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In this tutorial, we introduce a solver of monochromatic Maxwell equations made freely available at
https://www.fresnel.fr/perso/chaumet/ifdda.html, based on the volume moment method. The Institut Fresnel
Discrete Dipole Approximation or Idiot-Friendly Discrete Dipole Approximation (IFDDA) calculates the
diffracted field, the optical forces, and the image through a microscope of any three-dimensional inhomogeneous
object, possibly anisotropic, placed in a stratified medium. In this method, only the object is meshed so the required
memory space is kept to a minimum. We describe the principle and the potentialities of IFDDA and present com-
parisons with Mie theory and experimental data to assess the accuracy of the method. In addition, we provide a user
guide for first steps with the solver. We hope that you will use and enjoy this numerical tool! © 2021 Optical Society

of America

https://doi.org/10.1364/JOSAA.432685

1. INTRODUCTION

There are numerous methods that enable the rigorous study
of the diffraction of an electromagnetic wave by an object of
arbitrary form and relative permittivity. One quotes, for exam-
ple the finite-difference time-domain method (FDTD), the
finite-element method (FEM), the multiple multipole method
(MMP), the surface integral equation method, or the volume
integral method, also named the method of moment (MoM).
The reader is referred to the article by F. M. Kahnert for the
advantages and drawbacks of the most common methods [1].

In this paper, we focus on the method of moments in which
the monochromatic Maxwell equations are cast into a volume
integral equation and, more precisely, on its discretized ver-
sion known as the discrete dipole approximation (DDA). This
method was proposed by Purcell and Pennypacker [2] in 1973
to study the scattering and absorption of light by nonspherical
dielectric grains. It has several advantages, especially when
one is interested in free-space scattering of objects placed in a
stratified medium. First, it is applicable to arbitrarily shaped,
inhomogeneous, anisotropic, or metallic objects [3]. Second,
the outgoing wave condition and the boundary conditions at
the interfaces of the stratified medium are automatically satisfied
so that the computation of the electric field is restricted to the

volume of the scatterer only. The number of unknowns and
the memory requirement are thus usually smaller than that of
FDTD or FEM, but the system of linear equations to be solved is
dense. The interest and potentialities of DDA are well described
in Refs. [4,5], and comparison with other numerical methods
can be found in Refs. [6,7].

Several DDA codes are already available to the public. The
first DDA solver, proposed by Draine and Flatau, simulates
the light scattering and absorption by isolated or arrays of
irregular particles placed in a homogeneous background [8,9].
A second code, developed by Yurkin and Hoekstra, simulates
the light scattering by an object near a plane substrate [10].
DDA in homogeneous space is also available as a toolbox of
MATLAB [11].

Here, we propose two codes that extend further the poten-
tialities of DDA. IFDDAM (for Institut Fresnel DDA adapted
to Multilayers) is able to simulate the interaction between any
arbitrary incident field and an inhomogeneous, possibly aniso-
tropic, object placed in a multilayer. IFDDA, the Institut Fresnel
DDA or Idiot-Friendly DDA, for its part, is specifically opti-
mized to deal with objects placed in a homogeneous medium.
Both codes provide scattering and absorption cross sections,
far-field and near-field maps, and the images obtained by several
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optical microscopes (bright field, dark field, phase, holography).
In addition, IFDDA provides the optical forces and torques
acting on the object. IFDDA is coded in FORTRAN with a
C++ ergonomic interface and Qt displays. Its drop-down menus
and preimplemented configurations enable the user to launch
a calculation easily and get a physical insight into her/his issue
rapidly.

2. DESCRIPTION OF THE MAXWELL
EQUATIONS SOLVER

In this section, we describe the main steps of the volume integral
method, or equivalently of the discretized dipole approximation
that is used to solve Maxwell equations in IFDDAM.

A. Configuration

Hereafter, we consider the diffraction of monochromatic waves
of wavenumber k0 = 2π/λ, where λ is the wavelength by an
object located in a homogeneous background; see Fig. 1(a)
or inside a stratified medium, Fig. 1(b). We depict the refer-
ence stratified medium by its possibly complex scalar relative
permittivity εref(z), where (x , y , z) is an orthonormal basis.
Note that our time convention for the monochromatic waves
is exp(−iωt) so that the permittivity imaginary part should
always be positive.

The substrate corresponds to the semi-infinite medium
when z→−∞. Its wavenumber is noted k− = n−k0, where
n− =

√
εref(z→−∞). The superstrate corresponds to the

semi-infinite medium when z→+∞. Its wavenumber is noted
k+ = n+k0 with n+ =

√
εref(z→+∞). An inhomogeneous

object of support� is introduced inside this reference medium,
so that the relative permittivity of the whole system reads
↔

ε(r)= εref(z)+ 4π↔χ(r), where ↔χ(r) is equal to zero outside�.
We also assume that both the stratified medium and the object
under study are nonmagnetic, i.e., µ=µ0 everywhere. Note

εref
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Fig. 1. (a) Object in a homogeneous background: εref = 1;
(b) object embedded in a multilayer; the reference permittivity εref

depends only on z. The multilayer comprises L interfaces indexed
from 1, corresponding to the lowest z, to L corresponding to the
highest z, and L + 1 different media, indexed from 0, the substrate
to L , the superstrate. In the preimplemented configurations, when
the illumination comes from a source placed in far field (plane waves,
Gaussian beams), the latter is always placed at z=−∞, i.e., the beams
always propagate toward positive z.

that DDA has been extended to magnetic objects, [12,13] and
to nonlinear susceptibility [14], but these options are outside
the scope of this tutorial. To ease the exposition of the method,
we consider that the electromagnetic wave illuminating the
system stems from a source current S. This source may generate
plane waves, Gaussian beams, [15] or antenna-like fields in
preimplemented configurations. When the source creating the
incident field is in far field (to form plane wave illuminations), it
is always placed in the substrate of the multilayer. In this case, n−

should be real positive.

