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The simulation of light scattering by heterogeneous dielectric objects that are large compared to the wavelength is
the bottleneck of many quantitative imaging techniques. The rigorous Maxwell equation solvers are slow and have
high memory requirements; several approximate models have been developed to address this issue. Most of these
models have proved effective in simulating the forward scattered field. In this work, we focus on the multilayer Born
(MLB) approximation that has been introduced recently to simulate the backward scattered field. We compare its
results to those of a rigorous Maxwell solver. We define a domain of object size and permittivity contrast for which
MLB can be used with good accuracy. We point out the superiority of MLB compared to most approximate methods
for calculating the backward scattered field. © 2025 Optica Publishing Group. All rights, including for text and data mining

(TDM), Artificial Intelligence (AI) training, and similar technologies, are reserved.
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1. INTRODUCTION

Fast and efficient approximate methods able to simulate light
scattering by objects in the microscopic range are of prime
importance in numerous domains, such as photonic compo-
nent design or quantitative imaging [1,2]. In computational
microscopy, for example, one recovers the three-dimensional
permittivity map of the object from far-field measurements
using an inversion procedure. When the object is large or con-
trasted enough to modify the illumination at the wavelength
scale, the inversion procedure becomes iterative and necessitates
simulating the light scattering by many successive estimations
of the object [3–5]. These simulations, when performed with a
rigorous Maxwell solver, are slow and computationally demand-
ing. They limit the application domain of quantitative imaging
to relatively small and weakly contrasted samples. Therefore, it
is crucial to develop fast simulation tools based on approximate
models that are able to consider large samples supporting some
multiple scattering [6,7].

Recently, we have compared the performances of differ-
ent approximate methods, such as the Born approximation,
the Rytov approximation [8–10], and the beam propagation
method [4,11,12], with a rigorous Maxwell solver, the discrete
dipole approximation (DDA) [13], for simulating the scattered
field by inhomogeneous dielectric samples of moderate contrast
but large size (more than 104λ3) [14]. It was shown that the
beam propagation method (BPM) was the most accurate for
simulating the field transmitted by the sample [14].

On the other hand, approximate methods able to simulate the
field that is back-scattered by dielectric inhomogeneous samples

are still lacking. Indeed, when considering large, weakly con-
trasted samples, such as cells, the reflected signal is quite weak
compared to the transmitted signal. An approximate method,
such as the BPM, can provide an accurate transmitted field but
a poor estimation of the reflected field [14]. Now, there exist
several important computational imaging techniques, such as
smart optical coherence tomography [15] or reflection tomogra-
phy [16–19], that would benefit from scattering models adapted
to the reflection geometry.

In this work, we improve a recent approximate technique, the
multilayer Born (MLB) approximation [20,21], which seems
better adapted to the reflection configuration. We analyze its
accuracy on large dielectric samples. Due to rigorous simula-
tions obtained with the DDA, we draw its domain of validity
in terms of dielectric contrast and size of the samples. We show
that MLB is not as efficient as BPM in transmission but is more
accurate for simulating the reflected field even in the presence of
some multiple scattering.

2. THEORY

In Ref. [20], the multilayer Born approximation was presented
in its scalar version. To describe the principle of MLB, we first
recall the main steps of the discrete dipole approximation,
as both techniques are based on the same concept of dipole
radiation.
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Fig. 1. (a) Object under study. (b) Discretization of the object for
the DDA. The object is therefore seen as a set of small identical spheres
on a cubic mesh of grid spacing d .

A. Principle of the DDA

The DDA is a well-known rigorous method able to simu-
late the field that takes place inside an object of arbitrary
shape and permittivity [13,22–24] when the latter is illumi-
nated by an incident field E0. More precisely, DDA solves the
volume-integral equation stemming from Maxwell’s equations:

E(r)= E0(r)+
∫

V
G(r, r′)χ(r′)E(r′)dr′, (1)

where χ = (ε− 1)/(4π) represents the (inhomogeneous) lin-
ear susceptibility of the sample, and G is the free-space Green’s
tensor [25].

Once the field E is known in the domain V where χ is non-
zero (inside the sample), then Eq. (1) can be used to calculate
the field everywhere. The simplest approximation, known as the
Born approximation (which is valid for weakly contrasted and
small enough samples), consists of assuming that the field inside
the sample is close to E0. In this case, the integral of Eq. (1)
can be readily calculated to yield the scattered field (E− E0)
everywhere outside the sample.

