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We consider an experimental microwave imaging system in which the targets are illuminated under
various angles of incidence and the scattered field is measured on a sphere surrounding them. We
estimate the map of relative permittivity of the objects from the scattered field with an iterative
inversion procedure based on a conjugate gradient technique. We derive several formulations of the
inversion algorithm and analyze their efficiency on three different targets. We observe that including
a priori information on the lower and upper bounds of the permittivity of the sample leads to a
spectacular improvement of the resolution of the image. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3183939�

I. INTRODUCTION

Wave diffraction tomography is a digital imaging tech-
nique in which an unknown object is illuminated by a mono-
chromatic coherent wave under various incident angles and
the scattered field is measured in phase and amplitude along
various directions of observation. The intrinsic properties
�shape, nature� of the object are reconstructed numerically
thanks to inversion algorithms accounting for the wave-
object interaction. In the last ten years, this approach has
stirred a wealth of research in the acoustical, mechanical, and
electromagnetic domains and has been studied in the frame-
work of many applications, from nondestructive testing, to
detection of buried objects or medical imaging.1–4 It is also
more and more considered in the optical domain as an alter-
native to classical optical microscopy.5–7 Performances of
wave diffraction tomography depend on the experimental
configuration, namely, the number of incidences and obser-
vations points, the covered angular range, and the noise
level. They also depend on the inversion algorithms that are
used for the reconstruction.

Many inversion methods rely on simplified models of
the wave-object interaction leading to a linear link between
the scattered field and the parameters of interest of the ob-
ject. Fast techniques such as singular value decomposition,8

filtered backprojection algorithms,9 or inverse Fourier
transform6,7 can then be used to solve the linear inverse prob-
lem. These methods are restricted to the imaging of certain
kinds of samples, such as biological objects in the optical
domain. They appear generally inappropriate when the
sample supports multiple scattering.10 Indeed, in this case,
the diffracted field is linked to the object intrinsic properties
in a complex nonlinear way.

Several teams developed techniques in electromagne-
tism, for solving these nonlinear and ill-posed problems.11–14

The most popular approach is to reconstruct the parameter of
interest, namely, the permittivity distribution within a
bounded region, iteratively. Starting from an initial guess,

which could be either a constant permittivity or deduced
from the back-propagation technique,15 the unknown object
is retrieved gradually by minimizing a cost function describ-
ing the discrepancy between measurements �data� and scat-
tered fields computed via a forward solver for the best avail-
able estimation of the target under test. These nonlinear
inversion algorithms have mostly been applied to wave dif-
fraction tomography in the microwave domain.

More recently, similar approaches have been developed
specifically for imaging samples in the optical domain with
the objective to ameliorate the power of resolution of far-
field optical microscopes.6,16–18 Improvement of the reso-
lution was obtained by optimizing the imager configuration,
for example, by illuminating the targets through a prism7,15,19

or through an optimized periodically nanostructured
substrate,20,21 and also by using nonlinear inversion algo-
rithms instead of linear ones when the sample presents high
or moderate permittivity contrast.15,21 It was shown that ac-
counting for multiple scattering �when it is present� in the
inversion procedure can even lead to a better resolution than
that expected with the single scattering analysis.10,22,23 These
different studies, which were mostly conducted with syn-
thetic data, stressed the importance of developing sophisti-
cated inversion procedures, especially when one seeks to
ameliorate the power of resolution of a given experimental
configuration. In this work, we present different inversion
methods in electromagnetism and we compare their perfor-
mances with experimental data obtained in the microwave
domain with three-dimensional canonical targets.24,25 More
precisely, we investigate the performances of reconstruction
procedures accounting for single or multiple scattering and
we investigate the interest of introducing a priori informa-
tion on the permittivity of the sample.