B. Description of the Volume Integral Method

From Maxwell equations, the total electric field at r ∈R3 satis-
fies [16]

∇ ×∇ × E(r)− εref(z)k2
0E(r)= S+ 4πk2

0
↔

χ(r)E(r). (1)

The total field E(r) can be written as the sum of the reference
field, Eref(r), i.e., the field that would exist without the object,
which verifies the homogeneous equation

∇ ×∇ × Eref(r)− εref(z)k2
0Eref(r)= S, (2)

and a diffracted field Ed(r)= E(r)− Eref(r), which satisfies the
outgoing wave boundary condition. To calculate the total field,

we introduce the Green tensor of the reference medium
↔

G, solu-
tion of

∇ ×∇ ×
↔

G(r, r′)− εref(z)k2
0

↔

G(r)= 4πk2
0Iδ(r− r′), (3)

where I denotes the unit tensor that satisfies outgoing boundary
conditions. The expression of the Green tensor of a stratified
medium can be found in Ref. [17]. The total field is then the
solution of the self-consistent volume integral equation,

E(r)= Eref(r)+
∫
�

↔

G(r, r′)↔χ(r′)E(r′)dr′. (4)

Once the field in� is known, it can be calculated everywhere.

C. Estimating the Field inside the Object

To solve Eq. (4), we approximate the electric field and permittiv-
ity inside � by step-wise functions that are constant over small
cubic subunits of side d [18–22]. The choice of d is crucial for
the accuracy of the results, and it should be adapted to the spatial
behavior of the field in the sample (exponential decay in conduc-
tive or absorptive materials, oscillation in dielectric material). As
a rule of thumb, d should be smaller than λ/(2π |n|) [8,21,23].
Once discretized, the volume integral equation, restricted to r ∈
�, can be transformed into the linear system,

E(ri )= Eref(ri )+

N∑
j=1

↔g(ri , r j )
↔

χ(r j )E(r j ), (5)

with i = 1, . . . , N, where N denotes the number of nodes
of the cubic mesh of �, E(ri ) the macroscopic field of the

subunit i , and ↔g(ri , r j ) the integral of
↔

G(ri , r) over the sub-

unit centered about r j , i.e., ↔g(ri , r j )=
∫
� j

↔

G(ri , r)dr where
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� j is the volume of the subunit j . For ri 6= r j the integra-
tion of the Green tensor over the cubic subunit is usually

approximated, assuming
↔

G to be constant over the subunit,

by ↔g(ri , r j )≈ d3
↔

G(ri , r j ). The integration of the diagonal
term, ri = r j , is more delicate due to the singular behavior of the
Green tensor at the origin; see Refs. [21,24,25]. One generally

uses ↔g(ri , ri )=−
4π

3εref

↔

I + PV[
∫
�i

↔

G(ri , r)dr], where PV is the
integration per principal value obtained by removing a small
sphere at the origin calculated using different approximations
following Ref. [25] and annexes 10 and 9.

The set of linear equations, Eq. (5), can be written
symbolically as

E= Eref + ADχE, (6)

where E and Eref are 3N vectors representing the unknown field
inside � and the reference field, respectively. A is a 3N × 3N
matrix that contains the Green tensor, and Dχ is a diagonal
matrix of size 3N × 3N that contains the tensor of permittivity
contrast. The linear system is solved iteratively using a conjugate
gradient method; see Ref. [22]. To fasten the calculation, all
the matrix vector products appearing in the iterative method
are performed using three-dimensional (3D) fast Fourier
transforms (FFTs) for the homogeneous space [26] and using
two-dimensional (2D) FFT [27] for the multilayer case (note
that 3D FFT could also be implemented if the object is in the
substrate or superstrate of a multilayer [28]). To this aim, the
linear system is solved within an ‘FFT box’�FFT, defined as the
smallest box enclosing �. In �FFT, the permittivity contrast of
the ‘useless’ subunits are put to zero. Hereafter, the discretization
step d is defined from the number of subunits, Nl , which is set
by the user, along the longest dimension of�FFT.

Once the field inside� is known, the near field in a domain
surrounding the object is computed directly using the dis-
cretized version of Eq. (4); see Ref. [29]. On the other hand, the
far field is obtained in a faster way by taking advantage of the
far-field expression of the Green tensor, as seen in the following.

D. Calculating the Field Far from the Object

In this paragraph, we estimate the diffracted field at the obser-
vation point r in the far field of the object (such that r � r ′ and
r � r ′2/λ for any r ′ ∈�). The far-field Green tensor can be

approximated by
↔

G(r, r′)≈ e ik±r

r

↔

Gff(k
±
, r′), where the wave

vector k± is defined by k± = k±r̂ with k± = n±k0 with r̂= r/r
[16], and the superscript (+) indicates that r is in the superstrate,
whereas the superscript (−) indicates that r is in the substrate.
Note that if n+ has an imaginary part, the diffracted far field is
null in the superstrate.

