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Using a sum rule, we derive new bounds on Herglotz functions that generalize
those given in12,35. These bounds apply to a wide class of linear passive systems
such as electromagnetic passive materials. Among these bounds, we describe the
optimal ones and also discuss their meaning in various physical situations like
in the case of a transparency window, where we exhibit sharp bounds. Then, we
apply these bounds in the context of broadband passive cloaking in the quasistatic
regime to refute the following challenging question: is it possible to construct a
passive cloaking device that cloaks an object over a whole frequency band? Our
rigorous approach, although limited to quasistatics, gives quantitative limitations
on the cloaking effect over a finite frequency range by providing inequalities on
the polarizabilty tensor associated with the cloaking device. We emphasize that
our results hold for a cloak or object of any geometrical shape.
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I. INTRODUCTION

For many years it has been know that there exist inclusions that can be invisible to
certain applied fields. These are generally known as neutral inclusions (see, for example,
the references in Section 7.11 in60, and see also the more recent citations of these papers)
and references therein) and a specific example are the invisible bodies of Kerker43 , that
are in fact coated confocal ellipsoids, which are invisible to long wavelength fields. More
intriguing are the cylindrical shells of Nicorovici, McPhedran, and Milton74 having (at a
fixed frequency) a relative permittivity of −1, surrounded by material having a reative
permittivity of 1, that are invisible to any polynomial quastistatic applied field, and the
coated spheres of Alú and Engheta1, that are invisible at a specific frequency. For conduc-
tivity and fixed frequency electromagnetism Tartar (in a private communication to Kohn
and Vogelius46) and Dolin23 recognised that one could create a wide class of invisible
inclusions with anisotropic moduli by transformation conductivity and transformation
optics. A subsequent key idea of Greenleaf, Lassas, and Uhlmann30,31 was that one could
create a cloak for conductivity (and hence single frequency quasistatics) by using singular
transformations that created a “quiet zone” where no field penetrated, and hence where
one could place an object without disturbing the surrounding current field. The next
development was the recognition by Milton and Nicorovici62 that cloaking due to anoma-
lous resonance could cloak (at least in two-dimensional quasistatics, though some results
were also obtained in three-dimensions and at finite frequency) an arbitary finite number
of polarizable dipoles: this had the fascinating feature that the cloaking region lay outside
the cloaking device. It was perhaps the first paper where the word cloaking appeared in
the scientific literature, outside computer science. Shortly afterwards, papers appeared
by Leonhardt49 and Pendry, Schurig, and Smith88 using transformation ideas to obtain
cloaking for geometric optics and Maxwell’s equations at fixed frequencies. These three
papers, of Milton and Nicorovici, Leonhardt, and Pendry, Schurig and Smith generated
considerable media attention, and also stimulated a lot of subsequent scientific devel-
opment, both on cloaking due to anomalous resonance3–5,7,15,16,44,45,51,54,55,63,68,69,71,75–77,85

and on transformation based cloaking (see, for example, the reviews2 and29). Other sorts
of cloaking were developed too, including cloaking due to complementary media47, that
has anomalous resonance as its mechanism70,73, and active cloaks32–34,56,79,80,84,90 where
sources tailored to the incoming signal, and sometimes also tailored to the body to be
cloaked82,83, create a cloak, yet do not significantly radiate. There is no theoretical dif-
ficulty in creating broadband active cloaks: each frequency can be cloaked separately
and sources can then be designed that superimpose the contributions from the different
frequencies. A good example is the cloaking of an object from an incoming pulse in the
animation movies in33.

Here our focus is on finding limitations to broadband cloaking for passive quasistatic
cloaks. Unlike active cloaks which require energy sources to activate them, passive cloaks
perform cloaking only by the physical properties of the passive material which constitutes
the cloak. In the context of transformation based cloaking it has long been recognized
that a cloak that guides waves around an object has the inherent limitation that a
pulse signal (hence containing many frequencies) travelling on a ray cannot travel faster
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than the speed of light and therefore, if the ray goes around the body, the pulse will
arrive later compared to a pulse that travels in a straight line at the speed of light (see
for instance21). However we would like some more explicit quantitative bounds that
limit cloaking, in particular over a specific frequency interval. Anomalous resonance
uses materials with a negative dielectric constant and transformation based cloaks use
materials with relative electrical permittivities (relative compared to the surrounding
medium) less than one. Thus if the surrounding medium has the electrical permittivity
of free space there should necessarily be some variation of the moduli with frequency, i.e.,
dispersion. While some experiments report broadband cloaking it is to be emphasized
that the surrounding medium is silicon, and this makes it possible to achieve a relative
electrical permittivity that is less than 1 that is almost frequency independent. It seems
that a clue to establishing broadband limitations to cloaking is to use bounds limiting
the minimal dispersion in the component materials. For geometric optics Leonhardt and
Tyc50 show one can get broadband cloaking by ingeneous transformations from non-
Euclidean geometries to Euclidean ones. (Such transformations are okay for geometric
optics, but generally do not preserve the form of the time-harmonic Maxwell’s equations.)

The main tool used to derive our bounds is to follow the idea developed in the analytic
method introduced in10,58, justified in59 and proved in28. In other words, to use the
analytic properties of physical quantities (like the dielectric permittivity and the magnetic
permeability in electromagnetism) which define the constitutive laws of the medium in
the frequency domain. These properties are the counterpart of causality and passivity of
time-dependent passive linear materials. Mathematically speaking, it is directly linked to
the existence of a Herglotz and/or a Stieltjes function which characterizes the behavior of
the system in the frequency domain12,18,60,81,97. This analytic method under various forms
has been widely applied to study physical properties of passive electromagnetic media in
different contexts: to bound the dielectric permittivity with respect to the frequency12,35,
to evaluate the resolution of a perfect lens on a finite bandwidth52, to derive scattering
limits as for instance upper bounds on the total extinction cross-section36,57,89,91 or to
provide quantitative limits to speed light propagation in dispersive media95 . In this
paper, we want to use such a method to derive bounds on the polarizability tensor
associated with a cloaking device. This tensor is defined as a 3 × 3 complex-valued
matrix function of the frequency25,26,39,60 which characterizes the main contribution of
the far field of the scattered wave due to a cloaking device in the quasistatic regime of
Maxwell’s equations. Therefore if it vanishes at a frequency ω, one says that the obstacle
is cloaked at ω for a far observer. We prove in this paper that is not possible on a
whole frequency band and derive inequalities to quantify this phenomenon. It is to be
emphasized that while the quasistatic equations are generally associated with Maxwell’s
equations in the limit as the frequency ω tends to zero, they in fact hold at any frequency
in the limit as the size of the body under consideration goes to zero.

Related to the question of broadband passive cloaking, based on the group delay of
a wavepacket of electromagnetic waves, Craeye and Bhattacharya21 derived an upper-
bound on the frequency bandwidth over which cloaking could be realized for a two di-
mensional device. Nevertheless, as they emphasize, their results depend highly on strong
assumptions, namely the geometry shape of the cloaking device and the cloaking tech-
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nique. Then, Monticone and Alú64 show that one cannot perform passive cloaking on
the whole frequency spectrum by deriving a global bound on the scattering cross-section.
More recently in65 they use electrical circuit analogies, to argue bounds on the scatter-
ing cross section over a finite frequency range for planar objects and three dimensional
objects with spherical symmetry. Another interesting point was developed by Hashemi,
Qiu, McCauley, Joannopoulos and Johnson37 who demonstrate for transformation based
cloaking that broadband passive cloaking is limited by the obstacle characteristic size.
We also mention that in the absence of perfect cloaking over a finite frequency range,
one can still propose solutions to minimize the scattering signature of an object over the
frequency range. Such an approach has been developed in19,40.

Here, the bounds that we derive have the great advantage of neither assuming the
geometrical shape of the object, or cloak, nor the dispersion models of the cloak. In fact
the object could even lie outside the cloak. Moreover, they involve the size of the fre-
quency bandwidth. While they are limited to quasistatics, they apply to cloaking due to
anomalous resonance, transformation based cloaking, and cloaking due to complementary
media and in fact to any quasistatic passive cloaking device.

The paper is organized as follows. In section II, we first derive, using complex anal-
ysis, general bounds that are applicable to a broadband class of passive linear systems
including electromagnetic passive media. More precisely, for an electromagnetic passive
material, the standard notions of passivity and causality are introduced and this leads
to four constraints on the dielectric permittivity and magnetic permeability behaviors
seen as complex valued functions of the frequency. To develop our bounds in the general
framework of linear passive system, we reformulate these four constraints as assumptions
on a abstract complex-valued function f . Then, we briefly recall some basic notions on
Stieltjes and Herglotz functions which are used throughout the paper. Our next step is
to construct a Stieltjes and a Herglotz function associated with f . Afterwards, using the
sum rules derived in12 for Herglotz functions, we derive bounds parametrized by a set a of
positive measures that generalized the bounds of12,35. Then, we prove that among these
bounds, the ones that are optimal are obtained using Dirac measures (see Theorem 14).
Using such measures in the case of a transparency window (which physically means that
the material is lossless on the considered frequency range), we recover a bound similar
to the ones derived in61,96 which is sharp for Drude type models. We show that this
last bound can be also easily established by another approach based on Kramers–Kronig
relations. We finally explore the case of lossy material and recovers by our approach
a bound similar to the ones derived in12,35. The section III of the paper is devoted to
the applications of the previous bounds to the broadband passive cloaking question for
the quasistatic approximation of Maxwell’s equations. We first mathematically reformu-
late our cloaking problem in a rigorous functional framework and prove that the bounds
derived in section II apply to the polarizability tensor associated with a passive cloak-
ing device. Finally, we show that it is not possible to construct a passive cloak that
achieves broadband cloaking over a finite range of frequencies and discuss the meaning
of our bounds as fundamental limits of the cloaking effect in various situations like a
transparency window or the general case of a lossy material.
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II. BOUNDS ON HERGLOTZ AND STIELTJES FUNCTIONS

A. Characterization of passive electromagnetic media

In this subsection, we introduce the standard notions of causality and passivity for
linear time-dependent Maxwell’s equations and their counterparts in the frequency do-
main. For simplicity, we are dealing here with an isotropic homogeneous material which
fills a bounded domain Ω ⊂ R3, but one can derive such properties in the general setting
of anisotropic and inhomogeneous materials. For more details, we refer to18,48,60,81,95,97.

We denote respectively by D and B the electric and magnetic inductions, by E and
H the electric and magnetic fields, the evolution of (E,D,H,B) in Ω is governed (on the
absence of a current density source) by the macroscopic Maxwell’s equations:

∂tD−∇×H = 0 and ∂tB +∇× E = 0, (II.1)

which must be supplemented by the constitutive laws of the material involving two ad-
ditional unknowns the electric and magnetic polarizations P and M:

D = ε0E + P with P = ε0 χE ?t E and B = µ0H + M with M = µ0 χM ?t H. (II.2)

The constants ε0 and µ0 stand here for the permittivity and permeability of the vacuum.
The constitutive laws express the relations between (D,E) and (B,H) via a convolution
in time (denoted by ?t) with the electrical and magnetic susceptibility χE and χM , defined
here as scalar time-dependent functions which characterize the electromagnetic behavior
of the material.