II. THEORY

A. Forward scattering problem

The core of an inversion scheme lies in the wave-object
interaction model that has been chosen. In this work, wea�Electronic mail: patrick.chaumet@fresnel.fr.
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consider a rigorous modeling of the electromagnetic wave
scattering based on Maxwell equations. The resolution of
these equations is performed with the coupled dipole method
�CDM�, which was introduced by Purcell and Pennypacker26

in 1973 for studying the scattering of light by nonspherical
dielectric grains in homogeneous space. This technique is
equivalent to a volume method of moment.27 The object un-
der study is represented by a three-dimensional cubic array
of N polarizable subunits. The electric field at each subunit
position is derived from the self-consistent equation:

E�ri� = Einc�ri� + �
j=1,j�i

N

T�ri,r j���r j�E�r j� , �1�

where Einc�ri� denotes the incident field at the position ri,
i.e., the total electric field that would be observed in the
absence of the scattering object. T describes the linear re-
sponse of a dipole in homogeneous space28 and ��r j� is the
polarizability of the subunit j. According to the Clausius–
Mossotti expression, the polarizability distribution � may be
written as

��r j� =
3d3

4�

��r j� − �0

��r j� + 2�0
, �2�

where d is the spacing of lattice discretization and ��r j� is the
relative permittivity of the object. The relative permittivity of
the homogeneous background medium is denoted by �0. This
expression of the polarizability corresponds to the weak form
of the CDM �Ref. 29� and is accurate enough for the present
study. However, in a different topic, such as optical forces
analysis30 or the extinction cross-section modeling,31 one
needs to take into account the radiative reaction term. The
material under test is assumed to be isotropic. Hence, the
relative permittivity ��r j� and subsequently the polarizability
are both scalars. Once the linear system represented by Eq.
�1� is solved, the scattered field Ed�r� at an arbitrary position
r exterior to the object is given by

Ed�r� = �
j=1

N

T�r,r j���r j�E�r j� . �3�

The scattered field is collected at M observation points for L
successive illuminations. Let El

d be the scattered field corre-
sponding to the lth illumination with l=1, . . . ,L. For sake of
simplicity Eqs. �1� and �3� are rewritten in a more condensed
form:

El = El
inc + Apl, �4�

El
d = Bpl, �5�

where A is a square matrix of size �3N�3N� that contains
all the field susceptibilities T�ri ,r j�. The �3M �3N� matrix
B contains the field susceptibilities T�rk ,r j�, where r j de-
notes a point in the discretized object, j=1, . . . ,N, while rk is
an observation point, k=1, . . . ,M. The vector pl=�El repre-
sents the induced dipoles inside the scattering object for the
illumination l. Note that matrices A and B do not depend on
the incident field nor on the object under test.

When the object is weakly scattering �i.e., small enough
compared to the wavelength�, a common approximation con-
sists in assuming that the field inside the object is close to the
incident field: El=El

inc. This approximation, known as the
Born approximation, amounts to considering only single
scattering events. It yields a linear relationship between the
scattered field and the polarizability and permits to avoid
solving the time-consuming Eq. �4�.

B. Inverse scattering problem

The inverse problem consists in retrieving a parameter of
interest linked to the object �map of permittivity, polarizabil-
ity� from the scattered field. There exists an abundant litera-
ture on techniques that solve iteratively the inverse problem,
see for instance13,32 and the references cited therein. It is
assumed that the target under test is confined in bounded box
� outside of which the parameter of interest is equal to zero.
Then, starting from an initial guess, based on the back-
propagation technique,33 the parameter of interest is adjusted
gradually by minimizing a cost functional of the form10,33

F��� =
�l=1

L �fl
d − El

d�2

�l=1
L �fl

d�2 , �6�

where fl
d is the “experimental” data and El

d is the simulated
field radiated with the best available estimated parameter of
interest. he minimization of the cost functional is performed
numerically thanks to a conjugate gradient algorithm.