When the Born approximation is not valid, one needs to cal-
culate E inside V . To this aim, V is discretized into a set of cubic
subunits of size d that are small enough for ensuring that the
field and susceptibility are (almost) constant over them (Fig. 1).
Then, the macroscopic field at the position of each subunit can
be expressed as

E(ri )= E0(ri )+

N∑
j=1,i 6= j

G(ri , r j )d 3χ(r j )E(r j )−
ε(ri )− 1

3
E(ri ),

(2)
where N is the number of subunits discretizing the object. Note
that Eq. (2) is an approximation that holds when the size of the
subunit tends toward zero [26]. There are other approaches
where the finite size of the subunit is taken into account [23,27].

The field inside the object is obtained by solving the system
of linear equations, Eq. (2). In practice, this is done using an
iterative method; see Refs. [23,28,29]. Hereafter, all the rigorous
simulations of field–object interaction were carried out using
our open-source code IFDDA, which enables DDA to be used
in a user-friendly way through a graphical user interface [30].
We have set the tolerance threshold for the iterative linear-
system-solving method at 10−6 to ensure the accuracy of the
results.

Another, equivalent, way to write the DDA [31] is to gather
all terms dependent on i together. Then, Eq. (2) can be written
as

E(ri )
ε(ri )+ 2

3
= E0(ri )+

N∑
j=1,i 6= j

G(ri , r j )d 3 ε(r j )− 1

4π
E(r j ),

(3)
where Eloc =

ε+2
3 E corresponds to the local field, whereas we

recall that E corresponds to the macroscopic field. We obtain

Eloc(ri )= E0(ri )+

N∑
j=1,i 6= j

G(ri , r j )α0(r j )Eloc(r j ), (4)

where α0 is the polarizability, and α0 =
3

4π
(ε−1)
(ε+2)d

3 denotes the
Clausius–Mossotti relationship. In the DDA approach, the
object illuminated by E0 can be seen as a collection of small
spheres of volume d3 on a cubic mesh of grid spacing d that
interact with each other through their dipole moment α0E
[23,32]. In this framework, the Born approximation applies
to the local field, Eloc = E0, and it yields a macroscopic field
inside the object equal to E= 3

ε+2 E0. Thus, it takes into account
the depolarization phenomenon that reduces the electric field
in small spheres compared to the wavelength of illumination.
We recall that the electric field inside a sphere plunged in a
static field E0 is equal to 3

ε+2 E0 [25]. Then, we have observed
empirically that it was more accurate than the classical Born
approximation for weakly contrasted samples of any shape, such
as those encountered in microscopy applications [33].

Once the field inside the object is known, we calculate
the diffracted field e in the far field defined in the direction
k= k0r/r as E(r)− E0(r)≈ e(k)e ik0r /r . Then all the scattered
fields in the k directions can be obtained through [34]

e(k)=
[
k2

0I− k⊗ k
] ∫

F2D[χE]e ikzzdz, (5)

where F2D is the two-dimensional Fourier transform in the
(x , y ) plane, and kz is the z component of k. The integration
over z is done over the height of the object. In practice, the
expression is computed with a two-dimensional fast Fourier
transform (FFT) in the (x , y ) plane and a Riemann sum
along z.

It is worth noting that the scattered far-field could also be
calculated by propagating in free space the field obtained at the
last layer of the object. With a rigorous Maxwell solver, the two
techniques would yield the same result. On the other hand,
when the internal field is obtained with an approximate method
(BPM, Rytov), the radiation of the induced polarization inside
the sample, Eq. (5), yields a significantly better result than
free-space propagation from the last layer [14].

3. MULTILAYER BORN APPROXIMATION

A. Principle of Scalar MLB in Transmission

The multilayer Born (MLB) approximation has been intro-
duced recently in the framework of the scalar approximation

[20], i.e., G(r, r′)= k2
0

e ikR

R I with R = |r− r′|, which is valid
when the permittivity varies on a scale much larger than the
wavelength [35]. In this section, we introduce the MLB in a
practical way that is ready for a numerical implementation. As in
DDA, the object, described by its inhomogeneous susceptibility
χ , is discretized into subunits (usually due to a cubic mesh) over
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Fig. 2. Sketch of the MLB. An incident field impinging on layer k,
and the field at layer k + 1 is the sum of the incident field propagated
from layer k to k + 1 and the field radiated by the elements of layer k.

