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Talk Abstract
We are concerned with a two-dimensional problem

which models the scattering of a time-harmonic acoustic
wave by an arbitrary number of sound-soft circular ob-
stacles. Assuming that their radii are small compared to
the wavelength, we propose a mathematical justification
of different levels of asymptotic models available in the
physical literature.

1 Introduction
We consider the scattering of an acoustic time-

harmonic wave by an arbitrary number of small circu-
lar sound-soft obstacles located in a two-dimensional ho-
mogeneous medium. Since its discovery, the Foldy-Lax
model [3] has been used in numerous physical and numer-
ical applications to approximate the scattered wave. But
to our knowledge, there is no mathematical justification
of this approximation. Our purpose is to propose such a
justification and to provide error estimates.

For the sake of simplicity, we are concerned with a non-
dimensional model which amounts to a constant celerity
c = 1 in the propagative medium. Let w be a given
incident field of circular frequency ω. We denote by
Oε1, ..., O

ε
P a family of P disjoint obstacles located in the

medium, and we call respectively s1, ..., sP their centers
and rε1, ..., r

ε
P their radii. We suppose that each obstacle

has a small radius compared to the wavelength 2π/ω and
that they are all of the same order of magnitude, i.e.,

∀p ∈ {1, ..., P}, ωrεp = O(ε),

where ε is a small positive parameter. The scattered field
uε is the solution to the problem:

(P )



∆uε + ω2uε = 0 in R2 \
(⋃P

p=1O
ε
p

)
,

uε = −w on ∂
(⋃P

p=1O
ε
p

)
,

uε satisfies the Sommerfeld radiation condition.

In order to approximate the above system of equations,
we consider a family of asymptotic models. They are
based on the fact that in the case of one scatterer (P = 1),
the solution uε of (P ) can be approximated (see [5]) by

σε1w(s1)G(x− s1),

where G(x) = H
(1)
0 (ω |x|) /4i is the outgoing Green

function of the Helmholtz equation (H(1)
0 is the Hankel

function of the first kind of order 0) and σε1 is the re-
flection coefficient on the scatterer, which is given by
σε1 = −4i/H

(1)
0 (ωrε1) for a circular obstacle.

If P > 1, we can consider different levels of approx-
imation uε,0, uε,1, . . . , uε,∞ of uε which consist in super-
positions of the form

uε,k(x) :=
P∑
p=1

σεpw
ε,k
p (sp)G(x− sp), (1)

where wε,kp (sp) represents different approximations of an
“exciting field” on the p-th scatterer. In the simplest
model (k = 0), we choose wε,0p (sp) = w(sp), which
amounts to neglecting the interactions between the ob-
stacles. The case k = ∞ corresponds to the Foldy-Lax
model [3], which takes into account these interactions.
In this case, the exciting field is the superposition of the
incident field and the waves scattered by all the other ob-
stacles, i.e., for p = 1, . . . , P ,

wε,∞p (sp) = w(sp) +
∑
q 6=p

σεqw
ε,∞
q (sq)G(sp − sq). (2)

If we denote by W ε,∞ and W the vectors of CP with
components wε,∞p (sp) and w(sp) respectively, this cou-
pling between the exciting fields can be written equiva-
lently as the following linear system:

(I + Mε)W ε,∞ = W, (3)

where Mε is the P × P matrix defined by

Mε
pq = −σεqG(sp − sq) if q 6= p, and Mε

pp = 0.

Between the cases k = 0 and k =∞, one can consider
intermediate models which take into account the succes-
sive reflections between the scatterers. Instead of (2), the
exciting field is defined for p = 1, . . . , P recursively by

wε,k+1
p = w(sp) +

∑
q 6=p

σεqw
ε,k
q (sq)G(sp − sq).