We assume here for simplicity that χE and χM ∈ L1(Rt), the space of integrable
functions with respect to the time variable. In a more general setting, one can consider
them as tempered distributions (see18,97). We suppose also that E, H, ∂tE and ∂tH
are in L2(Rt,L

2(Ω)). Hence, as (E,D,H,B) satisfy (II.1) and (II.2), one deduces with
such hypothesis that D, B, ∂tD, ∂tB, ∇ × E and ∇ × H are also in L2(Rt,L

2(Ω)).
In this functional framework, one introduces four standard properties which model the
constitutive laws of electromagnetic passive linear systems in the frequency domain.
• A material is said to be causal if the fields E(·, t) and H(·, t) cannot influence the

inductions D(·, t′) and B(·, t′) for t′ < t. This condition implies that the functions χE
and χM are supported in R+. To see the counterpart of the causality in the frequency
domain, one defines the Laplace-Fourier transform of a function f ∈ L1(Rt) supported
in R+ by

f̂(ω) =

∫
R+

f(t) eiωtdt, ∀ω ∈ clC+, (II.3)

where clC+ := {ω ∈ C | Im(ω) ≥ 0} stands for topological closure of the complex
upper half-plane C+ := {ω ∈ C | Im(ω) > 0}. We point out that the Laplace-Fourier
transform coincides with the Fourier transform for real frequency ω, that is why we use
in the following the same notation for both transforms. Classically, applying the Fourier

5



transform to (II.2) for real ω leads to the well-known expression for the constitutive laws
(II.2) in the frequency domain:

D̂(ω) = ε(ω)Ê(ω) with ε(ω) = ε0

(
1 + χ̂E(ω)

)
,

B̂(ω) = µ(ω)Ĥ(ω) with µ(ω) = µ0

(
1 + χ̂M(ω)

)
,

where ε(ω) and µ(ω) stand for the dielectric permittivity and the magnetic permeability
of the material. Now, as χE and χM ∈ L1(Rt) are compactly supported in R+, one
deduces easily that their Laplace Fourier transforms χ̂E and χ̂M are analytic in the
upper half-plane C+ and continuous on clC+. Thus, ε = ε0(1 + χ̂E) and µ = µ0(1 + χ̂M)
share the same regularity.
• Furthermore, by applying the Riemann-Lebesgue theorem (since χE and χM ∈

L1(Rt)), one has that χ̂E and χ̂M tend to 0, as |ω| → ∞ in clC+. Hence, we have

ε(ω)→ ε0 and µ(ω)→ µ0, as |ω| → ∞ in clC+.

In other words, the material behaves as the vacuum for high frequencies.
• As χE and χM are real functions, it implies that their Laplace-Fourier transforms

defined by (II.3) satisfisfy the following “symmetry” relations:

χ̂E(−ω) = χ̂E(ω) and χ̂M(−ω) = χ̂M(ω), ∀ω ∈ clC+, (II.4)

and thus the same relation holds for the functions ε and µ.
• The passivity assumption is expressed as the following (see12,18,48,60,95):

Ea(t) =

∫ t

−∞

∫
Ω

∂tD(x, s) · E(x, s) + ∂tB(x, s) ·H(x, s) dx ds ≥ 0,∀t ∈ R (II.5)

and holds for any fields (E,H) such that

E, H ∈ L2(Rt,L
2(Ω)) and ∂tE, ∂tH ∈ L2(Rt,L

2(Ω)). (II.6)

This assumption imposes physically that at each time, the amount of electromagnetic
energy Ea(t) transferred to the material by Joule effect or absorption, that is by electric
and/or magnetic loss is positive. By virtue of the Plancherel theorem and the consti-
tutive laws (II.2), the passivity assumption (II.5) applied to t = ∞ yields the following
inequality in the frequency domain:

Ea(∞) =
1

2π
Re

∫
R

∫
Ω

−iω
(
ε0

(
1+χ̂E(ω)

)
|Ê(x, ω)|2+µ0

(
1+ χ̂M(ω)

)
|Ĥ(x, ω)|2

)
dx dω ≥ 0

which can be rewritten as

Ea(∞) =
1

2π

∫
R

∫
Ω

ω Im ε(ω)|Ê(x, ω)|2 + ω Imµ(ω)|Ĥ(x, ω)|2dx dω ≥ 0. (II.7)
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Hence, as the last inequality holds for any fields E and H which satisfy the conditions
(II.6) in the time-domain, it is straightforward (using a proof by contradiction) to show
that it implies that ω Im ε(ω) ≥ 0 and ω Imµ(ω) ≥ 0, for all real frequencies ω. These
latter conditions turn out to be equivalent, by (II.4), to

Im ε(ω) ≥ 0 and Imµ(ω) ≥ 0, ∀ω ∈ R+, (II.8)

that is referred to the characterization of passivity in the frequency domain18,48,60.
Reciprocally, the condition (II.8) and the fact that ε and µ are bounded, contin-

uous functions (since χE and χM ∈ L1(Rt)) satisfying (II.4) on Rω imply, in par-

ticular, that inequality (II.7) holds for any Ê, Ĥ ∈ L2(Rω,L
2(Ω)) such that E and

H ∈ D
(
(−∞, t),L2(Ω)

)
(where D

(
(−∞, t),L2(Ω)

)
refers to the space of bump func-

tions of (−∞, t) valued in L2(Ω)). Hence by Plancherel’s theorem, one finds that the
passivity assumption (II.5) holds at any fixed time t ∈ R and for any E and H ∈
D
(
(−∞, t),L2(Ω)

)
. Finally, one extends by a density argument this relation to any

fields E and H satisfying (II.6). Thus, (II.8) is equivalent to (II.5).
The aim of this section is to derive in a general framework a bound for a function

f : clC+ 7→ C which satisfies the following hypotheses:

• H1: f is analytic on the upper half plane C+ and continuous on clC+,

• H2: f(z)→ f∞ > 0, when |z| → ∞ in clC+,

• H3: f satisfies f(−z) = f(z), ∀z ∈ clC+,

• H4: Im f(z) ≥ 0 for all z ∈ R+ (passivity).

described above for f = ε or f = µ as function of the frequency ω. More generally, these
hypotheses characterize the frequency behavior of passive linear systems12,97. They are
satisfied by the permittivity and the permeability but also by other physical quantities
such as the polarizability tensor in the quasistatic regime (as it will be proved in subsec-
tion III B), the acoustic78 and electromagnetic36,81,91 forward scattering amplitudes and
the shear and bulk modulus in elasticity13. Thus, the bounds we develop in this first
part, in this general setting, apply to all these physical parameters and constrain their
behavior in the frequency domain.

B. Review of some Herglotz and Stieltjes functions properties

Mathematically, the hypotheses H1–H4 on the function f are linked to the existence
of a Stieltjes and a Herglotz function associated with f . Stieltjes and Herglotz functions
have been extensively used in the study of electromagnetic materials’ behavior (see for
instance12,35,60,61,95). The aim of this subsection is to recall briefly some properties about
these functions that we use in the following to derive our bounds. For more details, we
refer to8,9,12,27,67.
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Definition 1. An analytic function h : C+ → C is a Herglotz function (also called Pick
or Nevanlinna function) if

Imh(z) ≥ 0, ∀z ∈ C+.

A particular and useful property of Herglotz functions is the following representation
theorem due to Nevanlinna67.

Theorem 2. A necessary and sufficient condition for h to be a Herglotz function is given
by the following representation:

h(z) = α z + β +

∫
R

(
1

ξ − z −
ξ

1 + ξ2

)
dm(ξ), for Im(z) > 0, (II.9)

where α ∈ R+, β ∈ R and m is a positive regular Borel measure for which
∫
R dm(ξ)/(1+

ξ2) is finite. In particular if the integral
∫
R |ξ| dm(ξ)/(1 + ξ2) is also finite, then we can

rewrite the relation (II.9) as:

h(z) = α z + γ +

∫
R

dm(ξ)

ξ − z with γ = β −
∫
R

ξ dm(ξ)

1 + ξ2
∈ R.

Moreover, for a given Herglotz function h, the triple (α, β,m) is uniquely defined by
the following corollary.

Corollary 3. Let h be a Herglotz function defined by its representation (II.9), then we
have:

α = lim
y→+∞

h(iy)

iy
, β = Reh(i),

and ∀(a, b) ⊂ R,
m([a, b]) + m((a, b))

2
= lim

y→0+

1

π

∫ b

a

Imh(x+ iy)dx. (II.10)

We now introduce for any θ ∈ (0, π/2) the Stolz domain Dθ defined by:

Dθ = {z ∈ C+ | θ ≤ arg(z) ≤ π − θ}.

The representation theorem II.9 implies (see12) that a Herglotz function satisfies the
following asymptotics in Dθ for all θ ∈ (0, π/2):

h(z) = −m({0})z−1 + o(z−1) as |z| → 0 and h(z) = α z + o(z) as |z| → +∞. (II.11)

In other words, an Herglotz function grows at most as rapidly z when |z| tends to +∞
and cannot be more singular than z−1 when |z| tends to 0.

We will conclude this review of Herglotz functions by a last identity: the so-called
sum rule (see12) which is a fundamental tool to derive quantitative bounds on passive
systems.
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Proposition 4. Let h be a Herglotz function which admits the following asymptotic
expansions in Dθ for a given θ ∈ (0, π/2):

h(z) = a−1 z
−1 + o(z−1) as |z| → 0,

and h(z) = b−1 z
−1 + o(z−1) as |z| → +∞.

with a−1 and b−1 ∈ R. Then the following identity holds

lim
η→0+

lim
y→0+

1

π

∫
η<|x|<η−1

Imh(x+ iy) dx = a−1 − b−1. (II.12)

We now introduce Stieltjes functions: another famous class of analytic functions,
closely related to Herglotz functions.

Definition 5. A Stieltjes function is an analytic function g : C\R− → C which satisfies:

Im g(z) ≤ 0 ∀z ∈ C+ and g(x) ≥ 0 for x > 0.

From this definition it follows by analytic continuation and the Schwarz reflection prin-
ciple that a Stieltjes function has to satisfy g(z) = g(z), ∀z ∈ C \ R−. Like Herglotz
functions, Stieltjes functions are characterized by a representation theorem.

Theorem 6. A necessary and sufficient condition for g to be a Stieltjes function is given
by the following representation:

g(z) = α +

∫
R+

dm(ξ)

ξ + z
∀z ∈ C \ R−,

where α = lim
|z|→+∞

g(z) ∈ R+ and m is a positive regular Borel measure, uniquely defined,

for which
∫
R+ dm(ξ)/(1 + ξ) is finite.

Remark 7. An easy connection can be made between Herglotz and Stieljes function.
Thanks to the representation Theorems 2 and 6, we note that if g is a Stieltjes function,
the function h defined by h(z) = g(−z) is an Herglotz function whose measure m has a
support included in R+ in the relation (II.9). Another connection between Herglotz and
Stieltjes functions is given in the next subsection by Corollary 10.

C. Construction of a Stieltjes function associated with f

In this paragraph, we construct a Stieltjes function associated with the function f .
For that, we first establish with the following lemma some information about the sign of
the imaginary part of the function f .

Lemma 8. If a function f satisfies the hypotheses H1–H4, then

± Im f(z) ≥ 0, ∀z ∈ C+ such that ± Re z ≥ 0. (II.13)

Moreover, if f is not a constant function, the inequality (II.13) is strict as soon as
Re z 6= 0.
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Proof. Let O denote the open set {z ∈ C+ | Re(z) > 0}. By virtue of H1, Im f is an
harmonic function on O that is continuous on clO. H3 and H4 imply respectively that
f is real on the imaginary axis and that Im f(z) ≥ 0 on the positive real axis, thus
we get that Im f(z) ≥ 0 on the boundary ∂O of O. Moreover, from H2 it follows that
Im f(z) → 0 as |z| → ∞ in clO. All these conditions allow us to apply the maximum
principle on the function Im f in the unbounded domain O (see Corollary 4 p 246 of22)
which yields the inequality (II.13) for Re(z) ≥ 0. The inequality (II.13) for Re(z) ≤ 0 is
then deduced by using H3.