which the susceptibility and field are assumed to be constant.
We assume that the sample is illuminated by a beam propagating
toward positive z and that the field inside the sample is also
propagating along positive z. Then we observe that the object
is made of K layers of subunits along z (k = 1, · · · , K with
zk+1 > zk). The principle of MLB (like BPM) is to assume that
the field in layer k + 1 depends only on the field in layer k. It is
worth noting that there is a complete equivalence between the
MLB and the beam propagation method when the susceptibility
χ is small, as demonstrated in Appendix B. In the transmission
configuration, the field is estimated layer by layer starting from
layer 1. The fields inside each layer are noted E k . In layer 1,
E 1 is taken as the incident field. Then the field inside the layer
k + 1 will be the sum of the field at layer k that has undergone
free-space propagation from zk to zk+1 and the field radiated
toward the positive z by the induced polarization in layer k due
to E k ; see Fig. 2. The relationship between E k+1 and E k reads

E k+1(ρ i , zk+1)= FFT−1
2D

[
e ikzd FFT2D[E k(zk)]

]
(ρ i )

+

∑
j

G(ρ i , zk+1, ρ j , zk)χ(ρ j , zk)d 3 E k(ρ j , zk),

(6)

where r= (ρ, z), kz > 0 is the z component of the wave vectors
used in the free-space propagation by plane wave expansion, k is
the layer number, and (i , j ) the number of subunit in the layer k.

B. MLB with the Renormalized Born Approximation

A simple way to improve the accuracy of MLB is to use the
renormalized Born approximation, i.e., the polarization of each
discretization element of the object, which is expressed asχd3 in
Eq. (2), is replaced by the expression α as shown in Eq. (4). This
allows us to rewrite Eq. (6) as

E k+1(ρ i , zk+1)= FFT−1
2D

[
e ikzd FFT2D[E k(zk)]

]
(ρ i )

+

∑
j

G(ρ i , zk+1, ρ j , zk)α(ρ j , zk)E k(ρ j , zk).

(7)

Knowing that each discretization element of the DDA is

equivalent to a small sphere of radius a = d 3
√

3
4π , the renor-

malized Born approximation allows us to obtain the exact field
in each discretization element within the framework of the
static approximation and the Born approximation. This minor

change is interesting as the scattered field no longer increases
linearly with the susceptibility. In addition, we use the following
polarizability α = α0(1− (2/3)ik3

0α0) [23], which introduces
the radiation reaction term and energy conservation. We thus
expect better behavior of the method when the object contrast
increases.

C. Vectorial MLB

MLB is easily written for vectorial fields by replacing Green’s
function with Green’s tensor [21]. One obtains

Ek+1(ρ i , zk+1)= FFT−1
2D

[
e ikzd FFT2D[Ek(zk)]

]
(ρ i )

+

∑
j

G(ρ i , zk+1, ρ j , zk)α(ρ j , zk)Ek(ρ j , zk).

(8)

Compared to the scalar case, the computation time is three times
longer because the three components of the electric field are cal-
culated. Hereafter, we will note VMLB the vectorial MLB.

D. MLB with Reflection

The main interest of MLB compared to BPM is that it can be
easily extended to the calculation of the reflected field [20].
The principle is illustrated in Fig. 3. We still assume that the
incident field is a beam propagating toward positive z, but we
now consider that the field inside the sample is made of beams
propagating in both positive and negative z. For easing the dis-
cussion, we note E k

+
(E k
−

) the field propagating toward positive
(negative) z at layer k. By using Eq. (8), we first calculate the
field propagating along the positive z for each layer so that E k

+

is known for each k. Then E k
−

is assumed to depend only on the
field at layer k + 1. At layer K , E K

−
is null. Then E K−1

− is set as
the field radiated toward negative z by the induced polarization
of the K th layer due to E K

+
. At the kth layer, E k

−
is written as

the sum of the fields radiated toward negative z by the induced
polarizations of the k + 1 layer due to E k+1

+ + E k+1
− and the

field E k+1
− that has undergone free-space propagation of zk+1 to

zk . Finally, the field at layer k propagating toward negative z is
written as

Ek
−
(ρi , zk)= FFT−1

2D

[
e−ikzd FFT2D[Ek+1

−
(zk+1)]

]
(ρi )

+

∑
j

G(ρi , zk, ρ j , zk+1)α(ρ j , zk+1)

×
[
Ek+1
−
(ρ j , zk+1)+ Ek+1

+
(ρ j , zk+1)

]
. (9)

The total field in the object is the sum of the fields propagating
toward positive and negative z, Etot = E+ + E−. Once the field
inside the object has been obtained, the scattered field is calcu-
lated using Eq. (5).