In the first inversion procedure considered in this paper,
the polarizability is taken as the parameter of interest. We
thus build a sequence ��n� according to the following recur-
sive relation:

�n = �n−1 + andn, �7�

where the updated polarizability �n is deduced from the pre-
vious one �n−1 by adding a correction. This correction is
composed of two terms: a scalar weight an and a search
direction dn. Once the updating direction dn is found �this
will be specified later in the paper�, the scalar weight an is
determined by minimizing the cost functional Fn��n�. At
each iteration, the field El,n inside the test domain � is as-
sumed to be independent of the parameter of interest. Under
the Born approximation, it is taken equal to the incident
field. In the general nonlinear case, it is the solution of Eq.
�6� with �n−1. The simple dependence of Fn with respect to
�n permits to obtain an analytical expression for an,

an =
�l=1

L 	BdnEl,n
fl
d − B�n−1El,n��

�l=1
L �BdnEl,n��

2 , �8�

where 	 · 
 · �� denotes the inner product in L2. The updating
direction dn is given by the conjugate gradient direction

dn = gn;� + �ndn−1, �9�

where gn;� is the gradient of the cost functional F with re-
spect to the polarizability, assuming that the internal fields El

do not change. We find
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gn,� = − W��l=1

L
El,n

� · B†�fl
d − B�n−1El� , �10�

in which u� represents the complex conjugate of u and B†

denotes the transpose complex conjugate matrix of the ma-
trix B.

The scalar coefficient �n is defined as

�n =
	gn;� − gn−1;�
gn;���

�gn−1;���
2 . �11�

The initial guess of the iterative algorithm �0 is estimated
with a back-propagation procedure.15 Hereafter, we call API
the inversion algorithm based on the optimization of the po-
larizability.

In the second inversion procedure, the parameter of in-
terest is taken equal to the permittivity �. We thus build a
sequence for ��n� following the recursive relation

�n = �n−1 + andn. �12�

Finding an so that �n minimizes the cost functional F re-
quires to zero the gradient of F with respect to the permit-
tivity. The latter can be expressed as

gn,� = gn,�
d�

d�
. �13�

Contrary to the API procedure, there is no analytical expres-
sion for the zeros of gn,�, thus, an must be found numerically.
The drawback of this additional numerical step that we call
EPI procedure is that it slows down the inversion procedure.
The advantage is that it is very versatile and can be used for
complicated parameters of interest. In particular, if we know
that the relative permittivity of the objects under study is real
and comprised between 1 and �r we can define a new param-
eter of interest � as �=1+ ��r−1��1−e−�2

�. Then the gradient
of F with respect to � is given by

gn,� = gn,�
d�

d�
. �14�

Following the EPI procedure, we use a numerical optimiza-
tion scheme to zero gn,� and find an. Hereafter, we call XPI
the inversion technique based on the optimization of the pa-
rameter �, respectively.

III. RESULTS

The experimental data were obtained in the anechoic
chamber of the Institut Fresnel, using a HP8510 network
analyzer, external mixers, an emitting parabolic antenna
Hyptra NE5256, and a receiving ridged horn ARA DRG 118.
Due to the parabola bandwidth, the operating frequency is
varied only in the range of 3 up to 8 GHz. The incident field
polarization is changed by rotating mechanically the emitting
parabola, while the total field is measured for only one di-
rection of the receiving antenna. By virtue of the reciprocity
theorem, this configuration is equivalent to the complete
measurement of the vectorial total field for one incident po-
larization. The scattered field is obtained by subtracting the
measured incident field �without the targets� to the measured
total field. 24 h are necessary to collect the data for one

target. The drift errors caused by this long delay are cor-
rected following the procedure described in Ref. 34. More
details on the experimental configuration can be found in
Refs. 24, 35, and 36.

Data calibration is an important issue when dealing with
quantitative digital imaging. This is achieved thanks to a
reference target and by comparing the measured scattered
field to the theoretical one. The measurements were per-
formed in the �x ,y� plane in the copolarization configuration.
The reference target was a metallic sphere of 70 mm diam-
eter. The simulated field was performed thanks to the Mie
theory. A plane wave illumination was assumed in the simu-
lations, which is consistent with the use of a parabolic an-
tenna as source. Details of this calibration procedure is de-
scribed in Ref. 35.

Figure 1�a� shows the incident and scattered angular
ranges: the incident wave is assumed to be a plane wave
propagating in the �x ,y� plane with 	i varying from 0° to
350° with a step of 10°. The polarization of the incident field
is along the z direction. The receiver position is defined by
	r, which varies from 20° to 340° with a step of 40° and 
r,
which varies from 30° to 150° with a step of 15°. The scat-
tered field is recorded for three different frequencies, f =3, 5,
and 7 GHz, which correspond to wavelengths of 100, 60, and
43 mm, respectively. The targets are placed in a homoge-
neous background medium with relative permittivity �0=1.