In the case where f is not a constant function (then by H1 and H3, f can not be
constant in O), by contradiction, if there exists a z0 ∈ O such that Im f(z0) = 0, then
by the open mapping theorem the image by f of an open ball B(z0, δ) ⊂ O is an open
set of C which contains a real number f(z0) and therefore some points with a negative
imaginary part. This contradicts (II.13). Finally, by using H3, one obtains also that
Im f(z) < 0 for Re(z) < 0.

To construct a Stieltjes function associated with f , we will follow the idea proposed
by the authors of61. For that purpose, we define the complex root by

√
z = |z| 12 ei arg z/2 if arg z ∈ (0, 2π) (II.14)

and extend it on the branch cut R+ by its limit from the upper-half plane, in other words
the square root of non-negative real number x is given by

√
x = |x| 12 .

Theorem 9. If f satisfies the hypotheses H1–H4, then the function u defined by

u(z) := f(
√
−z), ∀z ∈ C (II.15)

is a Stieltjes function which is positive on R+∗.

Proof. The definition of the complex square root and the hypothesis H1 directly imply
that u is analytic on C \R−. Moreover, using the property H3 and the Lemma 8, we get
that

u(C+) = f({z ∈ C+ | Re(z) < 0}) ⊂ clC−,

where C− denotes the set {z ∈ C | Im(z) < 0}. To prove that u is a Stieltjes function
positive on R+∗, it just remains to show that u(x) > 0 for x > 0. By using H3, we

immediately get that u(x) = f(ix
1
2 ) ∈ R, for x > 0. Then, the positivity of u(x)

follows from the decreasing nature of the real function y 7→ f(i y), y ∈ R+ which implies,
by virtue of H2, that f(iy) ≥ limy→∞ f(iy) = f∞ > 0. This decreasing property is
an immediate consequence of the Cauchy–Riemann relations written on the positive
imaginary axis: ∂y Re f(0, y) = −∂x Im f(0, y) and the fact that ∂x Im f(0, y) ≥ 0 by
Lemma 8.

Figure 1 sums up the effect of the square root mapping applied to the function f to
convert it into the Stieltjes function u, defined by (II.15).
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Imf(z) � 0Imf(z)  0

f(i y) > 0

=) u(x) > 0

Imu(z)  0

Imu(z) � 0

FIG. 1. Sign of the imaginary part of the functions f (left) and u (right).

Corollary 10. The function v defined by

v(z) := z u(−z) = zf(
√
z), ∀z ∈ C (II.16)

is a Herglotz function, which is analytic on C \ R+ and negative on R−∗. Moreover, in
its representation given by Theorem 2, the measure m is supported in R+ and α is equal
to f∞.

Proof. The following proof is partially inspired from9. First, one notices from definition
(II.16) and Theorem 9 that v is analytic on z ∈ C \ R+ and negative on R−∗. Then, as
u is defined by (II.15) is a Stieltjes function which tends to f∞ when |z| → ∞, by the
representation Theorem 6, u can be expressed as

u(z) = f∞ +

∫
R+

dν(ξ)

ξ + z
, ∀z ∈ C \ R−,

with ν a positive regular Borel measure on R+ such that
∫
R+ dν(ξ)/(1 + ξ) is finite.

Thus, the function v defined by (II.16) is given by

v(z) = f∞ z +

∫
R+

zdν(ξ)

ξ − z , ∀z ∈ C \ R+,

and therefore

Im v(z) = f∞ Im(z) +

∫
R+

ξ Im(z)

|ξ − z|2 dν(ξ) > 0, when Im(z) > 0.

Hence, one concludes that v is a Herglotz function. Furthermore, from the definition
(II.16) of v and the hypothesis H2, one gets immediately that its coefficient α in the
representation Theorem 6 is equal to f∞. Finally, as v is analytic on z ∈ C \ R+ and
negative on R−∗, one deduces from (II.10) that the support of the measure m associated
with v is included in R+.

11



Remark 11. The assumption H1 supposes that f can be continuously extended from the
upper-half plane to the real line and implies in particular that f admits no poles on the
real axis or equivalently (see27) that the measure ν associated with the Herglotz function
v has no punctual part. Indeed, we can relax this hypothesis by considering functions f
of the form:

f(z) = fc(z)+fp(z) with fp(z) = −
N∑
n=1

An
z2 − ξn

for A1, · · · , AN > 0 and ξ1, · · · , ξN ≥ 0,

(II.17)
where fc satisfies the hypotheses H1–H4. Then, it is straightforward to check that Theorem
9 and Corollary 10 still hold (except that the definitions (II.15) and (II.16) of u and v
do not hold at the poles of f). In electromagnetism, the function f can be seen as the
dielectric permittivity ε or the magnetic permeability µ as a function of the frequency
z = ω. In this context, functions f = f∞ + fp correspond to the constitutive laws of
non-dissipative generalized Lorentz models for which ε or µ are rational functions of the
frequency with real coefficients (see17,93,94).

Remark 12. In the literature12,18,95, one finds also another Herglotz function constructed
from functions f satisfying the hypothesis H1-4, namely

ṽ(z) = z f(z), ∀z ∈ clC+. (II.18)

Indeed, to prove that the imaginary part of ṽ is non-negative for z ∈ C+, one follows
the same arguments as in the proof of Lemma 8 by applying the maximum principle to
the function Im

(
z (f − f∞)

)
on clC+. Nevertheless, instead of H2, this requires a more

stringent decreasing assumption at infinity: f(z) = f∞ + o(1/z), with f∞ > 0 when
|z| → ∞ in clC+.

Unlike v, ṽ does not derive from a Stieltjes function, thus it does not satisfy the
additional properties that it has an analytic extension in C\R+ which is negative on R−∗.
Therefore, the measure m associated with ṽ in Theorem 2 is not necessarily supported in
R+. Nevertheless, ṽ has the advantage of satisfying the additional relation

ṽ(z) = −ṽ(−z), ∀z ∈ clC+ (II.19)

(which can be deduced from H3). One will see in the following that using ṽ instead of v
will lead to slightly different bounds on the function f .

D. General bounds on the function f

Our aim is now to derive bounds on a function f which satisfies the hypotheses H1–H4
on a finite interval [x−, x+] ⊂ R+∗. The key step is to use the analytic properties of its
associated Herglotz function v defined by Corollary 10 which relies on the existence of the
Stieltjes function u of Theorem 9. To this end, we follow the approach of12,35 by using
the sum rules integral identities established in12, recalled here in Proposition 4. Our

12



resulting bounds generalize the ones developed in12,35. Moreover, they are optimal in the
sense that they maximize the sum rules (II.12) over the finite interval [x−, x+] ⊂ R+,∗ in
the sense of Theorem 14.

Let ∆ > 0, we denote by hm the Herglotz function defined by:

hm(z) =

∫ ∆

−∆

dm(ξ)

ξ − z , ∀z ∈ C+, (II.20)

where m ∈ M∆. Here M∆ stands for the set finite regular positive Borel measure m
whose support is included in the interval [−∆,∆] and whose total mass is normalized to
1, in other words: m(R) = m([−∆,∆]) = 1, for all m ∈M∆.

Our goal is to derive bounds on f by using the sum rule (II.12) on the function vm:

vm(z) = hm(v(z)) on C+,

where v is the Herglotz function defined via f in Corollary 10. As v is not constant, one
first notices that vm is a Herglotz function as it is a composition of two Herglotz functions
(see9). To apply the sum rules, we need the asymptotic behavior of vm near zero and
infinity. It is the purpose of the following lemma.

Lemma 13. For any θ ∈ (0, π
2
), the Herglotz function hm satisfies the following asymp-

totics in the Stolz domain Dθ:

hm(z) = −m({0})
z

+ o

(
1

z

)
as |z| → 0 and hm(z) = −1

z
+ o

(
1

z

)
as |z| → +∞,

(II.21)
which imply that in Dθ:

vm(z) = −m({0})
f(0)z

+ o

(
1

z

)
as |z| → 0 and vm(z) = − 1

f∞ z
+ o

(
1

z

)
as |z| → +∞.

(II.22)

Proof. The asymptotic behavior at z = 0 of hm follows from the relation (II.11) which
is proved in11 by using Lebesgue’s dominated convergence theorem. To show the asymp-
totics (II.21) of h at z =∞, one gets first, using the relation (II.20), that:

zhm(z) =

∫ ∆

−∆

zdm(ξ)

ξ − z = −m([−∆,∆]) +

∫ ∆

−∆

ξdm(ξ)

ξ − z ,

where m([−∆,∆]) = 1, by hypothesis. One finally concludes by proving that the integral
of the right hand side in the latter expression tends to 0 as |z| → +∞. This is a
consequence of Lebesgue’s dominated convergence theorem where a domination condition
on the integrand is given by∣∣∣∣ ξ

ξ − z

∣∣∣∣ ≤ 1

sin(θ)
, since |ξ − z| ≥ |ξ| sin(θ), ∀ξ ∈ [−∆,∆] and ∀z ∈ Dθ.

13



The asymptotics (II.22) follows immediately by composition from the asymptotics (II.21)
and the hypotheses H1 and H2 which imply respectively that in Dθ: v(z) = f(0)z +
o(z), as |z| → 0 and v(z) = f∞ z + o(z), as |z| → +∞ (one notices that the first
asymptotic formula in (II.22) is well-defined. Indeed f(0) is positive since we already
showed (see proof of Theorem 9) that the function f(z) is real and decreasing along the
imaginary axis, thus f(0) ≥ f∞ > 0).

One can now use the sum rules (II.12) on the function vm over the finite frequency
band [x−, x+] to get the following inequality:

lim
y→0+

1

π

∫ x+

x−

Im vm(x+ iy) dx ≤ 1

f∞
− m({0})

f(0)
≤ 1

f∞
, (II.23)

where the right inequality in the latter expression is justified by the fact that m is a
positive measure and that f(0) is also positive.

The following theorem expresses that if one wants to maximize the left hand side of
the sum rules (II.23) on the set of measures M∆, it is sufficient to use Dirac measures:
m = δξ for points ξ ∈ [−∆,+∆].

Theorem 14. Let ∆ be a positive real number and [x−, x+] be a finite frequency band
included in R+∗, then one has

sup
m∈M∆

1

π
lim
y→0+

∫ x+

x−

Im vm(x+ iy) dx = sup
ξ∈[−∆,+∆]

1

π
lim
y→0+

∫ x+

x−

Im vδξ(x+ iy) dx. (II.24)

Proof. Let m ∈ M∆, one denotes by νm the measure associated with the Herglotz func-
tion: vm by the representation Theorem 2. Thus, by virtue of the relation (II.10) which
defines the measure of a Herglotz function, one has:

1

π
lim
y→0+

∫ x+

x−

Im vm(x+ iy) dx =
νm

(
(x−, x+)

)
+ νm([x−, x+])

2
. (II.25)

One wants now to connect the measure νm of vm = hm ◦ v to the measure m of the
Herglotz function hm. In20, the authors provide an expression of the measure νm in terms
of the measures m and the measure νδξ associated with the Herglotz function vδξ = hδξ ◦v.
They prove that for any Borelian sets B, νm(B) is given by

νm(B) =

∫ ∆

−∆

νδξ(B)dm(ξ).