The far field diffracted by the object in the direction k± can be
estimated with the integral

Ed(r)=
e ik±r

r

∫
�

↔

Gff(k
±
, r′)↔χ(r′)E(r′)dr′. (7)

This technique is appropriate if only a few directions of
observation are considered. Indeed, the integral in Eq. (7) is
time-consuming, especially if the number of cubic subunits

forming the object, N, is large [30]. If the far field is to be calcu-
lated along many directions of observations, it is preferable to
use another approach using FFTs [30].

Due to the translational invariance of the reference geometry
(vacuum or multilayer) in the transverse (x , y ) plane, the far-

field Green tensor satisfies
↔

Gff(k
±
, r′)=

↔

M
±

(k‖, z′)e−ik‖·r‖′ ,
where k‖ is the projection of k± on the transverse plane and r‖ is
the projection of r on the transverse plane. Then, the diffracted

far field can be estimated as Ed(r)= e ik±r

r e±d (k‖), where

e±d (k‖)=
∫
↔

M
±

(k‖, z′)F2D

[
↔

χ(r‖, z′)E(r‖, z′)
]
(k‖)dz′, (8)

and F2D[ f ](k‖)=
∫

f (r′
‖
) exp(−ik‖ · r′‖)dr′

‖
denotes the 2D

Fourier transform. Numerically, the estimation of e±d (k‖) is
performed using 2D FFTs, and a sum over the Nz layers along z
forming the object,

e±d (k‖)≈ d3
Nz∑

k=1

↔

M
±

(k‖, z′k)FFT2D
[
↔

χ(r‖, z′k)E(r‖, z′k)
]
. (9)

The calculation of Eq. (8) is much faster than that of the
integral in Eq. (7). Its counterpart is that the far field is estimated
only along the specific directions of observation, satisfying
k‖ = (i1k, j1k) for i and j =−K /2, · · · , K /2− 1 with
1k = 2π/(K d), and K the even number of points in the FFT.

Once the far field is estimated, the time averaged differential
cross section can be expressed as

dC±ext

d�
=

1

2
cε0n±

∣∣e±d (k‖)∣∣2. (10)

If the object is in vacuum and illuminated by a plane wave
with amplitude E ref, the extinction, scattering, and absorption
cross sections and the asymmetrical parameter are evaluated as

Cext =

∫
dCext

d�
d�=

k0

E 2
ref

N∑
j=1

Im
[
E∗ref(r j ) · P(r j )

]
, (11)

Cabs =
k0

E 2
ref

N∑
j=1

Im
[
E∗(r j ) · P(r j )

]
, (12)

Csca =
k4

0

E ref

∫ ∥∥∥∥∥∥
N∑

j=1

[
P(r j )− n(n · P(r j ))

]
e−ik0n·r j

∥∥∥∥∥∥
2

d�,

(13)

g =
k3

0

Csca E 2
ref

×

∫
(n · k0)

∥∥∥∥∥∥
N∑

j=1

[
P(r j )− n

(
n · P(r j )

)]
e−ik0n·r j

∥∥∥∥∥∥
2

d�,

(14)

with P(r j )= d3↔χ(r j )E(r j ). The scattering cross section can be
estimated with Csca =Cext −Cabs or with the integral Eq. (13)
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[18], where the integration over d� is either done in spherical
coordinates [18] or in Cartesian coordinates, using FFT. This
last approach is faster, but its accuracy depends on the preci-
sion with which the disk k‖ < k0 is described with the square
meshing of the FFT. This issue is particularly pressing at grazing
incident angle, when most of the energy is scattered for k‖ close
to k0. Note that the number K of points of the FFT can be set by
the user (in the advanced interface).

E. Simulating the Image of an Object Given by a
Microscope

IFDDA comes with a microscope simulator. We consider a
microscope consisting of an objective of numerical aperture
(NA) satisfying the Abbe sine condition [31] and a tube lens
in a 4 f configuration leading to a magnification factor M.
The z axis normal to the multilayer coincides with the opti-
cal axis. By convention, the object focal point is placed at
r= ro = (0, 0, zo ), while the image focal plane is located at
z= zi . Recalling that the illuminating beam always propagates
toward the positive z, the transmission configuration corre-
sponds to zi > zo , Fig. 2(a), while the reflection configuration
corresponds to zi < zo , Fig. 2(b). We assume that the medium
between the tube lens and camera is always air. On the other
hand, since the sample can be placed in a multilayer, the micro-
scope simulator can account for any index mismatch between
the objective oil, the coverslip, and the immersion medium.