It is readily seen that this relation amounts to approxi-
mating the inverse of operator I + Mε involved in (3) by



a truncated Neumann series, so that we can summarize
these different models by the formula

W ε,k =
k∑
`=0

(−Mε)`W for k = 0, 1, . . . ,∞. (4)

2 Mathematical justification
The link between the above asymptotic models and our

initial problem (P ) is easily made using standard tools
for multiple scattering [5]. The first step is to give a rep-
resentation uε which makes clear the notion of “exciting
field” in problem (P ).

Proposition 1. Let uε be the solution to problem (P ).
Then, the family of P coupled single scattering problems

(Pp)


∆uεp + ω2uεp = 0 in R2 \ Oεp

uεp = −w −
∑P

q=1,q 6=p u
ε
q on ∂Oεp

uεp satisfies the Sommerfeld radiation condition

(for p ∈ {1, ..., P}) admits a unique solution
(uε1, u

ε
2, ..., u

ε
P ) and moreover the following decomposi-

tion holds:

uε =
P∑
p=1

uεp . (5)

See [2] for the proof. Each wave uεp is the wave scat-
tered only by the p-th obstacle illuminated by the exciting
field.

We equip R2 with the Cartesian coordinate system:
(O, e1, e2) and define for each obstacle p ∈ {1, ..., P} the
local polar coordinates by : (ρp, θp) where ρp = |x− sp|
and θp is the angle (e1, x − sp). Let us introduce for
m ∈ Z the local outgoing cylindrical wavefunctions as-
sociated with the p-th scatterer:

ψp,m(x) = H(1)
m (ωρp)e

imθp for ρp > 0.

As uεp is an outgoing solution of the homogeneous
Helmholtz equation outsideOεp, it admits a modal decom-
position on the ψp,m:

uεp(x) =
∑
m∈Z

cεp,m

H
(1)
m (ωrεp)

ψp,m(x), (6)

where cεp,m is the m-th Fourier coefficient of uεp(r
ε
p, ·) on

the circle ∂Oεp:

cεp,m =
1

2π

∫ 2π

0
uεp
(
rεp, θp

)
e−imθpdθp.

Similarly, w is a solution of the homogeneous Helmholtz
equation on a ball containing the p-th obstacle, therefore it
has a modal decomposition on the local Bessel functions:

w(x) =
∑
m∈Z

dp,mJm(ωρp)e
imθp .

From the addition formula:

ψq,m(x) =
∑
n∈Z

ψq,m−n(sp)Jn(ωρp)e
inθp , (7)

which is valid for p, q ∈ {1, ..., P} with p 6= q and for
ρp < |sp − sq| , and from the Dirichlet conditions of
problems (Pp), one can easily verify that the family of
problems (Pp) is equivalent to the following linear sys-
tem:

(I + Kε)cε = f ε, (8)

where cε = (cε1, . . . , c
ε
P )> and each cεp denotes the se-

quence of the Fourier coefficients (cεp,m)m∈Z of the p-th
obstacle. Kε is defined by:

Kε =


0 Kε

12 . . . Kε
1P

Kε
21 0 . . . Kε

2P
... . . .

. . .
...

Kε
P1 Kε

P2 . . . 0


where for p, q ∈ {1, ..., P}, p 6= q, Kε

pq is an operator
which represents the interactions of the q-th obstacle on
the p-th obstacle:

Kε
pq : cq 7−→

(
Jm(ωrεp)

∑
n∈Z

ψq,n−m(sp)

H
(1)
n (ωrεq)

cq,n

)
m∈Z

,

and for m ∈ Z,

f εp,m = −Jm(ωrεp)dp,m.

Asymptotically, we have for p, q ∈ {1, ..., P}, p 6= q:

• ∀(m,n) ∈ Z2 − {(0, 0)},

Jm(ωrεp)
ψq,n−m(sp)

H
(1)
n (ωrεq)

= O(ε) and f εp,m = O(ε)

• (m,n) = (0, 0),

J0(ωr
ε
p)

ψq,0(sp)

H
(1)
0 (ωrεq)

=
ψq,0(sp)

H
(1)
0 (ωrεq)

+O(ε2/ log(ε))

and f εp,0 = −w(sp) +O(ε2).

