted as LA, the
prescription introduced by Dungey and Bohren [31], based on the first Mie coefficient, is labeled DB, and finally, our
formulation based on the integration of the field-susceptibility tensor over the subunits [3] labeled IT.

We consider a sphere illuminated by a plane wave with wave vector k0. The sphere has material parameters
e ¼ m ¼ 4þ 2i and is discretized into 2176 subunits over a cubic lattice with lattice parameter d. The relative error for the
three cross sections are given in Fig. 1. Although the sphere is discretized coarsely, the error remains below 7% over the
range of scattering parameters considered (except for the scattering cross section computed as Csca ¼ Cext � Cabs in Fig. 1(c)
in the long-wavelength regime, which is discussed below). While the different prescriptions for the polarizabilities lead to
the same overall evolution of the error with j

ffiffiffiffiffiffiemp jk0d, we see that the error for IT is consistently smaller for j
ffiffiffiffiffiffiemp jk0d51.

However, we also notice that, irrespective of the polarizability used, for all cross sections the error remains non-zero even
in the long wavelength or quasi-static approximation j

ffiffiffiffiffiffiemp jk0d! 0. We explained this somewhat counterintuitive
behavior in Refs. [42,43] (see also [44]). The error in the long-wavelength regime can be interpreted in terms of local-field
effects which lead to the dipoles near the surface of the sphere having a different effective polarizability from that of the
dipoles deeper inside the sphere. Note that this problem would exist even in the limit where the fields are uniform across
each cell (e.g. homogeneous sphere placed in a uniform electric field in the electrostatic regime). This is essentially a lattice
effect which persists as the discretization grid is reduced and is due to the fact that we are representing what is supposed
to be a continuous medium as a discrete collection of volume elements with identical polarizabilities. Notice also that, for
small value of j

ffiffiffiffiffiffiemp jk0d, the scattering cross section is computed more efficiently with Eq. (22) than with the simple
difference between the extinction and absorption cross sections. If the scattering cross section is computed as
the difference between the extinction and absorption cross sections, to avoid round-off errors, one needs to compute these
cross sections to a high accuracy which implies a long computation time. In other words, in the long wavelength regime
(d! 0) Cext and Cabs are small and close to each other in value. This means that Cext � Cabs is a very small number. If this
number is much smaller than the accuracy with which Cext and Cabs have been computed, this may result in a significant
relative error on Csca when compared to the Mie result. This explanation is further confirmed by the fact that when we
decrease the tolerance of QMR (run a longer computation), the error on Cext � Cabs becomes comparable to the error on Csca

computed directly from the far-fields (Fig. 1d). Therefore, unless the extinction and absorption cross sections are
significantly different, Csca is best computed from the scattered far-field, as was pointed out by Draine in Ref. [2].

The effect of the discretization is illustrated in Fig. 2 where we plot the extinction cross section for a sphere of radius l=5
(l being the free-space wavelength of the incident field) versus the value of e and m. For the sake of simplicity and in order
to plot the result as a single curve we choose e ¼ m. In Fig. 2(a) the Mie calculation shows a number of resonances, including
a sharp one for e ¼ m � 5:2. Two CDM results are presented alongside the Mie result, for two levels of discretization (8217
dipoles and 65,752 dipoles) and in Fig. 2(b) we zoom in on the sharp resonance and add a new level of discretization with
221,119 dipoles. Quite logically, the finer the discretization, the more accurate the CDM result. In fact, when both e and m are
positive, the CDM behaves pretty much in the same way as for nonmagnetic material, with the difference that for a given e,
if ma1 then a finer discretization may be required than in the non-magnetic case.
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Fig. 1. Relative error in percent for the cross sections compared to Mie theory for a sphere with parameters e ¼ m ¼ 4þ 2i, discretized into 2176 dipoles

over a cubic lattice with lattice parameter d. (a) Extinction cross section. (b) Absorbing cross section. (c) Scattering cross section obtained from

Csca ¼ Cext � Cabs. (d) Scattering cross section obtained from Eq. (22).
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5. Light scattering by a sphere with negative ReðeÞ and ReðmÞ

We now address the case where both ReðeÞ and ReðmÞ are negative. As we saw previously that the different forms of
polarizabilities give similar results, in this section we only consider polarizability (CR) given in Ref. [2]. Fig. 3 shows the
extinction cross section, and the relative error of the CDM result compared to Mie, for a sphere with radius l=10 and
ReðeÞ ¼ ReðmÞ ¼ �1, as a function of the imaginary part of e and m. We can see that a non-zero imaginary part improves the
convergence of the CDM. This is very much the same situation as is encountered in the conventional form of the CDM when
dealing with metals with a negative real part of the relative permittivity.