We apply the different reconstruction procedures �Born
approximation based on API approach, nonlinear API, EPI,
and XPI� to three sets of experimental data. The targets under
study are made of two cubes of relative permittivity �=2.4
and side a=25 mm, the centers of which are separated by 50
mm along the z axis, Fig. 1�b�, or along the y axis, Fig. 1�c�,
or placed along the second bisector of the �x ,y� plane so that

Target
ϕ

Incident

ϕ

i

r

θrScattered z

y

(a) (b)

z

x

y

x

z

y

x

x

z

y

(c) (d)

FIG. 1. �a� Sketch of the experimental setup. The illumination is done on the
�x ,y� plane with 	i from 0° to 350° step 10°. The polarization of the inci-
dent field is along the z direction. The receiver position 	r from 20° to 340°
step 40° and 
r from 30° to 150° step 15°. �b�–�d� are the three different
targets under study: two dielectric cubes of relative permittivity �=2.4 and
of side size a=2.5 cm located at �b� �a /2,a /2,a /2� and �a /2,a /2,5a /2�,
�c� �a /2,−a /2,3a /2� and �a /2,3a /2,3a /2�, and �d� �−a /2,a /2,a /2� and
�a /2,−a /2,a /2�.
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their edges are in contact, Fig. 1�d�. Note that the targets
presented in Figs. 1�b� and 1�c� are similar except for a ro-
tation of � /2 about the x axis. These two configurations
allow one to investigate the different resolutions along the z
or y axis induced by the restriction of the rotation of the
incident beam to the �x ,y� plane.

For the inversion procedure, we assume that the targets
are confined in a bounded box � of size 125�125
�125 mm3. At the operating frequency of 7 GHz, the vol-
ume of this bounded box is about 24 �3. The spacing lattice
of � is taken equal to d=5 mm whatever the frequency of
the data set. We checked that this spacing lattice ensured an
accurate calculation of the forward model. The inversion
procedure was stopped at the 200th iteration for all the re-
constructions. In the following, we present only the real part
of the estimated map of permittivity as we observed that the
imaginary part is always negligible. In all the plots, the per-
mittivity map is shown in a plane containing the actual two

centers of the cubes and the permittivity profile is drawn
along a line joining the actual centers of the cubes.

A. Analysis of the resolution with the single scattering
model

Under the Born approximation, it can be shown easily
that the field detected in the k direction that is scattered by
an object illuminated by a plane wave along the ki direction
is proportional to the Fourier transform of the object polar-
izability taken at the spatial frequency k−ki.

28 The acces-
sible spatial frequencies provided by the experimental con-
figuration allow one to estimate the expected resolution of
the imager. With the chosen incident and detection angular
ranges of our experimental setup �see Fig. 1�, the boundaries
of the accessible spatial frequencies are �−2k0 ,2k0� in the
�x ,y� plane and �−0.9k0 ,0.9k0� along the z axis. Conse-
quently, the expected resolution is about � /4 in the �x ,y�
plane and only � /1.8 along the z axis. At 3, 5, and 7 GHz,

FIG. 2. �Color online� The first row presents the results of our inversion scheme under the Born approximation. The second row uses the nonlinear procedure
with the polarizability as the parameter of interest. The third row uses the nonlinear procedure with the relative permittivity as the parameter of interest. The
fourth row uses a nonlinear procedure with a priori information. The first, second, third column is the map of relative permittivity in the �y ,z� plane at x
=a /2 at f =3, 5, and 7 GHz, respectively. The blue squares depict the actual boundaries of the targets. The fourth column compares the reconstructed real part
of the relative permittivity and the actual one along a line crossing the center of the two cubes for 3 �–�, 5 �−·�, and 7 GHz �¯ �. The solid line is the actual
profile. The fifth column displays the evolution of the minimized cost function in log scale, 3 �–�, 5 �−·�, and 7 GHz �¯ �.
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the resolution is about 25, 15, and 11 mm in the �x ,y� plane
and 56, 33, and 24 mm along the z axis, respectively.