Thus, applying this last relation to B = (x−, x+) and B = [x−, x+] in the equation (II.25)
yields:

1

π
lim
y→0+

∫ x+

x−

Im vm(x+ iy) dx =

∫ ∆

−∆

1

2

[
νδξ((x−, x+)) + νδξ([x−, x+])

]
dm(ξ),

≤ sup
ξ∈[−∆,+∆]

(1

2

[
νδξ((x−, x+)) + νδξ([x−, x+])

] )
m([−∆,+∆]).
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Using now the fact that m
(
[−∆,∆]

)
= 1 and the relation (II.10) which characterizes the

measure νδξ of the Herglotz function vδξ leads us to:

1

π
lim
y→0+

∫ x+

x−

Im vm(x+ iy) dx ≤ sup
ξ∈[−∆,+∆]

1

π
lim
y→0+

∫ x+

x−

Im vδξ(x+ iy) dx.

By taking the supremum on M∆, one shows one side of the equality (II.24). As the
reverse inequality of (II.24) is straightforward, this concludes the proof.

The last theorem shows that for any ∆ ∈ R, the family of Dirac measures (δξ)ξ∈R
maximizes the sum rule (II.23) on the set of positive measures M∆. For such measures,
the inequality (II.23) can be rewritten as:

lim
y→0+

∫ x+

x−

Im vδξ(x+ iy) dx = lim
y→0+

∫ x+

x−

Im

(
1

ξ − v(x+ iy)

)
dx ≤ π

f∞
, ∀ξ ∈ R . (II.26)

E. The case of a transparency window

By using the family of punctual measures (δξ)ξ∈R, we will now derive an explicit bound
on the function f on a interval [ω−, ω+] ⊂ R+∗ under the assumption that this interval
is a transparency window. In other words, one supposes that f is real on [ω−, ω+]. In
physics, (like in electromagnetism when for instance f = ε or f = µ), this hypothesis
amounts neglecting the absorption of the material in the frequency band [ω−, ω+].

In this case, one gets immediately that the Herglotz function v is real on [x−, x+] =
[ω2
−, ω

2
+]. Thus, one can extend v analytically through the interval (x−, x+) by using

Schwarz’s reflection principle by posing

ve(z) = v(z) on clC+ and ve(z) = v(z) on C−

and it is straightforward to check (thanks to H3) that ve coincides with the definition
(II.16) of v on the domain D = C\ ([0, x−]∪ [x+,+∞)). Hence, the function v is analytic
on D. With our approach, one recovers in the next proposition a bound similar to the
ones derived in61,96. This bound correlates the value of two points of the function f
within the considered interval. A generalization of such bounds to an arbitrary number
of points of correlation is done in61.

Proposition 15. In the transparency window [x−, x+] = [ω2
−, ω

2
+], the function v satisfies

f∞(x− x0) ≤ v(x)− v(x0), ∀x, x0 ∈ [x−, x+] such that x0 ≤ x, (II.27)

which yields the following bound on f :

ω2
0(f(ω0)− f∞) ≤ ω2(f(ω)− f∞), ∀ω, ω0 ∈ [ω−, ω+] such that ω0 ≤ ω. (II.28)
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Proof. Let x0 ∈ (x−, x+). One defines ξ by ξ = v(x0) ∈ R. Hence, the Herglotz function
vδξ = (ξ − v)−1 has a pole at z = x0. As any real pole of a Herglotz functions is
of multiplicity one (see27), this implies in particular that the derivative v′(x0) 6= 0.
Moreover, as ξ − v is an analytic function which is not constant on D, therefore the
pole x0 is isolated. Thus, there exists a closed interval: [x̃−, x̃+] ⊂ (x−, x+) containing
x0 such that x0 is the only singular point of the function vδξ on [x̃−, x̃+]. Hence, one can
rewrite vδξ as:

vδξ(z) =
g(z)

(z − x0)
where g is analytic and real on [x̃−, x̃+] and g(x0) =

−1

v′(x0)
.

Using this last property on vδξ , one can evaluate the limit in the left hand side of (II.26):

lim
y→0+

∫ x̃+

x̃−

Im vδξ(x+ iy) dx

= lim
y→0+

∫ x̃+

x̃−

Im

(
g(x+ iy)− g(x0)

x+ iy − x0

)
dx+ lim

y→0+

∫ x̃+

x̃−

Im

( −g(x0)

x− (x0 + iy)

)
dx.(II.29)

Indeed, as a consequence of Lebesgue’s dominated convergence theorem, the first limit of
(II.29) is 0 and by applying the Sokhotski-Plemelj formula (see38) to evaluate the second
limit of (II.29), one gets:

lim
y→0+

∫ x̃+

x̃−

Im vδξ(x+ iy) dx = −πg(x0) =
π

v′(x0)
,

By using (II.26), this leads to:

f∞ ≤ v′(x0), ∀x0 ∈ (x−, x+).

Integrating this latter relation leads to inequality (II.27) on (x−, x+), which extends
to the closed interval [x−, x+] by using the continuity of v at x±. One finally derives
inequality (II.28) from (II.27) by using the definition (II.16) of v and the changes of
variables: x = ω2 and x0 = ω2

0.

Link with the Kramers–Kronig relations

For the case of a transparency window: [ω−, ω+], we want now to emphasize that the
bound obtained in the proposition 15 can be also derived by applying the Kramers–Kronig
relations to the function f :

Re f(ω) = f∞ +
2

π
P
∫ ∞

0

ω′ Im f(ω′)

(ω′)2 − ω2
dω′ (II.30)

where P denotes the Cauchy principal value of the integral. In electromagnetism, these
relations, satisfied by the permittivity ε and the permeability µ (see39,81), characterize
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the dispersion of a passive material by correlating the real part and the imaginary part
of ε and µ by nonlocal integral relations.

Mathematically, to derive the Kramers–Kronig relations pointwise at a frequency ω,
one supposes classically in addition to H1–H3 that f(ω′)−f∞ = O(|ω′|−α) for some α > 0
as |ω′| → ∞ in clC+ (which is slightly more than H4) and that f is Hölder continuous
at ω on the real axis. These two last conditions (see38,87) ensure the existence of the
Cauchy principal value in (II.30). We point out that in the literature, one can find other
mathematical hypotheses such as f belongs to to Hardy space H2(C+) (see Titchmarsh’s
theorem81) which ensure the existence of these relations for almost every real frequencies
ω.

Now using the fact [ω−, ω+] is a transparency window, i. e. Im f(ω) = 0 for all
ω ∈ [ω−, ω+], one gets:

f(ω) = f∞ +
2

π

∫ ω−

0

ω′ Im f(ω′)

(ω′)2 − ω2
dω′ +

2

π

∫ ∞
ω+

ω′ Im f(ω′)

(ω′)2 − ω2
dω′, ∀ω ∈ (ω−, ω+), (II.31)

where the Cauchy principal value is not useful anymore in the latter expression since in
both integrals the singular point does not belong to the domain of integration. We point
out that in a transparency window, the function f can be analytically extended through
the interval (by a Schwarz reflection principle), thus the Hölder regulartity necessary to
derive the Kramers–Kronig relations is automatically satisfied on (ω−, ω+).

Applying the Kramers-Kronig relation (II.31) to two frequencies ω, ω0 ∈ (ω−, ω+)
satisfying ω0 ≤ ω yields

ω2[f(ω)− f∞]− ω2
0[f(ω0)− f∞] =

2

π

∫ ω−

0

ω′ Im f(ω′)

[
ω2

(ω′)2 − ω2
− ω2

0

(ω′)2 − ω2
0

]
dω′

+
2

π

∫ ∞
ω+

ω′ Im f(ω′)

[
ω2

(ω′)2 − ω2
− ω2

0

(ω′)2 − ω2
0

]
dω′

=
2

π

∫ ω−

0

ω′ Im f(ω′)

[
(ω′)2(ω2 − ω2

0)

[(ω′)2 − ω2][(ω′)2 − ω2
0]

]
dω′

+
2

π

∫ ∞
ω+

ω′ Im f(ω′)

[
(ω′)2(ω2 − ω2

0)

[(ω′)2 − ω2][(ω′)2 − ω2
0]

]
dω′

≥ 0,

where to obtain the last inequality we have used the fact that the ratio

(ω2 − ω2
0)

[(ω′)2 − ω2][(ω′)2 − ω2
0]
≥ 0

when either ω ≥ ω0 > ω− ≥ ω′ > 0 or when ω′ ≥ ω+ > ω ≥ ω0 > 0 and the fact that H4
imposes that ω′ Im f(ω′) is positive on R+. Thus, one obtains again the bound (II.28)
on the open interval (ω−, ω+). Finally, this bound can be extended to the closure of this
interval by using the continuity of f at ω±.
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F. The lossy case

The bound (II.28) is only valid if Im f is exactly zero on [ω−, ω+]. When the loss of
the material cannot be neglected in this frequency band, other bounds can be derived
from the inequality (II.23). By choosing for instance the uniform measure of M∆:

dm(ξ) =
1[−∆,∆](ξ)

2∆
dξ

for the Herglotz function hm, one recovers the bounds derived in35. More precisely, we
get:

hm(z) =
1

2∆

∫ ∆

−∆

1

ξ − zdξ =
1

2∆
log

(
z −∆

z + ∆

)
, ∀z ∈ C+, (II.32)

where the function log is defined with the same branch cut: R+ as the square root
function (II.14). As:

z −∆

z + ∆
=
|z|2 −∆2 + 2i∆ Im(z)

|z + ∆2| , ∀z ∈ C+,

one checks easily that Imhm(z) is bounded above by π/(2∆) and from below by:

Imhm(z) ≥ π

4∆
H(∆− |z|), ∀z ∈ C+, (II.33)

where H stands here for the Heaviside function. Moreover, in the limit y → 0+, Im[h(x+
iy)] takes the value π/(2∆) for |x| < ∆ and 0 for |x| > ∆.

Now, applying the relations (II.32) and (II.23), one gets:

lim
y→0+

∫ x+

x−

Im vm(x+ iy) dx =
1

2∆
lim
y→0+

∫ x+

x−

arg

(
v(x+ iy)−∆

v(x+ iy) + ∆

)
dx ≤ π

f∞
. (II.34)

Hence, using the bound (II.33), one gets we obtain a less stringent but more transparent
inequality:

lim
y→0+

∫ x+

x−

H(∆− |v(x+ iy)|) dx ≤ 4∆

f∞

and using Lebesgue’s Dominated convergence theorem to evaluate this limit (thanks to
the continuity assumption of f on [x−, x+]) we get∫ x+

x−

H(∆− |v(x)|) dx ≤ 4∆

f∞
. (II.35)

In a plot of |v(x)| against x the quantity on the left of (II.35) represents the total length
of the interval or intervals of x, between x− and x+, where |v(x)| is less than ∆. Clearly
the bound implies that this total length must shrink to zero as ∆→ 0. If we take

∆ = max
x∈[x−,x+]

|v(x)|
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then the left hand side of (II.35) equals x+ − x− and

1

4
(x+ − x−)f∞ ≤ max

x∈[x−,x+]
|v(x)|.

One finally gets immediately from this last inequality the following bound on the function
f .