In the following, we add the letter R (reflection) to the
acronyms MLB or VMLB to indicate that the field propagating
toward negative z is accounted for in the sample (MLBR and
VMLBR).
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k

k+1
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E+
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Fig. 3. Sketch of the MLB in reflection. The field propagating in
kz < 0 at the layer k is the sum of three components: the field radiated
by the dipoles at the layer k + 1 due to the field propagating in kz > 0
(red, E+); the incident field propagating in kz < 0 (blue, E−), and the
field radiated by the dipoles at the layer k + 1 due to this incident field
(circle in blue).

4. RESULTS

To study the validity of the different models, we compare the
different versions of the MLB with the rigorous calculation
obtained by the DDA [13]. We estimate the error for the near
field inside the object with

Errnf =

∫
Vobj

∥∥Erig(r)− Eapprox(r)
∥∥ dr∫

Vobj

∥∥Erig(r)
∥∥ dr

(10)

and for the far field

Errff =

∫
2π

∥∥Frig(k)− Fapprox(k)
∥∥ d�∫

2π

∥∥Frig(k)
∥∥ d�

, (11)

where the integration is performed over 2π sr for kz > 0 or
kz < 0. To enable quantitative comparisons, all the approximate
methods and DDA use exactly the same discretization mesh.

5. BORN APPROXIMATION VERSUS
RENORMALIZED BORN APPROXIMATION

To begin with, we show that using the polarizability, Eq. (7),
instead of the susceptibility, Eq. (6), to simulate the field radi-
ated by a given layer improves the calculation of the field inside
the object with the MLB. We consider a homogeneous cube
of side a = 4λ illuminated by a plane wave along the optical
axis. In Fig. 4, we plot Errnf and Errff for kz > 0 versus the rel-
ative permittivity of the cube. Both the scalar and vectorial
implementations of MLB are studied. We note the BA imple-
mentation using the standard Born approximation and the RBA
implementation using the renormalized Born approximation.
We observe that RBA improves the calculation of the field inside
the object for both MLB and VMLB, as shown in Fig. 4(a). The
larger the permittivity, the greater the correction provided by the
polarizability, and the better the MLB. If we look at the forward
scattered field, Fig. 4(b), we can see that the improvement of the
field inside the object is also shown in the far field, particularly
for the VMLB. In all the configurations we have tested, using
RBA always improves the result. Hence, for the remainder of
this article, we will only use RBA.

1 1.1 1.2
0

5

10

15

1 1.1 1.2
0

5

10 MLB-BA
VMLB-BA
MLB-RBA
VMLB-RBA

)b()a(

Fig. 4. Homogeneous cube of side a = 4λ illuminated with a plane
wave. (a) Near-field and (b) far-field errors for kz > 0 versus the permit-
tivity.

6. COMPARISON OF MLB, VMLB, AND BPM
WITH THE RIGOROUS DDA

In this section, we compare the MLB, VMLB, MLBR, and
VMLBR with the rigorous DDA for different configurations.
We also add the BPM in the comparison, as the latter is close to
MLB and requires the same computation time; see Appendix B.
We considered the scattering by different objects in air, such as
homogeneous or inhomogeneous cuboids or a set of randomly
placed spheres. The objects were illuminated by a plane wave
propagating along the z axis, except in one case where the plane
wave’s wave vector made an angle of 45◦ with respect to z. We
studied the error behavior as a function of the permittivity of the
objects (which was increased moderately).

A. Cuboid

We first consider a homogeneous cube of side 4λ illuminated
by a plane wave propagating along z as illustrated in Fig. 5(a).
We analyze the near field and far-field errors versus the relative
permittivity in Fig. 5. We observe that, for the limited range
of permittivity considered, the BPM is equivalent or less accu-
rate than MLB. The salient point of Fig. 5 is to show that the
reflected scattered field is significantly better estimated using
the VMLBR which takes into account for the vectorial nature of
the field and the backpropagated field. For the internal field, the
error curves of scalar methods are all merged and increase up to
15% for ε= 1.2, see Fig. 5(b), whereas vectorial MLB methods
are better by a factor of 2. For the transmitted field, see Fig. 5(d),
the MLB methods are slightly better than the BPM, and the
VMLB is the best method with an error below 5%.

