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ABSTRACT. In this paper, we are concerned with focusing effects for time-dependent waves using
‘time reversal mirrors’. We consider a simple two-dimensional problem which models acoutic wave
propagation in a homogeneous medium which contains several unknown scatterers. We show how
to construct a wave that focuses in space and time near one of these scatterers, in the form of
a superposition of time-harmonic waves related to the eigenvectors of the so-called ‘time reversal
operator’.

RESUME. Dans cette communication, on s'intéresse aux effets de focalisation obtenus & l'aide d’un
‘miroir a retournement temporel’. On considéere un probléme bi-dimensionnel simple qui modélise la
propagation d’ondes acoustiques dans un milieu homogéne contenant quelques diffuseurs inconnus.
On montre comment construire une onde qui focalise en espace et en temps au voisinage d’'un de
ces diffuseurs, sous la forme d’'une superposition d’ondes périodiques en temps, ces derniéeres étant
reliées aux vecteurs propres d’un opérateur dit de retournement temporel.
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1. Introduction

The present paper is motivated by the following challengjagstion: in a propagative
medium which contains several unknown scatterers, how gamgenerate a wave that fo-
cuses selectively on one scatterer not only in space, uiralgne, in other words, a wave
that ‘hits hard at the right spot'? Such focusing propertiage been studied in the fre-
guency domain in the context of the DORT method (French gondior “Decomposition
of the Time Reversal Operator”, see, e.g., [4, 5]). In shegdrray of transducers, called
here a Time Reversal Mirror (TRM), first emits a wave whichgaigates in the medium
and interacts with the scatterers. In a second step, the TR&unes the scattered wave,
and time-reverses this measure, so that it can re-emit a wvavkast-in first-out process.
The operator which represents two successive iteratiottiofoop is referred to as the
Time Reversal Operator (TRO). It is now understood that foalt and distant enough
scatterers, one can choose an eigenvector of the TRO sutctin¢heorresponding input
signals generate a wave which focuses selectively on oreeera Can we take advan-
tage of these spatial focusing properties which hold foetimarmonic waves to produce
a time-dependent wave which would be also focused in the dioneain? A natural idea
could be to iterate the above mentioned loop in the time-donfut it is shown in [1]
that such an iterative process leads in general exacthetopposite of time-focusing: it
produces a time-harmonic wave! In the present paper, we Bloanto use the eigenele-
ments of the TRO to produce space-time focusing.

For the sake of simplicity, we deal with a two-dimensionabstic problem. We
consider a family ofP sound-soft circular scattere¢s, forp = 1,..., P, of respective
radii ,...,rp and centerss, ..., sp, located in a homogeneous medium filling the
whole planeR?. We assume that the TRM is composedMfpointlike transducers:,,
forn =1,..., N. The question is to find the input signals to be send to the t@duso
that they generate a wave that focuses on one of the scatt@tes wavé/ = U(z,t) is
solution to
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where Fi(t), ..., Fn(t) denote the input signals ard, is the Dirac measure at,.
Functionl/ can be decomposed &= V + W where)V represents thincident wave,
solution to v
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whereas) stands for thescattered wave, solution to
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As mentioned above, the idea is to construct the input ssgnaineans of the eigenele-

ments of the TRO, which is related to the time-harmonic mobassociated with (1)—(2).
For a given frequency and a time-harmonic incident waw®'(z, t) = Re{w(z) e'“!},



the time-harmonic scattered wave is giveniyt, t) = Re{v(z) e~ “!} wherev is solu-
tion to

Av+w?v=0 InR*\U,_; O, (3)
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and satisfies in addition the usual Sommerfeld radiatiomlitiom
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2. Asymptotics for small scatterers

Instead of the above system of equations, we consider ayfarfndsymptotic models
which are valid for small scatterers, more precisely whendiameters of the scatterers
are small compared to the wavelength/w. These models are based on the fact that in
the case of one scatter@P = 1), the solutiorw to (3)—(5) can be approximated by

orw(s1)G(x — s1),

where
1
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is the outgoing Green'’s function of the Helmholtz equaﬂﬁ[’él) is the Hankel function
of the first kind of order 0) andr, is the reflection coefficient on the scatterer, which

is given byo, = —4i/Hél)(wr1) for a circular obstacle. I? > 1, we can consider
different levels of approximation(®), v ... v(°°) of v which consist in superpositions
of the form

P
v ¥ (z) = Zap w](ok') G(z — sp),
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wherew,(,k) represents different approximations of an “exciting fiedd"thep-th scatterer.

In the simplest modelk = 0), we choosauéo) = w(sp), which amounts to neglecting
the interactions between the obstacles. The &ase oo corresponds to the Foldy-Lax
model [3], which takes into account these interactions.his tase, the exciting field is
the superposition of the incident field and the waves seattby all the other obstacles,
ie.,
w}(joo) :w(sp)—l—Zaqwfloo)G(sp—sq) forp=1,...,P. @)
qF#p
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If we denote byl (>) and W the vectors ofC” with componentsw, ) and w(sp)
respectively, this coupling between the exciting fields barwritten equivalently as the
following linear system:

(I+M) W =W, (8)
whereM is the P x P matrix defined by, = —o,G(s, — s4) if ¢ # p, andM,,, = 0.