The image given by the microscope is computed following
the procedure detailed in Ref. [32]. Here, we briefly describe
the main computational steps. The field in the substrate (−) or
in the superstrate (+) propagating towards the objective in the
reflection or transmission configuration, respectively, can be
written as a sum of plane waves

k’

i
z

o

Superstratek

Image focal plane

k’

Substrate

z

Image focal plane

z(a) (b)

focal
plane

Object

z

zok

Fourier plane

Fourier plane

Superstrate

zi

x

Substrate x

Object
focal

plane

Objective lens

Objective lens

Tube lens

Tube lens

Fig. 2. Sketch of the microscope. Left column, in transmission
configuration, right column, in reflection configuration. zo denotes
the position of the object focal plane and zi the position of the image
focal plane. k is the wave vector of a plane wave diffracted by the object
and k′ is the wave vector of the same wave after transmission by the
lenses. Note that the objective immersion medium (oil, water, or air)
corresponds to the superstrate in the transmission configuration and to
the substrate in reflection configuration.

Eobj(r)=
∫

e±pupil(k‖)e
ik±·(r−ro )dk‖, (15)

where

e±pupil(k‖)=
e±d (k‖)

−2iπ |kz|
e ik±z zo + e±ref(k‖), (16)

with k± = k‖ + k±z ẑ and k±z =±
√
(n±k0)

2
− k2
‖

depending on

the microscope configuration (transmission with the sign+ and
reflection with the sign−), e±d is given by Eq. (8), and e±ref repre-
sents the plane wave decomposition of the reference field follow-
ing Eq. (15) with (−) indicating the reflected beam (propagating
towards negative z) in the substrate and (+) indicating the trans-
mitted beam in the superstrate. At the pupil or Fourier plane of
the microscope, one has access to e±pupil(k‖).

If k‖ < k0NA, the microscope transforms the plane wave with
wave vector k in the object space into a plane wave with wave
vector k′ in the image space, with

k′ = (k′
‖
,±k′z)=

−k‖
M
,±

√
k2

0 −
k2
‖

M2

 . (17)

The transformation of k into k′ preserves the component of
the electric field normal to the (k, ẑ) plane, (TE), and rotates the
TM component (electric field in the (k, ẑ) plane). At the image
focal plane, the field reads

Eima(r‖, zi )=
1

M

∫ √
kz

k′z
h̃(k‖)R(k‖)e

±

pupil(k‖)e
ik′
‖
·r‖dk′

‖
,

(18)
where h̃(k‖) is the pupil function, which acts as a low-pass filter,
h̃(k‖)= 1 for k‖ < k0NA and 0 elsewhere. R(k‖) is the rotation
matrix defined as

R(k‖)= u2
x (1− cos θ)+ cos θ ux u y (1− cos θ) u y sin θ
ux u y (1− cos θ) u2

y (1− cos θ)+ cos θ −ux sin θ
−u y sin θ ux sin θ cos θ

 ,
(19)

where u= k̂×ẑ
|k̂×ẑ|

is the rotation axis with k̂= k/k. Note that

u has no component along the z direction. θ is defined as

cos θ = k̂ · k̂
′

and sin θ =‖ k̂× k̂
′

‖. The factor 1
M

√
kz
k′z

ensures

the energy conservation; see appendix of Ref. [32].

F. Evaluating the Transmissivity, Reflectivity, and
Absorptivity

IFDDA allows one to estimate the reflectivity ρ, transmissivity
τ , and absorptivity 1− ρ − τ of the perturbed multilayered
system [33]. These quantities are calculated only when the inci-
dent field stems from far-field sources (located in the substrate)
so that it can be cast as a sum of plane waves propagating toward
positive z. At r in the substrate, the incident field reads

Einc(r)=
∫

einc(k‖)e ik·rdk‖, (20)
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with k= k‖ + kz ẑ, kz =

√
(n−k0)

2
− k2
‖
. The reflectivity and

the transmissivity, ρ and τ , respectively, are estimated from the
diffracted field, Eq. (8), as

τ =

∫
k0n+

∣∣e+pupil(k‖)
∣∣2dk‖∫

k0n−
∣∣einc(k‖)

∣∣2dk‖
for kz > 0, (21)

ρ =

∫
k0n−

∣∣e−pupil(k‖)
∣∣2dk‖∫

k0n−
∣∣einc(k‖)

∣∣2dk‖
for kz < 0. (22)

When the sample and multilayer are non absorbing, one
should check that ρ + τ is close to 1. Note that when the mul-
tilayer supports guided waves, the energy conservation cannot
be checked, as the energy propagating in the guided wave is not
computed; see Ref. [7].

3. COMPARISON OF IFDDA WITH MIE THEORY

The ability of IFDDAM to deal with complex configurations
was checked with Maxwell solvers based on FDTD, finite
elements, and the Fourier modal method. We considered a con-
figuration where a grating coupler surrounded by Bragg mirrors,
forming a 200λ× 200λ× λ/2 structure, is deposited on a
multilayer supporting guided modes. The agreement between
IFDDAM and the other solvers at and outside the resonance
conditions was remarkable; see Ref. [7].