Surprisingly, while VMLB is significantly more accurate than
MLB in near field, the error of VMLB on the backscattered
field is similar to MLB. Indeed, the link between near-field
and far-field errors is not straightforward. Basically, the near-
field error depends on all the Fourier components of the near
field, whereas the far-field error is only related to the Fourier
components belonging to a cap of the sphere of the product
between near field and susceptibility, as shown in Eq. (5). Now,
the near-field Fourier components do not have the same weight.
The contribution of the low spatial frequencies is generally
dominant in the estimation of the near field. On the other hand,
the backscattered field depends mainly on high-frequency
components whose weight is negligible in the near-field error.
Thus, the good accuracy of VMLB for the near field does not
necessarily imply good accuracy for the backscattered field. For
estimating the latter, VMLBR is significantly more appropriate
than VMLB, as it specifically builds the backpropagating field
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Fig. 5. Far-field and near-field relative errors for the different
approximate methods under study as a function of the permittivity of
the object. (a) The sample is a cube of side a = 4λ in air, illuminated by
a plane wave along the z axis. (b) Error in near field. (c) Error in far field
in reflection (kz < 0). (d) Error in far field in transmission (kz > 0).

at each layer. However, if the forward near field is already well
estimated by VMLB or MLB, the inevitable cumulative errors
in the backpropagating near field can (marginally) affect the
accuracy of the forward diffracted field obtained by radiating the
induced polarization.

We have conducted the same analysis by setting the cuboid
permittivity to 1.1 and increasing its size from 2 to 15 wave-
lengths (not shown). We observed the same behavior. The error
on the near field and transmitted field increases with the cuboid
size but remains smaller than 15% for all the methods. On the
other hand, only VLMBR is able to estimate the reflected far
field correctly, with an error significantly smaller than 50%.
VLMBR error increases from 10% to 30% with the cuboid size,
while the errors of the other methods start at 50% and rapidly
reach 150%.

The interest of taking into account the backpropagating fields
in MLB is also evidenced if one is interested in the internal field
inside the sample. We plot in Fig. 6 the modulus of the electric
field in the plane (x , z) in the middle of the cube for the rigorous
and approximate methods. Clearly, the complex field features
are best reproduced using MLBR or VMLBR.

Then the key advantage of accounting for the vectorial nature
of the field, VMLBR, is that all the components of the electric
field are computed, while the other methods (BPM, MLB, and
MLBR) deal with scalar fields. The y and z components of the
field estimated by VMLBR displayed in Fig. 7 show a good
agreement with the rigorous DDA.

In Fig. 8(a), we consider the same object under oblique illu-
mination, 45◦. This configuration is not adapted to the BPM
[36] which provides the worst results. We observe that VMLBR
is now significantly better than the other techniques for both
the internal, reflected, and transmitted far fields. The influence
of the vectorial nature of the field was indeed expected to be
enhanced in this “corner cube” configuration. At 45◦ incidence,
the backpropagating field is significantly larger than at normal
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Fig. 7. Modulus of the field inside the cube at y = 0 and ε= 1.2 for
the y and z components with the DDA and the VMLBR.

incidence (the interference fringes in the near field for VMLBR
are more contrasted at 45◦ than at 0◦; see Fig. 6). It cannot be
neglected when radiating the induced polarization. In this case,
the VMLBR performs better than all the other methods for the
near field and both forward and backward scattered far fields.



418 Vol. 42, No. 4 / April 2025 / Journal of the Optical Society of America A Research Article

1 1.1 1.2
0

10

20

30

40

50

1 1.1 1.2
0

50

100

150

1 1.1 1.2
0

10

20

30

40

50
BPM
MLB
VMLB
MLBR
VMLBR

z

(c) (d)

)a( )b(

Illumination

Fig. 8. Same as Fig. 5 except that the cube is now illuminated with a
plane wave at 45◦ of the z axis.