Between the casds = 0 andk = oo, one can consider intermediate models which
take into account the successive reflections between thtera. Instead of (7), the
exciting field is defined recursively by

W = w(sy) Y oGy ) forp=1,... P
q#p

It is readily seen that this relation amounts to approxintathe inverse of operatér M
involved in (8) by a truncated Neumann series, so that we gamrsrize these different
models by the formula

k
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It can be shown [2] that the error (in a loca* norm) is of order loge|~(*+2) for
finite k, ande/|log ¢| for k = oo, wheree denotes the ratio of the greatest radius by the
wavelength.

3. The time reversal operator

As described in the introduction, the TRO corresponds tosuacessive iterations of
the following loop. In a first step, the TRM emits an incidemé-harmonic wave given

by

N
w(z) =Y foGlz—zn) (10)
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wherefi, ..., fn denote the complex amplitudes of the input signals athieansduc-
erszy,...,xy. This wave interacts with the scatterers, and the TRM thersarea the

scattered wave. If we use for instance the Foldy—Lax m@e} co), the measure at the
transducer,, is

P
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whereG is the P x N matrix defined byG,,, = G(z, — s,), D is the P x P diagonal
matrix defined byD,,, = o, andf is the vector ofC" with componentg,,. We can then
define the operatdf € £(C") which maps the inpuf to the measure of the scattered
wave:

Ff-=G'"DI+M)"'G /. (12)



The last step of the loop is to time-reverse the meaBufewhich is a simple complex
conjugation in the frequency domain: the component® ¢fcan then be used as input
signals to re-emit a new incident wave. Finally, two sucivesi®ops are represented by
the following operator

Tf:=FFf=FFf=FFf, (12)

where the last equality follows from the fact tH&t = F (which is easily deduced from
(11)).

Note that we could define similarly a TRO associated with ohthe approximate
model which takes into account tlefirst reflections between the scatterers. In view of
(9), we simply have to repladd + M)~! by Z’Z:O(—M)‘* in the definition (11) off.

It follows from (12) thatT is a positive selfadjoint operator. Hence it can be diagonal
ized in an orthonormal basis of eigenvectors. The eigeraisofT have the following
remarkable properties (which hold except in very particalanmetrical cases). First, the
number of scatterers is equal to the number of nonzero ediges of the TRO. More-
over, when these eigenvalues are simple, each eigenvessociated with one of them
generates a wave which focuses selectively on each segtes[4, 5]).

4. Space-time focusing

In the previous section, we have shown how to construct the-teversal operator
for a fixed frequency. Suppose that in a given frequency bdnd, w-], we know an
eigenvectorf (w) € CV of the TRO, chosen such thaf (w)||c~ = 1, which is associated
with a given scatterey,, in the sense that the corresponding time-harmonic incidaxé
(10) focuses on this scatterer. For a functién |w;,ws] — C, we can consider the
superposition of the time-harmonic input signals given by

F(t) = Re / Aw) f(w)e ! dw, (13)
which will generate the following time-dependent incidesstve:
w2 N
W(z,t) = Re / A(w) Z fu(w) Gz — 25 0) et dw, (14)
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where we now indicate the dependence with respect ito the time-harmonic Green'’s
function defined in (6). This wave focuses in space Bgasince it is a superposition of
focused waves. But how can we choo$gv) so that it focuses also in time, that is, so
that the period of interaction ofV(z, t) with the scatterer is as short as possible? What
kind of criterion can be used?

The idea we follow here is based on the fact that the best sfiawe focusing is
obtained for the time-reversed Green’s function of the weaygatiorG (x — s,,, —t) where

—H(t —|z])
N o eP)E

(H denotes the heaviside function). This function is relatethé time-harmonic Green’s
function by the formula

1 +ee ,
G(z,t) = —Re G(zyw)e ! dw.
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As a consequence, the measures at the transducé(s of s,,, t) are given by

g(xl - Spﬂt) 1 +00 iy
: = —Re/ I'y(w)e ™" dw
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g(l'N - spvt) 0
whereT,(w) = (G(z1 — $p;w),...,G(xn — sp;w)) . The time-reversed measures

are thus obtained by replacirig,(w) by its conjugate. In order to obtain a signal of
the expected form (13), it is then natural to replaggw) by its orthogonal projection
on the eigenspace spanned piw), which is given by(T',(w), f(w))c» f(w). Using a
cutoff functiony : Rt — R* with support in the imposed frequency band, ws], the
expected functiom (w) in (13) has the form

Aw) = x(w) Tp(w), f(w))er Yw € [wr,wa).

We shall present some numerical results which show thatritideént wave (14) corre-
sponding to this choice aofl(w) actually focuses in space and time negr We shall
also consider the more involved situation where the propagmedium contains a diffu-
sive region modeled by a random distribution of pointlikatserers, which improves the
focusing effect.

Let us notice that this is only a numerical confirmation of theusing effect. Some
related mathematical questions remain open. On one hatitgris a mathematical defi-
nition of focusing that could allow us to evaluate the qyadit a focusing wave? On the
other hand, can we find a criterion that leads us to the aboveelnf A(w) or even a
better one? Indeed, in the above lines, the position of thtesers,, is knowna priori,
since we have assumed tHaf(w) is known. But can we do without this knowledge,
using only the measures of the TRM? Works on these issuen pregress.
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