This is illustrated further in Fig. 4 where we consider a sphere with ReðeÞ ¼ ReðmÞ ¼ �2. This situation corresponds to the
excitation of the electric and magnetic dipole resonances in the sphere. As far as the electric permittivity is concerned this
also corresponds formally to the excitation of the surface plasmon mode of a small metallic sphere. For the metallic sphere
it is well known that the convergence of the CDM around the plasmon resonance is improved by the addition of a damping
term. Fig. 4 shows a similar trend for a negative-refraction material with ReðeÞ ¼ ReðmÞ ¼ �2. Because these values of ReðeÞ
and ReðmÞ correspond to poles of the Claussius–Mossotti polarizabilities, the relative error of the CDM compared to Mie
decreases slower with the imaginary part of the optical constants than in the case where ReðeÞ ¼ ReðmÞ ¼ �1. As a general
rule, when using the CDM to model a negative-refraction material similar rules to those used with metals should be used.
Unless the damping terms (imaginary parts of the optical constants) are significant, a fine discretization should be used.
Clearly, the convergence problems will occur preferentially when ReðeÞ and/or ReðmÞ are equal to �2 as shown in Fig. 5
where we plot the value of the extinction cross section and its relative error compared to Mie theory, as a function of the
real part of the optical constants, for a sphere of radius l=20. We consider two values of the absorption. In Fig. 5(a), we have
ImðeÞ ¼ ImðmÞ ¼ 0:1, while the absorption is increased to ImðeÞ ¼ ImðmÞ ¼ 1 in Fig. 5(b). As we can see in Fig. 5(a), when
ReðeÞ ¼ ReðmÞ � �2 and the absorption is weak, increasing the number of dipoles certainly helps a little, however, the
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convergence is very slow. On the other hand, the presence of a stronger absorption (Fig. 5(b)) ensures that the CDM
computation is reasonably accurate even at a modest level of discretization.

6. Conclusion

We have presented a formulation of the CDM that can be used to study the scattering of light by an arbitrary object with
an arbitrary dielectric permittivity and magnetic permeability. We have shown that while magnetic material can be treated
in pretty much the same fashion as non-magnetic material, negative-refraction material demand greater care. Indeed, as
the CDM treats arbitrary objects as a collection of dipoles (electric and magnetic), whenever the real part of the
permittivity and/or the permeability is close to �2, strong dipole resonances occur. In this case, the weaker the material
absorption, the finer the discretization should be, however, one should expect a very slow convergence. Finally, let us note
that along the lines of the present derivation, the previous studies based on the CDM (spontaneous emission, optical forces,
etc.) can be extended to treat magnetic and negative-refraction materials.
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[7] Moreno F, Vilaplana R, Muñoz O, Molina A, Guirado D. The scattering matrix for size distributions of irregular particles: an application to an olivine

sample. JQSRT 2006;100:277–87.
[8] Zubko E, Shkuratov Y, Kiselev NN, Videen G. DDA simulations of light scattering by small irregular particles with various structure. JQSRT

2006;101:416–34.
[9] Muinonen K, Zubko E, Tyynela J, Shkuratov Y, Videen G. Light scattering by Gaussian random particles with discrete-dipole approximation. JQSRT

2007;106:360–77.
[10] Zubko E, Muinonen K, Shkuratov Y, Videen G, Nousiainen T. Scattering of light by roughened Gaussian random particles. JQSRT 2007;106:604–15.
[11] Zubko E, Shkuratov Y, Mishchenko M, Videen G. Light scattering in a finite multi-particle system. JQSRT 2008;109:2195–206.
[12] Yurkin MA, Hoekstra AG. The discrete dipole approximation: an overview and recent developments. JQSRT 2007;106:558–89.
[13] Rahmani A, Bryant GW. Spontaneous emission in microcavity electrodynamics. Phys Rev A 2002;65:033817–912.
[14] Bordas F, Louvion N, Callard S, Chaumet PC, Rahmani A. Coupled dipole method for radiation dynamics in finite photonic crystal structures. Phys Rev

E 2006;73:056601.
[15] Draine BT, Weingartner JC. Radiative torques on interstellar grains: I. Superthermal spinup. Astrophys J 1996;470:551–65.
[16] Chaumet PC, Nieto-Vesperinas M. Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate.