Proposition 16. Let [ω−, ω+] ⊂ R+∗ then the function f satisfies the following inequal-
ity:

1

4
(ω2

+ − ω2
−)f∞ ≤ max

x∈[ω−,ω+]
|ω2f(ω)|. (II.36)

This last bound is essentially the same as the bound (1) derived in35.

Remark 17. More precisely, one will recover exactly the bound (1) derived in35, namely

1

2
(ω+ − ω−)f∞ ≤ max

x∈[ω−,ω+]
|ωf(ω)| ,

if one uses the Herglotz function ṽ defined by (II.18) instead of v to define the function
vm. One points out that the factor 1/2 instead of the factor 1/4 in (II.36) comes from
the relation (II.19) satisfied by ṽ which allows one to rewrite the sum rule (II.12) as

lim
η→0+

lim
y→0+

2

π

∫
η<x<η−1

Imh(x+ iy) dx = a−1 − b−1.

Remark 18. Notice here that one can easily check that all the bounds derived in this
section still hold for functions f of the form (II.17) whose real poles do not belong to the
interval [ω−, ω+]. In other words, it extends also to non-dissipative generalized Drude–
Lorentz models whose resonances do not belong to the frequency range of interest. Thus,
the hypothesis H1 which assumes that f is continuous for all real frequencies can be
relaxed.

III. BOUNDS ON THE POLARIZABILITY TENSOR AND
QUASISTATIC CLOAKING

A. Formulation of the problem

The challenging problem we address in this section is the following: is it possible to
construct a passive material to cloak a dielectric inclusion on a whole frequency band
[ω−, ω+]? Using the bounds derived in the first section, we will prove that it is not
possible when one makes the quasistatic approximation of Maxwell’s equations.

Let O be a bounded simply-connected dielectric inclusion with Lipschitz boundary
and constant permittivity ε I satisfying ε > ε0. We assume here in particular that O is
made of a standard dielectric material for which one can neglect the dispersion, in other
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Vacuum: R3 \ ⌦, "0I

O, "I

Cloak: ⌦ \ O, "(x, !)

E0

FIG. 2. Description of the cloaking problem

words the frequency dependence of ε, on the frequency range of interest [ω−, ω+]. To
make invisible O, one uses a passive cloak of any shape characterized by its dielectric
tensor ε(x, ω) which depends both on the spatial variable x and the frequency ω. Thus,
the cloak is composed of an anisotropic, dispersive and heterogeneous material. The
whole device: the dielectric inclusion and the cloak is assumed to fill a bounded open set
Ω ⊂ R3 of characteristic size R0, in other words Ω ⊂ B(0, R0) where B(0, R0) denotes
the open ball of radius R0 centered at the origin. Finally, one supposes that the rest of
the space: R3 \ Ω has the same dielectric constant ε0 I as the vacuum. We emphasize
that the cloak can surround the inclusion O (like in the figure 2) which is the case for
many cloaking methods, but our results hold also for cloaking methods such as anomalous
resonances62 or complementary media47 for which the inclusion can be outside the cloak.

For simplicity we assume that there is a plane incident wave on the device, with
wavelength considerably larger than R0, so that within the frequency range of interest
ω ∈ [ω−, ω+] we can use the quasistatic equations which amounts neglecting the term due
to the time-derivatives of the electrical and magnetic inductions in the time-harmonic
Maxwell equations. Thus, it leads to a decoupling of these equations. In this setting39,60,
one can express the electrical field E(x, ω) in terms of the gradient of some potential
V (x, ω), i.e. E(x, ω) = −∇V (x, ω), and an incident plane wave corresponds to a uniform
field E0 ∈ C3 at infinity so that the potential∇V (x, ω) has to satisfy the following elliptic
equation {

∇ ·
(
ε(x, ω)∇V (x, ω)

)
= 0 on R3,

V (x, ω) = −E0 · x +O(1/|x|) as |x| → ∞.
(III.37)

In this context, the leading order correction to the uniform incident field E0 at infinity
is a dipolar field (see6,39,41,60), so that the potential V has the asymptotic expansion

V (x, ω) = −E0 · x +
p(ω) · x
4πε0|x|3

+O
( 1

|x|3
)

as |x| → ∞. (III.38)
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where the induced dipole moment p(ω) ∈ C3 is linearly related to the applied field E0

and this linear relation:
p(ω) = α(ω)E0 (III.39)

defines the polarizability tensor α(ω) (also called the Polya–Szego tensor), which is a
3 × 3 complex matrix. We point out that α is a function of the frequency in the case
of dispersive media. α(ω) defines the leading term of the far field of the scattered wave
generated by the whole device Ω. Hence, one says that the dielectric inclusion O is
cloaked at a sufficient large distance at a frequency ω ∈ [ω−, ω+], if the polarizability
tensor α(ω) vanishes at ω.

We emphasize that the equations (III.37)-(III.39) which define the polarizability tensor
α(ω) are physically relevant only in the frequency interval of interest [ω−, ω+] where the
quasistatic approximation is valid. Nevertheless, as the dielectric tensor of the cloak
ε(x, ω) is defined, by the constitutive laws, for all frequencies ω in the closure of the
upper-half plane clC+, one can study mathematically these equations for ω ∈ clC+. To
define their extension to ω ∈ clC+, we set also that within the dielectric inclusion O, the
permittivity ε(·, ω) is constant and equal to ε I for all ω ∈ clC+. This definition is also
physically relevant only in the frequency band [ω−, ω+] where O is assumed to be a non-
dispersive dielectric (since the only material which behaves as a non-dispersive media at
all frequencies is the vacuum). Outside the cloaking device Ω, where the dielectric behaves
as the vacuum, one extends ε(·, ω) by ε0 I for all ω ∈ clC+. To sum up, the extension
of the equations (III.37)-(III.39) to ω ∈ clC+ is performed to derive quantitative bounds
on α(ω) which have a physical meaning only in the frequency band of interest [ω−, ω+].

We have now to specify what we mean by a passive cloak. In the following, we equip
the space of complex 3× 3 matrices with the induced l2 norm. A passive cloak is defined
as a material which satisfies the following assumptions:

• H̃1: for a. e. x ∈ Ω \ O, ε(x, ·) is analytic on C+ and continuous on clC+,

• H̃2: for a. e. x ∈ Ω \ O, ε(x, ω)→ ε0I as |ω| → ∞ in clC+,

• H̃3: for a .e. x ∈ Ω \ O, ∀ω ∈ clC+, ε(x,−ω) = ε(x, ω),

• H̃4: for a. e. x ∈ Ω \ O,∀ω ∈ R+, Im ε(x, ω) ≥ 0 (passivity),

• H̃5: for a. e. x ∈ Ω \ O,∀ω ∈ clC+, ε(x, ω)> = ε(x, ω), where > stands for the
transpose operation (reciprocity principle).

Assumptions H̃1−H̃4 correspond to hypotheses H1–H4 (given in section II A) but are ex-
pressed in the more general case of anisotropic and heterogeneous passive materials18,60,95.
The assumption H̃5 is classical. Physically it means that the cloak satisfies a reciprocity
principle. It is shared by most of the electromagnetic media, but it can be violated in
some particular cases as for gyroscopic media or in the presence of Hall effect or magnetic-
optical effect48. Most of our bounds still hold when the reciprocity principle H̃5 is broken,
therefore in the following we specify the results for which this additional hypothesis is
required.
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In the following, one extends the definition of ε to ω =∞ by posing:

ε(∞,x) = εI for a. e. x in O and ε(∞,x) = ε0I for a. e. x ∈ R3 \ O,

so that ε(x, ·) is continuous on clC+ ∪ {∞} for a. e x ∈ R3 (by hypotheses H̃1 and H̃2).
In this context, the broadband passive problem can be rephrased as follows: is it possi-

ble to construct a passive cloak, in other words, a material satisfying the five hypotheses
H̃1 − H̃5 in Ω \ O such that the polarizability tensor α(ω) associated with the whole
device Ω vanishes on the whole frequency band [ω−, ω+]? We will answer negatively to
this question and derive quantitative bounds on the function α over this frequency range.

B. Analyticity of the polarizability tensor

To derive fundamental limits on the cloaking effect over the frequency band [ω−, ω+],
we want to apply the bounds derived in the section II to the polarizability tensor α or
more precisely to the scalar function

f(ω) = α(ω)E0 · E0. (III.40)

Hence, the first step is to prove that if the dielectric tensor ε satisfies H̃1− H̃5 then the
function f satisfies the hypotheses H1− 4 that we used to derive these bounds.

To this aim, we first recall in this subsection why equations (III.37) are well-posed, in
other words why they admit a unique solution V (·, ω) in a classical functional framework.
Moreover, we show that V (·, ω) depends analytically on the frequency ω on C+ and
continuously on clC+∪{∞}. Then, we use this result to prove that the function f , defined
by (III.40), shares the same regularity and satisfies the assumptions H1–H4. Finally,
this allows us (using the results of subsection II C) to construct a Herglotz function v
associated with f .

In this perspective, we seek the potential V (·, ω), that is the solution of (III.37), in
the form:

V (x, ω) = −E0 · x + Vs(x, ω) (III.41)

where Vs(·, ω) denotes the scattered potential due to the reflection of the uniform field
E0 on the device Ω. Hence by (III.37), Vs satisfies{

∇ · (ε(x, ω)∇Vs(x, ω)) = ∇ ·
(
(ε(x, ω)− ε0I) E0

)
on R3, (III.42)

Vs(x, ω) = O(1/|x|) as |x| → ∞. (III.43)

In the following, we denote respectively by B(ω, δ) and ‖ · ‖∞ the open ball of center ω
and radius δ and the uniform norm on 3× 3 matrix valued functions defined on the set
R3. We assume that the dielectric tensor ε(·, ω) satisfies two additional hypotheses in
the cloak Ω \ O:

• H̃6 (Uniformly bounded): ∀ω ∈ clC+, ε(·, ω) is a L∞ matrix-valued function on
Ω \ O and there exists a positive constant c1 such that supω clC+ ‖ε(·, ω)‖∞ ≤ c1,
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• H̃7 (Coercivity):

– ∀ω ∈ C+, there exists c2(ω) > 0 and γ(ω) ∈ [0, 2π) such that

| Im(ei γ(ω)ε(x, ω)E.E)| ≥ c2(ω)|E|2, ∀E ∈ C3, for a.e. x ∈ R3.

– ∀ω0 ∈ R, ∃δ > 0, c2(ω0) > 0 and γ(ω0) ∈ [0, 2π) such that ∀ω ∈ B(ω0, δ) ∩
clC+ :

| Im(ei γ(ω0)ε(x, ω)E.E)| ≥ c2(ω0)|E|2, ∀E ∈ C3, for a.e. x ∈ R3.

Moreover, we suppose that this last property holds also in a neighborhood of
ω0 =∞ by replacing in the previous relationB(ω0, δ) with {z ∈ C | |z| > 1/δ}.

These two hypotheses are classical assumptions. H̃6 amounts to supposing that the
dielectric tensor is uniformly bounded with respect to x and ω, and H̃7 that it is coercive
with respect to x. Moreover, we require in H̃7 the additional property that the constant
of coercivity c2(ω0) holds locally in frequency in a neighborhood of any real frequency or
of ω =∞.