B. Two cubes along the z direction

In this paragraph, we investigate the resolution of our
imager along the z axis, Fig. 1�b�. We first analyze the re-
constructed maps of permittivity obtained under the Born
approximation, Figs. 2�a�–2�d�, for the three different fre-
quencies. The evolution of the cost function versus the itera-
tion is presented in log scale in Fig. 2�e�. We observe that at
the smallest frequency, f =3 GHz, i.e., �=100 mm, it is not
possible to distinguish the two cubes from the images �see
the continuous line in Fig. 2�d��. This lack of resolution is
not due to a model error since, at this frequency, the target is
small compared to the wavelength and the Born approxima-
tion is relatively accurate. It simply stems from the limited
resolution of the imager along the z axis �56 mm at 3 GHz�
as estimated previously with the single scattering analysis.
The distance between the centers of the cubes is 50 mm
along the z axis; it is not surprising that the reconstruction
fails to distinguish the two cubes. At higher frequencies �5
and 7 GHz�, the single scattering analysis indicates that one

could possibly distinguish the two cubes. However, in these
cases, the single scattering model becomes inaccurate and
the estimated value of the relative permittivity is far from the
actual one.

Figures 2�f�–2�o� show the map of permittivity obtained
with a nonlinear inversion scheme using either the polariz-
ability �API� or the relative permittivity �EPI� as the param-
eter of interest. We observe that the two procedures yield
similar results. This is certainly due to the fact that, with the
dielectric targets under study, there is a relatively small dif-
ference between the values of the polarizability and that of
the relative permittivity.

At 3 GHz the images obtained with the nonlinear proce-
dure are only slightly better than that obtained under the
Born approximation. This result was expected since the
single scattering model is a good approximation in this case.
At higher frequencies �5 and 7 GHz�, the nonlinear inversion
procedure yields a more accurate estimation of the permittiv-
ity value than that obtained with the Born approximation. On
the other hand, the images appear more noisy �for example,
the size of the lower cube appears larger than that of the
upper one�. This result points out the importance of an accu-

FIG. 3. �Color online� Same caption as in Fig. 2 but solely the copolarized data sets are considered in the inversion procedures.
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rate forward model when quantitative imaging is required
and it also stresses the increased sensitivity to noise of non-
linear procedures.

In Figs. 2�p�–2�t� we plot the map of permittivity ob-
tained by introducing a strong a priori information in the
reconstruction procedure: the permittivity is forced to be real
and varying within the range �1, 2.4�. We observe that, at the
lowest frequency of 3 GHz, it is now possible to distinguish
easily the two cubes. This spectacular result demonstrates
that the resolution given by the single scattering analysis is
not a fundamental limit, �even when the forward single scat-
tering model is valid�. The images can be ameliorated in a
significant way by introducing a priori information. At
higher frequencies �5 and 7 GHz�, the shape and value of
permittivity are improved but the increased sensitivity to
noise results in the appearance of spurious peaks of permit-
tivity.

In the previous reconstructions, the experimental data
consisted in the measurements of the copolarized and cross-
polarized scattered fields. Now, since the targets are rela-
tively small compared to the wavelength, the cross-polarized
field component is much weaker than its copolarized coun-

terpart and consequently much noisier. More precisely, we
found that the magnitude of the cross-polarized term is at
least ten times smaller than that of the copolarized term and
that the residue between the experimental data and the field
computed for the actual shape of the targets,

r =
�l=1

L �fl
d − El

d�2

�l=1
L �El

d�2 , �15�

is always below 0.1 for the copolarized term, while it reaches
4000, 57, and 17 for the cross-polarized component at 3, 5,
and 7 GHz, and is about 1 for the total field at all frequen-
cies. Hence, the noise on the data stems essentially from the
cross-polarized term. Thus, to diminish the influence of the
noise on reconstruction, we decided to discard the data set
corresponding to the cross-polarized field. In Fig. 3 we plot
the reconstructed map of permittivity that is obtained when
sole the copolarized field is accounted for in the inversion.