Phys Rev B 2000;61:14119–27.
[17] Chaumet PC, Billaudeau C. Coupled dipole method to compute optical torque: application to a micropropeller. J Appl Phys 2007;101:023106-6.
[18] Chaumet PC, Nieto-Vesperinas M. Optical binding of particles with or without the presence of a flat dielectric surface. Phys Rev B 2001;64:035422–7.
[19] Chaumet PC, Rahmani A, Nieto-Vesperinas M. Optical trapping and manipulation of nano-object with an apertureless probe. Phys Rev Lett

2002;88:123601–4.
[20] Chaumet PC, Rahmani A, Nieto-Vesperinas M. Selective nanomanipulation using optical forces. Phys Rev B 2002;66:195405–11.
[21] Rahmani A, Chaumet PC. Optical trapping near a photonic crystal. Opt Express 2006;14:6353–8.
[22] Chaumet PC, Rahmani A, Nieto-Vesperinas M. Local-field enhancement in an optical force metallic nanotrap: application to single-molecule

spectroscopy. Appl Opt 2006;45:5185–90.
[23] Sentenac A, Chaumet PC, Belkebir K. Beyond the Rayleigh criterion: grating assisted far-field optical diffraction tomography. Phys Rev Lett

2006;97:243901.
[24] Yurkin MA, Hoekstra AG, Brock RS, Lu JQ. Systematic comparison of the discrete dipole approximation and the finite difference time domain method

for large dielectric scatterers. Opt Express 2007;15:17902–11.



ARTICLE IN PRESS

P.C. Chaumet, A. Rahmani / Journal of Quantitative Spectroscopy & Radiative Transfer 110 (2009) 22–29 29
[25] Yurkin MA, Maltsev VP, Hoekstra AG. The discrete dipole approximation for simulation of light scattering by particles much larger than the
wavelength. JQSRT 2007;106:546–57.

[26] Mulholland GW, Bohren CF, Fuller KA. Light scattering by agglomerates coupled electric and magnetic dipole method. Langmuir 1996;10(8):2533–46.
[27] Lemaire T. Coupled-multipole formulation for the treatment of electromagnetic scattering by a small dielectric particle of arbitrary shape. J Opt Soc

Am A 1997;14(2):470–4.
[28] Lakhtakia A. General theory of the Purcell–Pennypacker scattering approach and its extension to bianisotropic scatterers. Astrophys

J 1992;394:494–9.
[29] You Y, Kattawar GW, Zhai P-W, Yang P. Zero-backscatter cloak for aspherical particles using a generalized dda formalism. Opt Express

2008;16:2068–79.
[30] Agarwal GS. Quantum electrodynamics in the presence of dielectrics and conductors. I Electromagnetic-field response functions and black-body

fluctuations in finite geometry. Phys Rev A 1975;11:230–42.
[31] Dungey CE, Bohren CF. Light scattering by nonspherical particles: a refinement to the coupled-dipole method. J Opt Soc Am A 1991;8(1):81–7.
[32] Lakhtakia A. Strong and weak forms of the method of moments and the coupled dipole method for scattering of time-harmonic electromagnetics

fields. Int J Mod Phys C 1992;3:583–603.
[33] Draine BT, Goodman J. Beyond Clausius–Mossotti: wave propagation on a polarizable point lattice and the discrete dipole approximation. Astrophys

J 1993;405:685–97.
[34] Goodman JJ, Draine BT, Flatau PJ. Application of fast-Fourier-transform techniques to the discrete-dipole approximation. Opt Lett 1991;16:1198–200.
[35] Draine BT, Flatau PJ. Discrete-dipole approximation for scattering calculations. J Opt Soc Am A 1994;11:1491–9.
[36] Flatau PJ. Improvements in the discrete-dipole approximation method of computing scattering and absorption. Opt Lett 1997;22:1205–7.
[37] Freund RW, Nachtigal NM. QMR—a quasi-minimal residual method for non-Hermitian linear-systems. Numer Math 1991;60(3):315–39.
[38] Fan ZH, Wang DX, Chen RS, Yung EKN. The application of iterative solvers in discrete dipole approximation method for computing electromagnetic

scattering. Microwave Opt Technol Lett 2006;48:1741–6.
[39] Da Cunha RD, Hopkins T. The parallel iterative methods (PIM) package for the solution of systems of linear equations on parallel computers. Appl

Numer Math 1995;19:33–50.
[40] Garcia-Camara B, Moreno F, Gonzalez F, Saiz JM, Videen G. Light scattering resonances in small particles with electric and magnetic properties. J Opt

Soc Am A 2008;25(2):327–34.
[41] Jackson JD. Classical electrodynamics. 2nd ed. New York: Wiley; 1975.
[42] Rahmani A, Chaumet PC, Bryant GW. Coupled dipole method with an exact long-wavelength limit and improved accuracy at finite frequencies. Opt

Lett 2002;27(23):2118–20.
[43] Rahmani A, Chaumet PC, Bryant GW. On the importance of local-field corrections for polarizable particles on a finite lattice: application to the

discrete dipole approximation. Astrophys J 2004;607:873–8.
[44] Collinge MJ, Draine BT. Discrete dipole approximation with polarizabilities that account for both finite wavelength and target geometry. J Opt Soc Am

A 2004;21:2023–8.


	Coupled-dipole method for magnetic and negative-refraction materials
	Introduction
	CDM for magnetic and electric medium
	Numerical implementation
	Light scattering by a magnetic sphere
	Light scattering by a sphere with negative Re( ) and Re( )
	Conclusion
	References