Remark 19. The coercivity hypothesis H̃7 is a bit restrictive in the sense that it does
not allow any type of passive media, as for instance, a cloak which behaves as a non-
dissipative negative index metamaterial whose permittivity ε(·, ω) is a negative constant
function. In that particular case, ε(·, ω) changes signs at the boundary of the cloak since
the dielectric inclusion and the vacuum have positive permittivity and thus H̃7 is not
satisfied. Nevertheless, this example neglects completely the dissipation of negative index
materials which physically allows us to recover H̃7 even if it is small. However, we think
that mathematically, the bounds we derived can be extended to sign-changing media by us-
ing mathematical methods associated with sign-changing conductivity equations (see14,72)
which do not require the coercivity of ε(·, ω).

We now look for a solution Vs(·, ω) of equations (III.42) and (III.43) in an appropri-
ate weighted Sobolev space: a Beppo–Levi space, usually used as functional space for
solutions of the conductivity equation in unbounded domains. It is defined by

W1,−1(R3) = {u ∈ S ′(R3) | (1 + |x|2)−
1
2 u ∈ L2(R3) and ∇u ∈ L2(R3)} (III.44)

where S
′
(R3), L2(R3) and L2(R3) denote respectively the space of tempered distributions

and the spaces of scalar and vector-valued square-integrable functions. W1,−1(R3) is a
Hilbert space (see66) for the norm

‖u‖W1,−1(R3) = ‖∇u‖L2(R3) =

(∫
R3

|∇u|2dx

) 1
2

.

First, we prove that the equation (III.42) admits a unique solution in W1,−1(R3) which
depends analytically on ω on C+ and continuously on clC+ ∪ {∞}. Then we will show
that this solution satisfies the asymptotics (III.43).
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We denote by f(·, ω) the function

f(·, ω) = (ε(·, ω)− ε0I)E0

which is compactly supported in Ω. Hence, using the hypothesis H̃6, one checks easily
that f(·, ω) ∈ L2(R3). By applying the Green formula, it is standard to show that solving
the equation (III.42) in W1,−1(R3) is equivalent solving the following variational problem:

Find Vs(·, ω) ∈ W1,−1(R3) such that aω(Vs(·, ω), v) = lω(v), ∀v ∈ W1,−1(R3), (III.45)

where the sesqulinear form aω and the anti-linear form lω are respectively defined by

aω(u, v) =

∫
R3

ε(x, ω)∇u(x) · ∇v(x) dx

and lω(v) =

∫
R3

f(x, ω) · ∇v(x) dx, ∀u, v ∈ W1,−1(R3).

With the assumption H̃6 made on ε(·, ω) and the Cauchy–Schwarz inequality, it is
straightforward to show that

|aω(u, v)| ≤ c1 ‖u‖W1,−1(R3) ‖v‖W1,−1(R3) and |lω(v)| ≤ ‖f(·, ω)‖L2(R3)‖v‖W1,−1(R3).

In other words, aω and lω are continuous. We denote by W1,−1(R3)∗ the dual space of
W1,−1(R3) and by 〈·, ·〉 the duality product between these two spaces. Classically, the
continuity of aω allows us to define a continuous linear operator A(ω) from W1,−1(R3) to
W1,−1(R3)∗ by posing:

aω(u, v) = 〈A(ω)u, v〉, ∀u, v ∈ W1,−1(R3).

The continuity of lω proves that f(·, ω) ∈ W1,−1(R3)∗ and can be rewritten as lω(v) =
〈f(·, ω), v〉. Hence, the variational problem (III.45) is equivalent to solving the infinite
dimensional system:

A(ω)Vs(·, ω) = f(·, ω). (III.46)

For two Banach spaces E and F , we denote in the following by L(E,F ) the Banach
space of bounded linear operators from E to F equipped with the operator norm.

Lemma 20. At a fixed frequency ω ∈ clC+ ∪ {∞}, the operator A(ω) : W1,−1(R3) →
W1,−1(R3)∗ is invertible. Moreover, the functions ω 7→ A(ω) and ω 7→ A(ω)−1 defined re-
spectively from C+ to L

(
W1,−1(R3),W1,−1(R3)∗

)
and from C+ to L

(
(W1,−1(R3))∗,W1,−1(R3)

)
are analytic for the operator norm.

Proof. Let ω ∈ clC+ ∪ {∞}. Thanks to the hypothesis H̃7 on ε(x, ω), we get that aω is
a coercive sesquilinear form which satisfies

|aω(u, u)| = |eiγ(ω)aω(u, u)| ≥ | Im(eiγ(ω)aω(u, u))| ≥ c2(ω)‖u‖2
W1,−1(R3).
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Thus, by Lax–Milgram’s theorem, A(ω) : W1,−1(R3)→ W1,−1(R3)∗ is an isomorphism.
One wants now to prove that the function ω 7→ A(ω) is analytic on C+ for the

operator norm. For this purpose, it is sufficient to show its weak analyticity, in other
words that ω 7→ 〈A(ω)u, v〉 is analytic on C+, for any fixed u and v ∈ W1,−1(R3). As

ε(x, ·) is analytic (by the hypothesis H̃1), one can check easily by applying the theorem
of complex differentiation under the integral presented in53 (using the hypothesis H̃6 for
the domination condition required in its assumption) that ω 7→ 〈A(ω)u, v〉 is analytic
on C+ for any fixed u and v ∈ W1,−1(R3). As weak analyticity implies analyticity for
the operator norm (see42, Theorem 3.12 p. 152), the function ω 7→ A(ω) is analytic.
Therefore, one deduces (see42 chapter 7 pp 365-366) that ω 7→ A(ω)−1 is also analytic for
the operator norm.

Theorem 21. At a fixed frequency ω ∈ clC+ ∪ {∞}, the equation (III.42) admits a
unique solution Vs(·, ω) in W1,−1(R3) defined by

Vs(·, ω) = A−1(ω)f(·, ω). (III.47)

Moreover, the function ω 7→ Es(·, ω) = −∇Vs(·, ω) from clC+ to L2(R3) equipped with
the ‖ · ‖L2(R3) norm is analytic on C+ and continuous on clC+ ∪ {∞}.
Proof. Let ω be in clC+ ∪ {∞}. From the Lemma 20, we know that the operator A(ω)
is invertible. Hence, the equation (III.42) admits a unique solution (III.47) in W1,−1(R3)
given by the inversion of the linear system (III.46).

Now, we show the analyticity of the function ω 7→ Es(·, ω) on C+ for the norm ‖·‖L2(R3)

or equivalently that ω 7→ Es(·, ω) = −∇Vs(·, ω) is analytic for the norm ‖ · ‖W1,−1(R3). To
achieve this aim, one uses the relation (III.47) and the fact that the function ω 7→ A(ω)−1

is analytic for the operator norm (see Lemma 20). Thus, it only remains to prove that
ω 7→ f(·, ω) is analytic for the norm of (W1,−1(R3))∗. By Theorem 1.37 p. 139 of42, this
is equivalent proving weak analyticity, in other words the analyticity of the functions
ω 7→ lω(v) = 〈f(·, ω), v〉 for any fixed v ∈ W1,−1(R3). This last property is shown once
again by applying the theorem of complex differentiation under the integral presented
in53 (using again the fact that ε(x, ·) is analytic by the hypothesis H̃1 and the hypothesis
H̃6 to establish the domination condition required in this theorem).

Thus, it remains to prove the continuity of ω 7→ Es(·, ω) = −∇Vs(·, ω) for real fre-
quencies and for ω = ∞. The reasoning here is slightly different from the one used for
the analyticity in the upper half plane. The main reason is that weak continuity does
not imply strong continuity.

Let (ωn) be a sequence of clC+ which tends to ω ∈ R. As Aωn Vs(·, ωn) = f(·, ωn) and
Aω Vs(·, ω) = f(·, ω) (where both operators Aωn and Aω are invertible by Lemma 20), we
get the following identity:

Vs(·, ω)− Vs(·, ωn) = A−1
ωn

(
AωnVs(·, ω)− AωVs(·, ω) + f(·, ω)− f(·, ωn)

)
.

Thus, it follows immediately that:

‖Vs(·, ωn)− Vs(·, ω)‖W1,−1(R3)

≤ ‖A−1
ωn‖ (‖(Aωn − Aω)Vs(·, ω)‖W1,−1(R3)∗ + ‖f(·, ω)− f(·, ωn)‖W1,−1(R3)∗) .
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We show now that the right hand side of the last equation tends to zero. To this aim,
one first remarks as a consequence of assumption H̃7 and Lax-Milgram’s Theorem that
‖A−1

ωn‖ ≤ c2(ω)−1 for n large enough. Then, for any v ∈ W1,−1(R3), one has, by using the
Cauchy–Schwarz inequality:

|〈(Aω − Aωn)Vs(·, ω), v〉| ≤
(∫

R3

‖ε(x, ω)− ε(x, ωn)‖2|∇Vs(x, ω)|2dx

) 1
2

‖v‖W1,−1(R3).

Thus, using the continuity of ε(x, ·) at ω (assumption H̃1) and the hypothesis H̃6 for
the domination condition, one proves, by applying Lebesgue’s dominated convergence
theorem, that the integral in the last formula tends to zero. Thus, one concludes that:

‖(Aωn−Aω)Vs(·, ω)‖W1,−1(R3)∗ = sup
v∈W1,−1(R3)\{0}

∣∣〈(Aω − Aωn)Vs(·, ω), v
〉∣∣

‖v‖W1,−1(R3)

→ 0, as n→ +∞.

Finally, by doing the same reasoning for the term ‖f(·, ω)− f(·, ωn)‖W1,−1(R3)∗ , one has:

|〈f(·, ω)− f(·, ωn), v〉| ≤
(∫

Ω

‖ε(x, ω)− ε(x, ωn)‖2 |E0|2dx

) 1
2

‖v‖W1,−1(R3).

Then, by using once again Lebesgue’s dominated convergence theorem (thanks to the
assumptions H̃1 and H̃6), one shows also that: ‖f(·, ω)− f(·, ωn)‖W1,−1(R3)∗ → 0, as n→
+∞. Thus, one concludes that:

‖Vs(·, ωn)− Vs(·, ω)‖W1,−1(R3) → 0, as n→ +∞.

The same proof as above holds to show the continuity at ω =∞.

Now, we state why the solution Vs(·, ω) of (III.47) satisfies not only the equation
(III.42) but also admits the asymptotic expansion (III.43) and more precisely that the
leading term of Vs(·, ω) at infinity is a dipolar field (see39). To this aim, one uses the
fact that outside the cloaking device, the equation (III.42) becomes the following Laplace
equation:

∇2u(·, ω) = 0 on R3 \B(0, R) and u(·, ω) = Vs(·, ω) on ∂B(0, R) (III.48)

for R > R0, where ∂B(0, R) denotes the boundary of a ball B(0, R) which contains
and does not intersect the cloaking device Ω. We point out that the trace of Vs(·, ω)
on the sphere ∂B(0, R) belongs to H1/2(∂B(0, R)) since Vs(·, ω) is locally H1 (indeed,
by using standard interior regularity results for second order elliptic equations, see for
instance Theorem 2 p. 314 of24, one can show that the trace of Vs(·, ω) belongs to any

Hs
(
∂B(0, R)

)
for s > 0). Therefore, the Dirichlet exterior problem (III.48) (see for

example Theorem 2.5.14 of66) admits a unique solution in W1,−1(R3 \ B(0, R)) given by
the restriction of Vs(·, ω) on R3 \B(0, R) (the definition of the space W1,−1(R3 \B(0, R))
is deduced from the definition (III.44) by replacing R3 by R3 \ B(0, R)). Moreover, as
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a solution of the Laplace equation (III.48) this solution admits the following integral
representation:

Vs(x, ω) =

∫
∂B(0,R)

∂G(x,y)

∂ny
Vs(y, ω)−G(x,y)

∂Vs(y, ω)

∂ny
dy with G(x,y) =

1

4π |x− y| ,

where ny = y/|y| is the outward normal of the domain B(0, R). Then, by using
the asymptotic expansions of the Green function G(x,y) and its normal derivative
∂G(x,y)/∂ny for large values of |x|:

G(x,y) =
1

4π|x| +
y · x

4π|x|3 +O

(
1

|x|3
)

and
∂G(x,y)

∂ny
=

ny · x
4π|x|3 +O

(
1

|x|3
)

which holds uniformly in y on ∂B(0, R), this leads to

Vs(x, ω) =
Q(ω)

4πε0|x|
+

p(ω) · x
4πε0|x|3

+O
( 1

|x|3
)
, (III.49)

where the charge (also called monopole term) Q(ω) and the induced dipole moment p(ω)
are respectively given by

Q(ω) = ε0

∫
∂B(0,R)

−∂Vs(y, ω)

∂ny
dy and p(ω) = ε0

∫
∂B(0,R)

−∂Vs(y, ω)

∂ny
y + Vs(y, ω)ny dy.