So the dominant coefficient of Kε
pq is reached for

(m,n) = (0, 0) and is O(1/ log(ε)). Formally, an ap-
proximation of order ε of (8) is given by the following
system:

(I + K̃ε)cε,∞ = f0. (9)



Here K̃ε has the same block structure as Kε. For p, q ∈
{1, ..., P}, K̃ε

pp = 0 and for p 6= q, K̃ε
pq is a finite rank

operator defined by:

K̃ε
pq : cq 7−→

(
δm,0

ψq,0(sp)

H
(1)
0 (ωrεq)

cq,0

)
m∈Z

and for m ∈ Z,

f0p,m = −δm,0w(sp).

It follows from (9) that all the Fourier coefficients with
m 6= 0 are equal to zero. Hence, the system of equations
which involves the other coefficients (m = 0) is equiva-
lent to (3) with

W ε,∞
p = −cε,∞p,0 , for p = 1, . . . , P. (10)

Considering the truncated Neumann series associated
with the inverse of the operator I + K̃ε involved in (9),
we can define

cε,k =
k∑
l=0

(−K̃ε)lf0.

Similarly, for m 6= 0 cε,kp,m = 0 and the W ε,k
p defined in

(4) are given by the formula:

W ε,k
p = −cε,kp,0, for p = 1, . . . , P. (11)

In order to obtain error estimates, consider the Hilbert
space `2(C)P with its scalar product:

〈
c|c′
〉

=
P∑
p=1

∑
m∈Z

cp,mc
′
p,m.

Theorem 1. There exists a constant C > 0 such that for
ε small enough,

‖Kε‖L(`2(C)P ) ≤
C

|log(ε)|
(12)∥∥∥Kε − K̃ε

∥∥∥
L(`2(C)P )

≤ C ε (13)∥∥f ε − f0∥∥
`2(C)P ≤ C ε.

As a direct consequence of theorem 1, for ε small
enough, (9) is well-posed and the Neumann series of
(I + K̃ε)−1 is well-defined. Using the theorem 10.1 of
[4], we can now estimate the error between cε and cε,∞.

Corollary 1. There exits a constant C > 0 such that for
ε small enough,

‖cε − cε,∞‖`2(C)P ≤ C ε (14)∥∥∥cε − cε,k∥∥∥
`2(C)P

≤ C

|log(ε)|k+1
. (15)

The inequality (15) is a direct consequence of (14) with
an estimation of the remainder of the Neumann’s series
associated with (I + K̃ε)−1. Following (5) and (6), we
consider for k = 0, · · · ,∞ the approximations

uε,k(x) =
P∑
p=1

cε,kp,0
H1

0 (ωrεp)
H1

0 (ω |x− sp|)

of the solution to problem (P ). From the equalities (10)
and (11), the definitions of the coefficients of reflection
σεp and of the Green function, it is easy to see that these
uε,k coincide with the functions uε,k defined in (1). It is
easy to deduce from corollary 1 the following error esti-
mates in a local L2 norm.

Corollary 2. Let K be a compact subset of R2 \⋃P
p=1{sp} and k ∈ N ∪ {∞}, there is a constant CK

independent of ε such that for ε small enough,

if k ∈ N,
∥∥∥uε − uε,k∥∥∥

L2(K)
≤ CK

|log(ε)|k+2

if k =∞, ‖uε − uε,∞‖L2(K) ≤
CK ε

|log(ε)|
.

Note that this result is valid for any distribution of scat-
terers. However the constant CK involved in the above
estimates depends on their localization and may become
large in certain situations (close scatterers).