In this section, we present comparisons of IFDDA with
the analytical Mie theory [34], which is included in the code.
This comparison is most useful to check if the discretization
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Fig. 3. Relative errors between IFDDA and Mie simulations for
a nonabsorbing sphere of radius a = 10 µm and three different dis-
cretization steps (N is the number of subunits in �FFT) as a function
of the sphere permittivity. The sphere is illuminated by a plane wave at
λ= 500 nm. (a) Extinction cross section; (b) optical force; (c) asym-
metry factor; and (d) the extinction cross section estimated with Mie
theory and IFDDA with N = 8× 106.
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Fig. 4. Same as Fig. 3, but the sphere permittivity is complex with
Re(ε)= 2 and the imaginary part is increased. (a) Extinction cross sec-
tion; (c) absorbing cross section; (b) optical force; and (d) asymmetry
factor.

parameter d has been well chosen. All the calculations of this
section were performed using 2

3 nrefik3
0 as the principal value of

the Green function, i.e., the polarizabilityαRR; see Appendix D.
In Fig. 3, we considered a nonabsorbing sphere of radius

a = 10 µm with increasing relative permittivity illuminated
by a plane wave with λ= 500 nm. We compare the extinction
cross section [34], the optical force and asymmetry factor to
those provided by Mie theory for three different mesh sizes:
d = 100 nm, d = 66 nm, and d = 50 nm, corresponding to
N = 8, 27, and 64 millions of subunits for�FFT, respectively. As
expected, the relative errors between IFDDA and Mie decrease
with d and with the sphere relative permittivity; see Fig. 3. The
errors above 10% that are observed for large d can be explained
by the extreme sensitivity of the Mie resonances to the object
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cal force, cross section, and asymmetrical parameter are plotted versus
the discretization parameter Nl .
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Fig. 6. Experimental setup of the holographic microscope in
reflection configuration. HW, motorized half-wave plate; M, rotative
mirror; BE, beam expander; BS, beam splitter; L1, tube lens; L2 and
L3, relay lenses; OL, objective lens.
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Fig. 7. Comparison of the experimental (left) and simulated (right)
intensity recorded at the image plane of a microscope in reflection con-
figuration; NA = 1.45 and magnification factor, M = 200. The sam-
ple is a sphere of radius 2500 nm and relative permittivity of 2.5857,
placed in water and deposited on a coverslip. The sphere is illuminated
from the coverslip by a collimated beam making an angle θ = 30◦ with
respect to the z axis. (a), (c) TE polarization; (b), (d) TM polarization.

shape and the difficulty of reproducing the sphere curved sur-
face with a cubic meshing. The oscillation of the cross-section
error comes from a slight shift between the Mie and IFDDA
cross-section curves; see Fig. 3(d).

In Fig. 4, the same test is conducted with an absorbing sphere,
the real part of the relative permittivity being set to 2 and the
imaginary part being increased. In this case, we observe that the
accuracy of IFDDA is always better than 3%, the absorption
damping the resonances.

To investigate further the limits of IFDDA, we plot in
Fig. 5(a), the errors between IFDDA and Mie for a high refrac-
tive index sphere of radius a = λ/2. The real part of the sphere
relative permittivity is increased from 1 to 30, with an imagi-
nary part fixed to 1. We observe that the results obtained with

Nl = 100 and Nl = 200 are reasonably accurate (better estima-
tions could be obtained by accounting for local-field corrections
[35,36], but this option is only implemented in the code for
spherical particles). Thus, DDA can handle samples with high
permittivity, but it requires such a fine discretization that only
small samples are computationally tractable. To give an insight
on the convergence of IFDDA, the errors on Cext, the total force
and g are plotted as a function of Nl in Fig. 5(b) for a sphere of
radius a = 2λ and relative permittivity ε= 2. A discussion on
the accuracy of IFDDA with respect to the size of the object, the
relative permittivity, and the mesh size can be found in Ref. [8].

4. COMPARISON OF IFDDAM WITH
EXPERIMENTS

In this section, we compare the microscope images given by
IFDDAM to those obtained experimentally with the micro-
scope in reflection configuration described in Refs. [37,38]
and illustrated in Fig. 6. The samples are placed on a coverslip
of refractive index 1.5 that matches that of the oil objective of
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Fig. 8. Same as Fig. 7, but the sample is now a resin star in air
deposited on a coverslip and illuminated by a TE-polarized collimated
beam (the incident field is directed along y ) with θ = 68◦ that is totally
reflected at the glass–air interface and zo = 350 nm. (a) Electron
microscope image of the sample. The left (right) column corresponds
to experimental (numerical) data. (b), (e) field intensity at the image
plane; (c), (f ) modulus of the y component of the diffracted field at the
Fourier plane; (d), (g) phase of the y component of the diffracted field
at the Fourier plane.
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NA= 1.45. They are illuminated by a collimated beam of wave-
length 475 nm, assimilated to a plane wave that comes from the
glass substrate and makes an angle θ with respect to the optical
axis. The plane of incidence is (x , z). An off-axis holographic
system allows us to measure the complex field at the image plane.

The first sample on the coverslip is a sphere of index 1.608
and diameter 5 µm surrounded by water (index 1.33). The
microscope is tuned so that the object focal plane cuts the
middle of the sphere at 2500 nm above the glass substrate.
The magnification of the microscope, which should not be
overlooked when dealing with polarized waves [32], is 200.
Figure 7 displays the experimental and simulated intensities
when the incident beam illuminates the sample at an angle
θ = 30◦ with TE and TM polarizations. Experimentally, the
position of the focal plane was estimated to zo = 2500 nm, with
an accuracy of±300 nm. We observe a good agreement for TE
polarization with zo = 2500 nm and for TM polarization with
zo = 2800 nm. The remaining differences may be explained by
the uncertainty on the angle of incidence±2◦. The nonabsorb-
ing glass sphere being a resonant object (as its optical volume is
larger than one wavelength cube), a slight change in the illumi-
nation conditions may significantly affect the image pattern. To
see the sensitivity of the image to the different parameters, see
Appendix G.