(III.50)
In our scattering problem, one can easily prove that the monopole term Q(ω) vanishes.
Indeed, using the divergence theorem and the equation (III.37), one gets:∫

∂B(0,R)

ε(y, ω)∇V (y, ω) · nydy =

∫
∂B(0,R)

ε0
∂V (y, ω)

∂ny
dy = 0

and thus by virtue of (III.41) and (III.50), one obtains that

Q(ω) = −
∫
∂B(0,R)

ε0E0 · ny dy = −ε0E0 ·
∫
∂B(0,R)

ny dy = 0 .

Hence, the leading term of the scattered field (III.49) is a dipolar term and using (III.42),
one finally gets a justification of the asymptotic formula (III.38) for the potential V . Our
aim is now to derive a more explicit expression for the induced dipole moment p(ω) by
a small computation done in60 that we reproduce here for readability. Let E0 be any
vector of C3. Then, from relations (III.37), (III.41),(III.50) and the Green identity, one
has:

p(ω) · E0 =

∫
∂B(0,R)

−ε0
∂Vs(y, ω)

∂ny
y · E0 + ε0Vs(y, ω)ny · E0 dy

=

∫
∂B(0,R)

(
− ε0

∂V (y, ω)

∂ny

)
(y · E0) + ε0V (y, ω)ny · E0 dy

=

∫
B(0,R)

ε(y, ω)E(y, ω) · ∇(y · E0) dy −
(∫

B(0,R)

ε0E(y, ω) dy
)
· E0

=

∫
B(0,R)

(
ε(y, ω)− ε0I

)
E(y, ω)dy · E0.
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As the function ε(·, ω)−ε0 I has a support contained in the cloaking device, this yields:

p(ω) = α(ω)E0 =

∫
Ω

(
ε(y, ω)− ε0I

)
E(y, ω)dy, ∀ω ∈ clC+ ∪ {∞} . (III.51)

Now, using this last formula, one can rewrite the function f defined by (III.40) as

f(ω) = α(ω)E0.E0 =

∫
Ω

(ε(x, ω)− ε0I) E(x, ω) · E0 dx, ∀ω ∈ clC+ ∪ {∞} (III.52)

and study its regularity with respect to the frequency ω.

Proposition 22. For any fixed incident field E0 ∈ C3, the function f defined by (III.40)
is analytic on C+ and continuous on clC+, in other words, it satisfies the hypothesis H1.

Proof. Let ω ∈ C+ and E0 be a fixed vector of C3 . One introduces the linear form:

Lω(U) =

∫
Ω

(ε(x, ω)− ε0I)U · E0 dx, ∀U ∈ L2(Ω)

such that f(ω) = Lω
(
E(·, ω)

)
. One easily checks that Lω is well-defined and continuous

by virtue of H̃6. Moreover, using again the theorem of complex differentiation under the
integral presented in53 (and both the hypotheses H̃1 and H̃6 to prove respectively the
regularity and the domination condition required in the assumptions of this theorem), one
shows that Lω is weakly analytic, in other words, for any fixed U ∈ L2(Ω), ω → Lω(U)
is analytic on C+. Hence, as weak analyticity implies strong analyticity (see42, Theorem
1.37 p.139), ω → Lω is also analytic. Then, using Theorem 21, one has ω → E(·, ω) =
E0 + Es(·, ω) is strongly analytic on C+ for the L2(Ω) norm and one finally deduces that
ω → f(ω) = Lω

(
E(·, ω)

)
is analytic on C+.

It remains to prove the continuity of f for a real frequency ω. Let (ωn) be a sequence
of in clC+ which tends to ω ∈ R. One has:

|f(ωn)− f(ω)| ≤ |Lωn
(
E(·, ωn)− E(·, ω)

)
|+ |Lωn

(
E(·, ω)

)
− Lω

(
E(·, ω)

)
|.

By H̃6, one checks easily that the linear form Lω is uniformly bounded with respect to
the frequency: ‖Lωn‖ ≤ (c1 + ε0) |E0|mes(Ω)1/2 and by Theorem 21, ω → E(·, ω) is
continuous on clC+ for the L2(Ω) norm, thus the first term of the right hand side tends
to 0. Concerning the second term, by using hypotheses H̃1 and H̃6, it is straightforward
to check , by applying Lebesgue’s dominated convergence theorem, that it tends to 0.
This concludes the proof.

Remark 23. From the analyticity of the function f on C+ for any fixed incident field
E0 ∈ C3, one deduces since weak analyticity implies analyticity for the operator norm
(see42, Theorem 3.12 p. 152) that the polarizability tensor α is an analytic function of
the frequency on C+ with respect to the induced l2−norm.

We prove in the following proposition that f satisfies the hypotheses H2 and H3.
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Proposition 24. For any fixed non-zero incident field E0 ∈ C3, the function f defined
by (III.40) satisfies

f(ω)→ f(∞) = α(∞)E0 · E0 > 0,

where α(∞) is defined by relation (III.52) evaluated at ω = ∞. Thus, f satisfies H2.
Moreover, f satisfies the hypothesis H3, that is

f(−ω) = f(ω), ∀ω ∈ clC+. (III.53)

When the cloak contains a non reciprocal medium (in other words if H̃5 is not satisfied),
the relation (III.53) holds only under the additional assumption that E0 is a real-valued
incident field.

Proof. Let E0 be a fixed vector of C3. The fact that f(ω) → f(∞) amounts to proving
the continuity of f at ω =∞, which can be dealt with in the same way as the continuity
of f for a real frequency ω in the proof of Proposition 22. The positivity of the limit
f(∞) which has to be proved for any E0 ∈ C3 turns out to be equivalent to showing
that α(∞) is positive-definite. This last result is a well-known property (see Theorem
4.11 of6) of the polarizability tensor associated with a homogeneous simple connected
isotropic inclusion O with Lipschitz boundary embedded in the vacuum and defined by
its real permittivity ε > ε0.

One wants now to show relation (III.53). Using H̃3, one deduces by uniqueness of
the solution of (III.42) and (III.43) in W1,−1(R3), that Vs(·,−ω), the solution of these

equations corresponding to an incident field E0, is equal to Vs(·, ω) (where Vs(·, ω) stands
for the solution with incident field E0). Thus, it follows using H̃3 and the relations

(III.41) and (III.51) that α(−ω) = α(ω). Finally, one deduces from this last equality
that

f(−ω) = α(ω)E0 · E0 .

In the particular case of a real-valued field E0, this implies directly the relation (III.53).
Obtaining the same relation for non real-valued incident fields requires the symmetry
of the polarizability tensor: α(ω)> = α(ω) which is a consequence of the reciprocity
principle H̃5 (for its proof see for instance91). This concludes the proof.

Finally, we have to show that f satisfies the hypothesis H4. This is the purpose of the
following proposition.

Proposition 25. For any fixed incident field E0 ∈ C3, the function f defined by (III.40)
satisfies the hypothesis H4:

Im f(ω) ≥ 0, ∀ω ∈ R+.

Moreover, if [ω−, ω+] is a transparency window, that is a frequency band for which
Im ε(x, ·) = 0 for a. e. x ∈ Ω \ O then

Im f(ω) = 0, ∀ω ∈ [ω−, ω+].

29



Proof. Let E0 be a fixed vector of C3, ω a non-negative frequency and R a positive
real number satisfying R > R0. We denote by E the electrical field associated with the
incident field E0 by the equation (III.37). Then, by using H̃4, one has that:

I(R,ω) =

∫
B(0,R)

Im ε(x, ω)E(x, ω) · E(x, ω) dx ≥ 0.

We point out that I(R,ω) is constant with respect to R for R > R0 since Im ε(·, ω)
is compactly supported in Ω ⊂ B(0, R). Using the Green identity and the facts that
ε(x, ω) E = −ε(x, ω)∇V is divergence free (see III.37) and that ε(x, ω) = ε0 I on
∂B(0, R), one gets:

I(R,ω) = Im
(∫

∂B(0,R)

V (x, ω) · ε0 E(x, ω) · n dx
)
≥ 0.

From the asymptotics (III.38) of V (x, ω) and the asymptotics of the electric field

E(x, ω) = −∇V (x, ω) = E0 −
p(ω)

4πε0|x|3
+ 3

(p(ω) · x) x

4πε0|x|5
+O

(
1

|x|4
)
,

one gets:

I(R,ω) = 3 Im
(∫

∂B(0,R)

(p(ω) · x)

4π|x|4 · E0 · x dx
)

+O

(
1

R

)
≥ 0. (III.54)

Using the fact that p(ω) = α(ω)E0 leads to

3 Im
(∫

∂B(0,R)

(p(ω) · x)

4π|x|4 · E0 · x dx
)

= 3 Im
(∫

∂B(0,R)

(α(ω)E0 · x)

4 π|x|4 · E0 · x dx
)
.

By virtue of the algebraic identity

(α(ω)E0 · x) · E0 · x = xx>α(ω)E0 · E0 ,

one finally obtains

3 Im
(∫

∂B(0,R)

(p(ω) · x)

4π|x|4 · E0 · x dx
)

= Im(α(ω)E0 · E0) = Im f(ω) ≥ 0 ,

(to derive the first equality, we use the identity:
∫
∂B(0,R)

xx>/|x|4dx = 4π/3 I and to

derive the last inequality, we use (III.54) combined with the preceding equalities to get
that the remainder term in (III.54) vanishes for R > R0).

In the particular case where Im ε(x, ω) = 0 for a. e. x ∈ Ω \ O, one has I(R,ω) = 0
and thus one deduces that Im f(ω) = 0. This concludes the proof.
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One concludes this subsection by the following theorem which defines a Herglotz func-
tion associated with the polarizability tensor.

Theorem 26. Let E0 be a non-zero fixed vector of C3 and f the function defined by
(III.40). If the cloak Ω \ O satisfies the hypotheses H̃1− H̃7, then

v(ω) = ωf(
√
ω) = ωα(

√
ω)E0 · E0 (III.55)

is a Herglotz function which is analytic on C \R+ and negative on R−∗. Moreover, in its
representation given by the Theorem 2, the measure m is supported in R+ and α is equal
to f∞ = α(∞)E0 · E0.