B. Inhomogeneous Object

We now consider a weakly contrasted random inhomo-
geneous medium illuminated by a plane wave propagating
along the z axis to better approximate a biological sample
in a tomography setup. We consider a cuboid of permit-
tivity a Gaussian-distributed random variable of mean εbg

and variance σ 2, with a Gaussian correlation function [37]:
〈ε(r), ε(r′)〉 = ε2

bg + σ
2 exp(− ‖r−r′‖2

l2
c
), embedded into a

homogeneous background of permittivity εbg. The relative
errors for the far and near fields for a cube of L = 60λ are shown
in Figs. 9(a)–9(c) as a function of the permittivity standard
deviation σ . At low σ , all methods behave in a similar way for
estimating the transmitted far field, while VMLBR is more
accurate for estimating the reflected far field. At high σ , the
reflected far field is badly estimated, whatever the methods, with
a better robustness of BPM.

In Figs. 9(d)–9(f ), the object under study is a cuboid of size
(40λ)2 × L with lc = λ and σ = 0.01. We study the error as a
function of sample thickness L . In this configuration, at low σ ,
the VLMBR is significantly better than the other methods for
estimating the reflected far field whatever L .

Note that for the field inside the object, the VLMB(R) is
always the best method, whatever the configuration studied; see
Figs. 9(a) and 9(d).

C. Multiple Beads

In the last configuration, we consider an extended sample with
sharp transitions between the background and spherical inclu-
sions with quite a large size. We study a random distribution of
beads of radius r = 2λ in a cube of side 80λ, where the fraction
of volume occupied by the spheres in the cuboid is 0.05 (763
beads). The mesh size is λ/5 yielding N = 4003

= 64× 106

subunits. We observe in Fig. 10 that the methods are roughly
equivalent except for the reflected far field where VMLBR
stands out clearly as the best technique.
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Fig. 9. Far-field and near-field relative errors for a random medium
as a function of the permittivity standard deviation σ (a, c) or thickness
of the medium L (b, d). (a)–(c) The sample is a random inhomo-
geneous cuboid of size 60λ× 60λ× 60λwith permittivity correlation
length lc = λ. (d)–(f ) The sample is an inhomogeneous cuboid of size
40λ× 40λ× L with lc = λ and σ = 0.01.
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Fig. 10. Far-field and near-field relative errors as a function of the
permittivity of randomly placed beads within a cube of side 80λ. The
radius of the beads is r = 2λ; their volume fraction is 0.05.

In Fig. 11, we compare the computation time of the different
MLB techniques and the rigorous calculation of DDA, for the
object presented in Fig. 10, as a function of the permittivity
contrast. We observe in Fig. 11 that, as expected, the computa-
tion time of MLB techniques does not depend on the dielectric
contrast of the sample (except for some fluctuations due to the
processors communication and system load). On the contrary,
the computation time of DDA increases significantly with
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Fig. 11. Time of computation for the object presented in Fig. 10.

the permittivity contrast because the solving of its linear sys-
tem requires more iterations. Unsurprisingly, the refinements
brought to MLB (backpropagation, vectorial nature of the
fields) increase the computation cost: VMLBR is about 10 times
slower than the scalar MLB. At a small permittivity contrast, the
computation time of VMLBR is close to that of DDA. In this
case, the solving of the linear system in DDA requires very few
iterations that are performed with 3D fast Fourier transforms
whose support is limited to the object support. For their part,
the 2D FFTs involved in the MLB have a significantly larger size
than the object support to avoid aliasing and are less efficiently
parallelized than the 3D ones of DDA.

Note that DDA computation time could be reduced by
accepting some inaccuracy in the solving of its linear system
(increasing the tolerance threshold) or by taking appropriate
initial guess as in Refs. [29,38].

7. CONCLUSION

To conclude, we have demonstrated that the multilayer Born
model accounting for the vectorial nature of the field and the
backpropagated beam (VMLBR) was significantly more effi-
cient than BPM or standard MLB for estimating the reflected far
field and comparable to the latter for estimating the transmitted
far field. Its validity domain is similar to that of standard MLB:
permittivity contrast smaller than 0.2 and sample thickness
about tens ofλ.

The computation time of VMLBR is about 10 times longer
than that of BPM, as illustrated in Fig. 11. It can be close to that
of DDA for very small permittivity contrast (when multiple
scattering is limited).

In our opinion, VMLBR is mainly of interest for reflective
configurations and for samples that supports only moderate
multiple scattering. It can easily be extended to anisotropic
material [21].