The second sample on the coverslip consists of a resin star
made of 12 branches of width of 90 nm, length of 400 nm,
and height 160 nm of refractive index 1.5 in air. The inner
diameter of the star is 800 nm. A TE-polarized collimated beam
illuminates the sample at an angle of θ = 68◦ so that it is totally
reflected at the glass–air interface. The microscope is tuned
so that the object focal plane is placed in air at z0 = 350 nm
above the substrate, and its magnification is 290. Figure 8 shows

the experimental and numerical images obtained at the image
focal plane and at the Fourier plane. We observe a very good
agreement between the simulation and the experiment.

5. USING IFDDA AND IFDDAM IN PRACTICE

The source code can be downloaded at Code 1, Ref. [39].
The package comes with a detailed user guide, which explains

how to use the interface, the configuration parameters, and
the data files. Two versions of the codes are available. IFDDA
is optimized for objects in free space and IFDDAM for objects
embedded in a multilayer. The free-space version is much
quicker than the multilayer counterpart and should be preferred
when appropriate. Both versions have a user-friendly interface
with a drop-down menu that has been designed so that nonspe-
cialists can easily perform a simulation and obtain meaningful
images (microscope images, near-field images, scattering cross
sections, among others), within a few minutes; see Fig. 9. All the
data can be displayed directly on the interface [40]. For exam-
ple, images of all the field components for all the possible cuts,
i.e., x , y , or z within the FFT box are available. The data are also
saved in ASCII or HDF5 format. A MATLAB code (ifdda.m) is
provided to read the HDF5 or ASCII data.

IFDDA comes with many preimplemented examples (see
user guide). The objects can be spheres, cuboids, ellipsoids,
and even random media. The incident field can be plane
waves, Gaussian beams [15], or antenna beams. For experts,
it is possible to provide custom incident fields and objects
using home-made ASCII files. For example, one can study the
scattering from inhomogeneous anisotropic objects embed-
ded in a waveguide and illuminated by a (provided) guided
mode or study the diffraction by a (provided) hundreds of

Fig. 9. Code interface. The drop-down menu on the left allows one to choose the object, illumination, and the wanted simulation (microscopy,
optical forces, far-field scattering, etc.). The right side of the interface displays the data with color plots (near-field image, field at the image and Fourier
planes of the microscope, force field, etc.).

https://www.fresnel.fr/perso/chaumet/ifdda.html
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wavelength long, highly resonant, 3D subwavelength patterned
structure [41].

Note that many numerical parameters and code options are
set by default, but they can be modified in the advanced interface
option panel.

A parallelized version using openmp (version>= 4.5) and
the fastest Fourier transform in the west [42] is available for
Linux systems. Another version (without the parallel calculation
option) [43] is available for Windows.

6. CONCLUSION

Our ambition is that undergraduate students or researchers who
are not specialists in electromagnetism try IFDDA or IFDDAM
and its preimplemented examples (objects such as spheres or
cuboids, incident fields such as Gaussian beams or plane waves)
to get useful simulations (microscope images, optical forces)
with a minimal effort.

Yet, we believe that these codes can also appeal to researchers
in electromagnetism and microscopy, as they permit simulations
of the light–matter interaction in very complex configurations.

APPENDIX A: AUTHORS

P.C. developed most of the FORTRAN code and a part of the
C++ code. He should be contacted first for any problem con-
cerning the code. D.S. did the main part of the C++ code which
manages the graphical interface and the makefile. G.M. and
M.R. provided the experimental data. T.Z. optimized the com-
putation of the diffracted field and A.S. helped on the far-field
computation, the microscope simulator, and found many bugs.

APPENDIX B: SOME REMARKS CONCERNING
THE GREEN TENSORS

In the free-space version, IFDDA, the permittivity of the
medium surrounding the object is 1; see Fig. 1(a). Of course,
this choice does not limit the configurations to objects in vac-
uum. Indeed, the field of a monochromatic wave of wavelength
λ propagating through an object of relative permittivity contrast
χ(r) in a lossless homogeneous background of permittivity εref

is the same as that of a monochromatic wave with wavelength
λ/
√
εref propagating through an object of relative permittivity

↔

ε(r)/εref placed in vacuum. In this version, the Green tensor in
homogeneous space is analytical; see Ref. [16]: its calculation is
fast and easy.

In the multilayer version, IFDDAM, the key difficulty lies
in the estimation of the Green tensor of the stratified reference
medium. The calculation of the Green tensor in a stratified
medium from the Weyl integral is made delicate by the pos-
sible presence of poles on the real axis corresponding to guided
modes. To avoid them, the integration is performed in the
complex plane following the approach proposed by [17]. By
using an elliptical path starting at k = 0 with the major semi-axis
kmax = k0nmax + k0/2 with nmax =max(

√
Re(n)) and the

minor semi-axis kmin = 0.3nmax, the poles are avoided in all
cases. However, the presence of exponentially growing functions
in the T-matrix recursive algorithm yielding the Green tensor
in the stratified medium limits the thickness of the multilayer
to about 50λ (and even less if the layer is made of metal). This

issue could be avoided by replacing the T-matrix approach with
a S-matrix technique [44].