The reconstruction obtained under the Born approxima-
tion with the copolarized field only, Figs. 3�a�–3�e� is similar
to that obtained under the Born approximation with the com-
plete set of data, Figs. 2�a�–2�e�. This result confirms the

FIG. 4. �Color online� Same caption as in Fig. 3 but the reconstruction of the map of relative permittivity is done in the �y ,z� plane at x=a /2 and the profile
is done for z=3a /2 and x=a /2.
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well-known robustness of any linear inversion to noise. On
the contrary, the reconstruction obtained with the nonlinear
inversion procedures with and without a priori information,
Figs. 3�f�–3�t�, are much better when the cross-polarized data
set is discarded, especially at high frequencies where the
previously observed spurious peaks vanish and the same size
is obtained for the lower and upper cubes. Hereafter, we will
consider only the copolarized data set in the inversion pro-
cedures.

C. Two cubes along the y direction

We now investigate the resolution of our imager along
the y axis, Fig. 1�c�, with the four inversion schemes. Con-
trary to the first configuration, the two cubes can be distin-
guished on the image obtained under the Born approximation
at 3 GHz �Figs. 4�a� and 4�d��. This result is in agreement
with the single scattering analysis that predicts a much better
resolution in the �x ,y� plane �� /4� than along the z axis
�� /1.8�. In general, all the estimated maps of permittivity
plotted in Fig. 4 are more accurate than their counterparts
shown in Fig. 3, but the tendency and explanations are simi-
lar. In particular, we still observe that introducing a priori

information on the permittivity of the target permits to im-
prove spectacularly the reconstruction at all frequencies, and
that, at 5 and 7 GHz, it is necessary to use nonlinear inver-
sion procedures to ameliorate the image, Figs. 4�g�, 4�h�,
4�l�, and 4�m�.

D. Two cubes in contact by one edge

In this last paragraph, we consider two cubes placed in
the �x ,y� plane that are in contact through one edge as de-
picted in Fig. 1�d�. All the tendencies and explanations pro-
vided previously can be repeated here. The important point is
to note that the center interdistance of the cubes is now 17
mm, i.e., much smaller than the resolution limit provided by
the single scattering analysis at 3 GHz �25 mm� and close to
that given at 5 GHz �15 mm�. Once again, we observe in Fig.
5 that nonlinear inversion algorithms are to be used at 5 and
7 GHz if quantitative information on the relative permittivity
is required and that introducing a priori information in the
inversion procedure permits to overcome the single scatter-
ing resolution limit. At the highest frequency, the reconstruc-
tion is almost perfect �Fig. 5�r��.

FIG. 5. �Color online� Same caption as in Fig. 3 but the reconstruction of the map of relative permittivity is done in the �x ,y� plane at z=a /2 and the profile
is always done along a line crossing the center of the two cubes hence for z=a /2 and y=−x.
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IV. CONCLUSION

In this work, we investigated the efficiency of different
inversion procedures on experimental microwave data. We
proposed a linear inversion algorithm based on the Born ap-
proximation, a standard nonlinear inversion scheme based on
the optimization of the permittivity or the polarizability, and
a nonlinear inversion scheme accounting for a priori infor-
mation on the bounds of the permittivity. We analyzed the
transverse and axial resolutions of our imager and compared
them to those given by a single scattering analysis. We ob-
served that the images provided by the linear inversion algo-
rithm are close to that given by the nonlinear ones at low
frequency, when the Born approximation is valid. On the
other hand, the nonlinear schemes permit to improve quanti-
tatively and qualitatively the images at higher frequency
when multiple scattering becomes important. Yet, they also
appear more sensitive to noise. We pointed out that, even
though less information are accounted for, discarding the
noisy data sets permits to ameliorate the image quality. Last,
we have shown that introducing a priori information such as
bounds on the relative permittivity value in the inversion
scheme improves the images in a spectacular way, even at
low frequency when the Born approximation is valid. In par-
ticular, the resolution of the image can be much better than
that given by the single scattering analysis.
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