APPENDIX A: DETAILS ON THE
IMPLEMENTATION OF THE MLB

This appendix details the implementation of MLB
[Eq. (6)] and others. The computation of the second term
FFT−1

2D[e
ikzd FFT2D[E k(zk)]](ρi ) of Eq. (6) is similar to that of

the BPM. To avoid edge effects and aliasing, the size of the FFT
shall be slightly larger than the support ofχ . The other term,∑

j

G(ρi , zk+1, ρ j , zk)χ(ρ j , zk)d3 E k(ρ j , zk), (A1)

1 1.05 1.1
0

10

20

30

40
BPM N=1024
MLB N=1024
BPM N=768
MLB N=768
BPM=512
MLB=512

Fig. 12. Study of convergence of the MLB and BPM. Near-field
error versus ε for different size of FFT for the object presented in
Fig. 10.

is also computed using FFT in the (x , y ) plane due to trans-
lational invariance [39,40]. The size of the FFT is taken large
enough to avoid the edge effects caused by the slow decay of the
Green function. In this case, we observed that it had to be signifi-
cantly larger than the support ofχ . In Fig. 12, with the object of
Section 6.C, we show the error between DDA, MLB, and BPM
for different FFT sizes. The object presented in Section 6.C has
a number of subunits in the (x , y ) plane of 400× 400, and it is
necessary to take an FFT of at least 1024× 1024 for the MLB to
get a converged result. For the BPM, on the other hand, the FFT
size is less critical, and 512 is sufficient. This is due to the fact
that Green’s function decreases slowly in 1/r , which requires a
larger FFT size, especially as the object has a high permittivity.

APPENDIX B: THEORETICAL COMPARISON
BETWEEN MLB AND BPM

In this appendix, we show that under the paraxial approxima-
tion, MLB and BPM expressions are similar in the limit of small
refractive index contrasts. BPM divides the object into layers
perpendicular to the optical axis. The field in a given layer is
obtained from the one in the previous layer through the relation
[11]:

E k+1(ρ i , zk+1)= FFT−1
2D

[
e ikzd FFT2D[e ik01n(zk )d E k(zk)]

]
(ρ i ),

(B1)
where1n(r) is the refractive index contrast of the object. When
the contrast is weak, the exponential can be expanded in a Taylor
series to first order, yielding,

E k+1(ρ i , zk+1)= FFT−1
2D

[
e ikzd FFT2D[E k(zk)]

]
(ρ i )

+ik0dFFT−1
2D

[
e ikzd FFT2D[1n(zk)E k(zk)]

]
(ρ i ).
(B2)

We now rewrite the MLB equation, Eq. (6), under the paraxial
approximation. The scalar free-space Green’s function can be
reformulated by the plane wave expansion as follows [41]:

G(r, r′)= k2
0

∫∫
i

2πkz
e iκ ·(ρ−ρ′)e ikz |z−z′|dκ, (B3)

where κ = (kx , ky ) is the 2D transverse component of wave vec-
tors. We obtain
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G(ρi , zk+1, ρ j , zk)=
ik0

2π

∫∫
e iκ ·(ρi−ρ j )e ikzd dκ . (B4)

If we now assume that the object refractive index varies weakly

about 1, we obtain χ(ρ j , zk)=
n2(ρ j ,zk )−1

4π '
1n(ρ j ,zk )

2π . In this
case, the scattered field by the layer k at k + 1, Eq. (6), can be
rewritten as

E k+1
s (ρ i , zk+1)

=

∑
j

G(ρ i , zk+1, ρ j , zk)χ(ρ j , zk)d 3 E k(ρ j , zk)

=
ik0

4π 2

∑
j

(∫∫
e iκ ·(ρi−ρ j )e ikzd dκ

)
1n(ρ j , zk)d

3 E k(ρ j , zk)

=
ik0d
4π 2

∫∫ (∑
j

1n(ρ j , zk)E k(ρ j , zk)e−iκ ·ρ j d2

)
e ikzd e iκ ·ρi dκ

= ik0dFFT−1
2D

[
e ikzd FFT2D[1n(zk)E k(zk)]

]
(ρ i ).

(B5)

By adding to the scattered field, Eq. (B5), the inci-
dent field that propagates from layer k to k + 1,
i.e., FFT−1

2D[e
ikzd FFT2D[E k(zk)]](ρi ), we recover the same

expression as Eq. (B2). We have shown that for weakly con-
trasted objects and under the paraxial approximation, BPM and
MLB are actually the same methods.
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