3 Proof of Theorem 1

We will give the main ideas of the proof of the inequal-
ities (12) and (13). It is enough to show these properties
for each block of the operators Kε and K̃ε. Using the ad-
dition formula (7), it is easier to prove formula (12) for
the operator

Lεpq : cq 7−→

∑n∈Z ψq,m−n(sp)Jn(ωrεp)cq,n

H
(1)
m (ωrεq)


m∈Z

which is readily seen to be the adjoint of Kε
pq once this

formula is proved. For cq ∈ `2(C), we have

∥∥Lεpqcq∥∥2`2(C) =
∑
m∈Z

∣∣∣∑n∈Z ψq,m−n(sp)Jn(ωrεp)cq,n

∣∣∣2∣∣∣H(1)
m (ωrεq)

∣∣∣2 .



Hence, using the Cauchy-Schwarz inequality, the addition
formula (7) and the Parseval identity, we deduce that

∥∥Lεpqcq∥∥2`2(C) ≤
∑
m∈Z

∥∥ψq,m(rεp, ·)
∥∥2
L2(0,2π)∣∣∣H(1)

m (ωrεq)
∣∣∣2

 ‖cq‖2`2(C) ,
where we have denoted

∥∥ψq,m(rεp, ·)
∥∥2
L2(0,2π)

=
1

2π

∫ 2π

0

∣∣ψq,m(rεp, θp)
∣∣2 dθp.

The estimation of this quantity for large m is easily de-
duce from classical asymptotic properties of the Hankel
functions (see [1]). On the other hand, we need a bound
of the function 1/

∣∣H1
m

∣∣ which holds uniformly in ε and
m. We have proved the following apparently non usual
inequality:∣∣∣∣∣ 1

H
(1)
m (x)

∣∣∣∣∣ ≤ 2xm−2

m!
∣∣∣H(1)

2 (x)
∣∣∣ , for 0 < x < 1 and m ≥ 3,

from which we finally deduce that

∥∥Lεpq∥∥L(`2(C)) ≤ C

|log(ε)|
.

In order to prove formula (13), we follow a similar
idea. First notice that the adjoint of the finite rank oper-
ator K̃ε

pq is clearly the operator L̃εpq of L(`2(C)) defined
by:

L̃εpq : cq 7−→

(
δm,0

ψq,0(sp)

H
(1)
0 (ωrεq)

cq,0

)
m∈Z

We have:∥∥∥(Lεpq − L̃εpq
)
cq

∥∥∥2
`2(C)

= A(ε) +B(ε)

where:

A(ε) =
∑
m∈Z∗

∣∣∣∑n∈Z ψq,m−n(sp)Jn(ωrεp)cq,n

∣∣∣2∣∣∣H(1)
m (ωrεq)

∣∣∣2
and

B(ε) =

∣∣∣∑n∈Z ψq,−n(sp)Jn(ωrεp)cq,n − ψq,0(sp)cq,0
∣∣∣2∣∣∣H(1)

0 (ωrεq)
∣∣∣2 .

As in the proof above, we get:

A(ε) ≤

∑
m∈Z∗

∥∥ψq,m(rεp, ·)
∥∥2
L2(0,2π)∣∣∣H(1)

m (ωrεq)
∣∣∣2

 ‖cq‖2`2(C)
and show that there exists C > 0 such that for ε small
enough:

A(ε) ≤ C ε2 ‖cq‖2`2(C) .

For the term B(ε), using the asymptotic properties of the
Bessel and the Hankel functions, we establish that there
exists C > 0 such that for ε small enough,∑

n∈Z∗

∣∣ψq,−n(sp)Jn(ωrεp)
∣∣2 ≤ C ε2 (16)

and
∣∣J0(ωrεp)− 1

∣∣2 |ψq,0(sp)|2 ≤ C ε4. (17)

Therefore, applying the Cauchy-Schwarz inequality, the
asymptotic of 1/H

(1)
0 for small arguments and the rela-

tions (16) and (17), there exists C > 0 such that for ε
small enough:

B(ε) ≤ C
∣∣∣∣ ε

log ε

∣∣∣∣2 ‖cq‖2`2(C) .
Finally:∥∥∥Lεpq − L̃εpq

∥∥∥
L(`2(C))

=
∥∥∥Kε

pq − K̃ε
pq

∥∥∥
L(`2(C))

≤ C ε.
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