Proof. The proof is an immediate consequence of propositions 22, 24 and 25 which show
that the function f satisfies the hypotheses H1–H4 and thus the function v defined by
(III.55) satisfies the Corollary 10.

Remark 27. As the reciprocity principle H̃5 is only required to prove H3 for non real
incident fields E0 (see Proposition 24), Theorem 26 still holds for non-reciprocal media
under the additional condition that E0 ∈ R3.

We mention that a discrete (rational) approximation to the Herglotz integral repre-
sentation of the polarizability tensor, with accompanying sum rules26, was first suggested
by Fuchs in25.

C. Fundamental limits of broadband passive cloaking in quasistatics

1. General bounds on the polarizability tensors

One assumes in the following that our cloak satisfies the hypotheses H̃1 − H̃7. One
wants first to establish that the analyticity property of the polarizability tensor is suffi-
cient to prove that α does not vanish on the whole frequency band [ω−, ω+]. Indeed, for
any fixed non zero incident field E0 ∈ C3, the function f defined by (III.40) is analytic on
C+ and continuous on clC+. Thus, if by contradiction α vanishes on [ω−, ω+], so does f .
Then, using the Schwarz reflection principle and analytic continuation, one deduces that
f vanishes also on the whole upper-half plane C+, which contradicts the fact that f tends
to f∞ > 0, when |ω| → ∞. However, such analytic continuation arguments are not of
practical interest. Indeed, it is possible for instance for a polynomial to be arbitrary close
to 0 on one disk and arbitrarily closed to 1 on another disjoint disk (see34). But, knowing
that one can construct a Herglotz function associated with f (see Theorem 26) gives
us meaningful inequalities by using the bounds derived in section II. These inequalities
establish fundamental limits on the cloaking effect over a frequency band [ω−, ω+], that
we present in this subsection.

For any non-zero incident field E0 ∈ C3, the function v defined by (III.55) satisfies
the bound (II.23). In the particular case of Dirac measures: m = δξ, ξ ∈ R, which
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optimizes the right hand side of (II.23) (see Theorem 14), this inequality becomes the
bound (II.26), that we are recalling here in the case of our cloaking application:

lim
y→0+

∫ x+

x−

Im

(
1

ξ − (x+ iy)α(
√
x+ iy)E0 · E0

)
dx ≤ π

α(∞)E0 · E0

, ∀ξ ∈ R, (III.56)

which holds for any interval [x−, x+] of R+∗. One notices that the geometry and the
dielectric contrast of the inclusion O are encoded in the expression of the polarizability
tensor α(∞). For instance, in the case of circular inclusion of radius R, one has

α(∞) = 4πR3ε0
ε− ε0

ε+ 2ε0

I .

Explicit expressions ofα(∞) can be also derived for ellipsoidal shapes (see for instance86,92).

2. The case of a transparency window

We are now interested in deriving a more explicit version of the bound (III.56) in
the case where [ω−, ω+] is a transparency window, that is a frequency band for which
Im ε(x, ·) = 0 for a. e. x in Ω \ O. In other words, we assume that the cloak material is
composed of a material that one can consider lossless in this frequency range. In partic-
ular, this latter condition implies that the polarizability tensor satisfies also Imα(ω) = 0
on [ω−, ω+] (see Proposition 25). Thus, one can directly apply the bound (II.28) derived
in Proposition 15 to obtain

ω2
0 (α(ω0)−α(∞))E0·E0 ≤ ω2(α(ω)−α(∞))E0·E0, ∀ω, ω0 ∈ [ω−, ω+] such that ω0 ≤ ω.

(III.57)
As, this last inequality holds for any E0 ∈ C3, one deduces that

ω2
0 (α(ω0)−α(∞)) ≤ ω2 (α(ω)−α(∞)), ∀ω, ω0 ∈ [ω−, ω+] such that ω0 ≤ ω (III.58)

which is to be interpreted as a matrix inequality (A ≤ B if and only if B−A is positive
semidefinite). We want to emphasize that this bound is sharp in the sense that there
exists an analytic function α (given by a Drude type model) such that f(·) = α(·)E0 ·E0

satisfies the properties H1–H4 (except the continuity at ω = 0) for any E0 ∈ C3, namely

α(ω) = α(∞)− ω2
0[α(∞)−α(ω0)]

ω2
with α(ω0) ≤ α(∞)

for which one has equality in (III.58). This function is singular at ω = 0, so it does not
satisfy completely the hypothesis H1, but the continuity assumption on the whole real
line in H1 is not necessary to derive our bounds. It can be weakened as we point out in
Remarks 11 and 18.
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Now coming back to our initial cloaking problem, if one can cloak the inclusion at one
frequency ω0 ∈ [ω−, ω+], and thus if α(ω0) = 0 then the bound (III.58) implies

α(ω) ≤ −α(∞)
ω2

0 − ω2

ω2
if ω− ≤ ω ≤ ω0

≥ α(∞)
ω2 − ω2

0

ω2
if ω0 ≤ ω ≤ ω+ ,

which obviously forces α(ω) to be non-zero away from the frequency ω0 (provided one
is still in the transparency window [ω−, ω+] where there is no absorption). Thus, one
cannot achieve broad band passive cloaking in a transparency window.

3. The lossy case

The bound (III.58) is only valid if [ω−, ω+] is a transparency window and thus does
not hold if the cloak is a lossy material over this frequency range. Nevertheless, for a
lossy cloak, one can apply the bounds (II.34), (II.35), (II.36) derived in section II F to
the function f . In particular, the bound (II.36) takes the form:

1

4
(ω2

+ − ω2
−)α(∞)E0 · E0 ≤ max

x∈[ω−,ω+]
|ω2α(ω)E0 · E0|, ∀E0 ∈ C3. (III.59)

This bound gives a limitation to the cloaking effect by controlling from below the maxi-
mum of the function ω → ω2α(ω)E0 · E0 by a positive quantity depending both on the
frequency bandwidth: ω+−ω− and on the geometry and the dielectric contrast of the in-
clusion with the term α(∞)E0 ·E0. However, from an experimental perspective the more
general bounds (II.34) or (II.35) are more meaningful since the value of the left hand
side of (III.59) would be drastically changed if there was an extremely narrow resonant
spike in f in the considered interval and such a spike would be difficult to experimentally
detect.

Remark 28. For the sake of generality, we point out that all the bounds derived in this
subsection, with the exception of (III.58), which does not hold at the tensor level (but
only at the scalar level (III.57)) are still satisfied for real-valued incident fields E0 if the
medium does not satisfy the reciprocity principle H̃5. Thus, one has proved also that one
cannot achieve broadband cloaking with non reciprocal materials.
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Neumann–Poincaré-type operator and analysis of cloaking due to anomalous localized
resonance II. Contemporary Mathematics, 615:1–14, 2014.

6H. Ammari and H. Kang. Polarization and moment tensors: with applications to inverse
problems and effective medium theory, volume 162. Springer Science & Business Media,
New York, 2007.

7K. Ando, Y.-G. Ji, H. Kang, K. Kim, and S. Yu. Spectral properties of the neumann-
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pliquées, 106:342–374, 2016.

73H.-M. Nguyên and L. H. Nguyên. Cloaking using complementary media for the
Helmholtz equation and a three spheres inequality for second order elliptic equations.
Transactions of The American Mathematical Society, Series B, 2:93–112, 2015.

74N. A. Nicorovici, R. C. McPhedran, and G. W. Milton. Optical and dielectric properties
of partially resonant composites. Physical Review B (Solid State), 49(12):8479–8482,
1994.

75N.-A. P. Nicorovici, R. C. McPhedran, and L. C. Botten. Relative local density of states
and cloaking in finite clusters of coated cylinders. Waves in Random and Complex
Media. Propagation, Scattering and Imaging, 21(2):248–277, 2011.

76N.-A. P. Nicorovici, R. C. McPhedran, S. Enoch, and G. Tayeb. Finite wavelength
cloaking by plasmonic resonance. New Journal of Physics, 10(11):115020, 2008.

77N.-A. P. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten. Quasistatic
cloaking of two-dimensional polarizable discrete systems by anomalous resonance. Op-
tics Express, 15(10):6314–6323, May 2007.

78A. N. Norris. Acoustic integrated extinction. Proceedings of the Royal Society of
London. Series A, 471(2177):20150008, 2015.

79A. N. Norris, F. A. Amirkulova, and W. J. Parnel. Source amplitudes for active exterior
cloaking. Inverse Problems, 28(10):105002, Oct. 2012.

80A. N. Norris, F. A. Amirkulova, and W. J. Parnell. Active elastodynamic cloaking.
Mathematics and Mechanics of Solids : MMS, 19(6):603–625, Aug. 2014.

81H. M. Nussenzveig. Causality and dispersion relations. Academic Press, New York,
1972.
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83J. O’Neill, Ö. Selsil, R. C. McPhedran, A. B. Movchan, N. V. Movchan, and C. H.
Moggach. Active cloaking of resonant coated inclusions for waves in membranes and
kirchhoff plates. Quarterly Journal of Mechanics and Applied Mathematics, 69(2):115–
159, Apr. 2016.

84D. Onofrei. On the active manipulation of fields and applications: I. The quasistatic
case. Inverse Problems, 28(10):105009, Oct. 2012.

85D. Onofrei and A. E. Thaler. Anomalous localized resonance phenomena in the nonmag-
netic, finite-frequency regime. Advances in Mathematical Physics, (Article ID 4156072,
28 pages), 2016.

86J. A. Osborn. Demagnetizing factors of the general ellipsoid. Physical Review,
67(11/12):351–357, 1945.

87H. L. Pécseli. Fluctuations in physical systems. Cambridge University Press, 2000.
88J. B. Pendry, D. Schurig, and D. R. Smith. Controlling electromagnetic fields. Science,

312(5781):1780–1782, June 2006.
89E. M. Purcell. On the absorption and emission of light by interstellar grains. The

Astrophysical Journal, 158:433–440, 1969.
90M. Selvanayagam and G. V. Eleftheriades. An active electromagnetic cloak using the

equivalence principle. IEEE Antennas and Wireless Propagation Letters, 11:1226–1229,
2012.

91C. Sohl, M. Gustafsson, and G. Kristensson. Physical limitations on broadband scat-
tering by heterogeneous obstacles. Journal of Physics A: Mathematical and Theoretical,
40(36):85–88, Oct. 2007.

92E. C. Stoner. The demagnetizing factors for ellipsoids. Philosophical Magazine, 36:803–
820, 1945.

93A. Tip. Linear dispersive dielectrics as limits of Drude-Lorentz systems. Physical
Review E (Statistical physics, plasmas, fluids, and related interdisciplinary topics),
69(1):016610, 2004.

94V. G. Veselago. The electrodynamics of substances with simultaneously negative values
of ε and µ. Uspekhi Fizicheskikh Nauk, 92:517–526, 1967. English translation in Soviet
Physics Uspekhi 10(4):509–514 (1968).

95A. T. Welters, Y. Avniel, and S. G. Johnson. Speed-of-light limitations in passive linear
media. Physical Review A (Atomic, Molecular, and Optical Physics), 90(2):023847,
Aug. 2014.

96A. D. Yaghjian and T. B. Hansen. Plane-wave solutions to frequency-domain and time-
domain scattering from magnetodielectric slabs. Physical Review E (Statistical physics,
plasmas, fluids, and related interdisciplinary topics), 73(4):046608, Apr. 2006.

97A. H. Zemanian. Realizability theory for continuous linear systems. Courier Corpora-
tion, 1972.

39