Although efficient, the calculation of the Green tensor
using this approach is time-consuming, especially if it has to
be repeated for all the pairs (r, r′) with (r, r′) ∈�2. Due to the
translational invariance of the geometry in the transverse (x , y )
plane, the Green tensor depending on (|r‖ − r′

‖
|, z, z′), we

interpolate G from a few rigorous calculations, G(qd/nd , z, z′)

with q = 1, · · · , integer(
√

n2
x + n2

y ) and nd a natural number.

Note that classical linear and polynomial interpolations cannot
evaluate the Green tensor properly when ‖ r‖ − r′

‖
‖<λ, as the

fast decay of the evanescent waves is not accounted for accu-
rately. We obtained better results using an interpolation with
rational functions that are quotients of polynomials [41].

APPENDIX C: MACROSCOPIC FIELD VERSUS
LOCAL FIELD

In the near-field integral equation given by Eq. (5), the
unknown field corresponds to the macroscopic field. Bearing
in mind the singularity of the Green tensor, these equations can
be rewritten with the local field as the unknown. More details
about the relationship between the macroscopic and local-field
approaches are given in Ref. [25]. If we neglect the principal
value in the self-term of the Green tensor, i.e., g(ri , ri )≈−

4π
3εref

,
the near-field equation becomes

E(ri )= Eref(ri )+

N∑
j=1,i 6= j

↔g(ri , r j )d 3↔χ(r j )E(r j )−
4π ↔χ(ri )

3εref
E(ri ).

(C1)
Then, by gathering all the terms E(ri ) to the left of the equa-

tion, the near-field equation can be written as

Eloc(ri )= Eref(ri )+

N∑
j=1,i 6= j

↔g(ri , r j )
↔

αCM(r j )Eloc(r j ), (C2)

where

Eloc(ri )=

(
↔

ε(r j )+ 2εref

3εref

)
E(ri ), (C3)

denotes the local field, i.e., the field at the subunit position in the
absence of the subunit itself and

↔

αCM(r j )=
3

4π
d3εref(

↔

ε(r j )− εref)(
↔

ε(r j )+ 2εref)
−1 (C4)

denotes the polarizability of each subunit related to the
Clausius–Mossotti (CM) relation [18,20]. It is sometimes
convenient to use this expression, as p= ↔αEloc represents the
dipolar moment associated with the subunits. Note that the
expression of the polarizability directly depends on the accuracy
with which the self-term g(ri , ri ) is estimated, with important
consequences for the field calculation, as shown hereafter.

APPENDIX D: POLARIZABILITY

The notion of polarizability of the subunit introduced in the
previous paragraph has a long history. The first to have been
used is known as the CM polarizability and stems from the
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simplest approximation of the self-term g(ri , ri )≈−
4π

3εref
[2];

see Eq. (26). Unfortunately, this simple approximation does
not ensure energy conservation. The latter is obtained with-
out neglecting the principal value in the self-term, g(ri , ri )=

−
4π

3εref
+ PV[

∫
�i

↔

G(ri , r)dr]. Assuming the cubic subunit to be

a sphere of the same volume, we get PV[
∫
�i

↔

G(ri , r)dr] =
2
3 nrefik3

0 , [21]. With this better approximation, the
polarizability reads [18,25]

αRR =
αCM

1− 2
3 ik3

0nrefαCM
. (D1)

Other expressions of the self-term and subsequently of the
polarizability have been proposed in order to improve the
precision of the DDA and take into account the nonpunctual
character of the dipole. Among the best known, one quotes that
of Goedecke and O’Brien [45]

αGB =
αCM

1− 2
3 ik3

0nrefαCM − k2
0αCM/a

, (D2)

that of Lakhtakia [25]

αLA =
αCM

1− 2 ε−εref
ε+2εref

[
(1− ik0nrefa)e ik0nrefa − 1

] , (D3)

with 4π
3 a3
= d3 and Draine and Goodman [20]

αLR =
αCM

1+ αCM

[
(b1+εb2/εref+εb3/εref S)k2

0
d −

2
3 inrefk3

0

] , (D4)

with b1 =−1.891531, b2 = 0.1618469, b3 =−1.7700004,
and S = 1/5. These different expressions have been included
in the code (in the advanced interface). Note that the cubic
mesh can easily be replaced by a cuboid mesh by changing the
expression of the polarizability [46].

APPENDIX E: OPTICAL FORCES

The free-space version, IFDDA, is able to compute the opti-
cal forces and torques acting on the object. The force on each
subunit is computed as [47]

Fu(ri )=
1

2

(
3∑
v=1

pv(ri )
∂E ∗v (ri )

∂u

)
, (E1)

where u and v stand for either x , y , or z and * denotes the com-
plex conjugate. The net force is given by F=

∑
i F(ri ). To

perform the computation of the field derivative efficiently, we
use FFTs, as detailed in Ref. [48]. The density of optical torque
is calculated as [49]

0(ri )= rg
i × F(ri )+

1

2
Re
[
p(ri )×

[
p(ri )/αCM(ri )

]∗]
,

(E2)
where rg

i is the vector between i and the center of mass of the
object and the net torque is obtained through 0 =

∑
i 0(ri ).

The calculation of the optical forces in presence of a substrate
[50] is possible, but this option has not yet been implemented in
IFDDAM.

APPENDIX F: APPROXIMATE METHODS

The solving of the set of linear equations [Eq. (5)] required to
estimate the field inside � is time-consuming and, in some
cases, some approximate solutions are sufficient [51]. IFDDA
and IFDDAM come with different approximate methods for
estimating the field inside the object.

When the object size is small compared to the wavelength and
the permittivity contrast between the object and the surround-
ing medium is also small, one can assume that the field inside
� is not perturbed by the object. In that case, known as Born
or single-scattering approximation, the field inside � is given
by the reference field, E≈ Eref. Another implementation of the
Born approximation (called renormalized Born approximation;
see Ref. [52]), which is usually more precise, consists in approxi-
mating the local field by the reference field, Eloc ≈ Eref so that
E≈ 3εref

ε+2εref
Eref. Double scattering can be introduced using the

next term in the Born series, E≈ EBorn,1 = Eref + ADχEref, at
the cost of one matrix vector product.

For weakly contrasted objects that are large compared to
the wavelength, other approximate solutions are available
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Fig. 10. Simulated intensities recorded at the image plane of a
microscope for different positions zo of the focal plane with respect
to the coverslip surface set at z= 0. The microscope is in reflection
configuration, NA= 1.45, and magnification factor, M = 200.
The sample is a sphere of radius 2500 nm and relative permittivity
of 2.5857 deposited on the coverslip and surrounded by water. The
sphere is illuminated from the coverslip by a TE- or TM-polarized col-
limated beam with θ = 30◦ with respect to the z axis. Left column, TE
polarization; right column, TM polarization; first line zo = 2200 nm;
second line zo = 2500 nm; third line zo = 2800 nm.
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in the free-space version, IFDDA. The field inside � can be
approximated using the Rytov model [53,54]. In this case, the
componentβ of the field inside the object is written as

E β(ri )≈ E β

ref(ri )e
EβBorn,1(ri )/Eβref(ri ), (F1)

where β = x , y , z. Note that Rytov does not account for any
field depolarization and needs one matrix vector product.

For even larger objects with mainly forward scattering, the
beam propagation method (BPM) can be an interesting solu-
tion. BPM estimates the electromagnetic field inside the object
by alternatively evaluating the diffraction and refraction inside
the object. It is important to note that BPM ignores reflections;
for more details, see Refs. [55,56]. The BPM field in the object is
calculated z-slice by z-slice following the recurrence relation

E(r‖, z+ d)= e ik0n(r‖,z+d)d

×F−1
2D

[
F2D[E(r‖, z)](k‖)e−i(k0−kz)d

]
,

(F2)

where F2D is the 2D Fourier transform in the (x , y ) plane. In
all cases, once the field inside the object is known, the diffracted
field is obtained using Eq. (8).
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Fig. 11. Same as Fig. 10, but the focal plane is set at zo = 2500 nm
and the incident angle is changed. Left column, TE polarization; right
column, TE polarization; first line, θ = 28◦; second line θ = 30◦; third
line θ = 32◦.

APPENDIX G: INFLUENCE OF THE FOCAL
PLANE POSITION ON THE IMAGE

The image provided by the microscope in Fig. 10 depends on
the position of the focal plane zo with respect to the coverslip
surface (placed at z= 0). Experimentally, zo is estimated to
be 2500± 300 nm. In Fig. 10, we simulated the images for
zo = 2200, 2500, and 2800 nm. (Note that the field inside the
sphere being unchanged, these simulations could be done very
quickly). The sensitivity of the image to zo , especially in TM
polarization, explains partly the difficulty to perfectly match the
simulation with the experiment.

In Fig. 11, we plot the intensity at the image plane for differ-
ent incident angles θ = 28◦, 30◦, and 32◦. The position of the
focal plane is set at zo = 2500 nm. We observe that the intensity
pattern in TM polarization is highly sensitive to a small variation
of the incident angle. This analysis points out the dependence
of the image on various parameters and the interest of a rigorous
microscope simulator for studying the image formation.

APPENDIX H: DISPLAYING 3D DATA WITH
IFDDA

IFDDA provides the field inside the FFT box (�FFT) enclosing
the target (and even beyond this box if one wants to study the
field on a larger domain). In Fig. 12, we display the modulus
of the macroscopic field inside �FFT for multiple (x , y ) cuts
at different z. The sample and illumination are the same as in

z=604 nm z=1146 nm z=1688 nm

z=2229 nm z=2771 nm z=3313 nm

z=3854 nm z=4396 nm z=4938 nm

Fig. 12. Modulus of the electromagnetic field on multiple (x , y )
cuts at different z of the FFT box �FFT surrounding the sample. The
configuration is the same as that of Fig. 10. The sphere is illuminated
by a TM-polarized beam of incidence θ = 30◦. z= 0 corresponds to
the coverslip surface. The size of the images is 5× 5 µm2, and each
image has its own color scale.
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Fig. 10. These images were made using MATLAB from the
HDF5 files provided by IFDDA, but similar plots are readily
available on the IFDDA interface.

Disclosures. The authors declare no conflicts of interest.

Data Availability. Data underlying the results presented in this paper
have all been realized by the IFDDA and IFDDAM codes, which can be
downloaded at Code 1, Ref. [39].
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