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Abstract

Consider a propagative medium, possibly inhomogeneous, containing some scatterers whose positions are unknown.
Using an array of transmit–receive transducers, how can one generate a wave that would focus in space and time near
one of the scatterers, that is, a wave whose energy would confine near the scatterer during a short time? The answer
proposed in the present paper is based on the so-called DORT method (French acronym for: decomposition of the
time reversal operator) which has led to numerous applications owing to the related space-focusing properties in the
frequency domain, i.e., for time-harmonic waves. This method essentially consists in a singular value decomposition
(SVD) of the scattering operator, that is, the operator which maps the input signals sent to the transducers to the
measure of the scattered wave. By introducing a particular SVD related to the symmetry of the scattering operator, we
show how to synchronize the time-harmonic signals derived from the DORT method to achieve space–time focusing.
We consider the case of the scalar wave equation and we make use of an asymptotic model for small sound-soft
scatterers, usually called the Foldy–Lax model. In this context, several mathematical and numerical arguments that
support our idea are explored.

Keywords: space–time focusing, time reversal, DORT method, singular value decomposition, Foldy–Lax model.

1. Introduction

1.1. General context and objective

Time reversal (TR) techniques have been extensively studied during the last decades, in particular owing to the
related focusing properties. The simplest illustration of these properties consists in the following classical TR experi-
ment (see, e.g., [11]). In a first step, an acoustic source emits a sound which propagates in the surrounding medium.
The acoustic field is then measured and recorded by an array of transmit–receive transducers. In a second step, all the
recordings are time-reversed and then used as input signals for the transducers of the array, generally called a time
reversal mirror (TRM) because of this time reversal step. The acoustic wave emitted by the TRM propagates back in
the same medium towards the original source. If this source fills a small region and if the initial sound is a short pulse,
one can observe that a great part of the acoustic energy of the back-propagating wave will be concentrated near the
original source at a given time. In this sense, space–time focusing is achieved. The focus quality will be high if the
TRM surrounds completely the source (full aperture case) and if the number of transducers is large enough. On the
other hand, the focusing will generally deteriorate if the number of transducers becomes smaller or if the aperture of
the TRM is reduced, that is, if the angular area occupied by the TRM decreases (partial aperture case).

In such a TR experiment, the source is active in the sense that it emits the original sound which is then recorded
by the TRM. In the present paper, we are no longer concerned by active sources, but rather by unknown scatterers
which behave passively only by their ability to reflect an incident wave. Hence the way to retrieve some information
on the scatterers is to test the medium by means of the array of transducers which can emit various incident waves
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and record the response of the medium. We assume here that we are able to measure the scattered wave, that is,
the perturbation of the incident wave due to the presence of the scatterers. This means implicitly that we are able to
compare the propagation of an acoustic wave in two different media: on the one hand, a reference medium which is
the surrounding medium in the absence of the scatterers, on the other hand a perturbed medium which is the same
medium perturbed by the presence of the scatterers. In other words, each test of the medium consists actually in two
experiments: for given input signals sent to the transducers, the same incident wave is emitted by the array in both
reference and perturbed media, both responses are then measured by the array, and finally the former is subtracted
from the latter. The operator which maps the input signals to the difference of both measures will be called here the
scattering operator (it is often referred to as the multi-static response matrix). The question we are interested in is
the following: from the only knowledge of this scattering operator, can one generate a wave which would focus in
both space and time at one of the scatterers? There is no doubt that a positive answer to this question could lead to
numerous applications in nondestructive testing, medicine, communication, imaging, etc.

The method we propose is based on the so-called DORT method (French acronym for: decomposition of the time
reversal operator) first developed by Prada and Fink [21, 23, 24] in the context of ultrasonics. Numerous experimental,
numerical and theoretical applications of this method have been explored for acoustic, elastic or electromagnetic
waves. The DORT method can be seen as an improvement of iterative time reversal in the frequency domain. It
is based actually on a singular value decomposition (SVD) of the above mentioned scattering operator for time-
harmonic waves. It is now well understood that for distant enough and small scatterers, the number of non-negligible
singular values of the scattering operator coincide with the number of scatterers. Moreover, when these singular
values are simple, each corresponding singular vector generates a wave which focuses selectively on each scatterer.
These properties were first observed for point-like targets [23, 24] and then confirmed by different theoretical studies
(see, e.g., [14] for acoustic waves and [1] for electromagnetic waves). Numerical results [2] show that these selective
focusing properties hold even when the asymptotic conditions are not satisfied, that is, for rather close scatterers which
are not so small in comparison with the wavelength.

In short, the DORT method provides us spatial selective focusing in the frequency domain. This is the starting
point of the present paper which addresses the following issue: can we take advantage of these spatial focusing
properties in the frequency domain in order to produce a time-dependent wave which would also focus in time?
This challenging question was first raised in [19]. It mainly consists in a phase synchronization issue, since the
singular vectors of the scattering operator are defined up to a phase shift. The same issue was also mentioned in [4]
which presents an extension to the time domain of the so-called MUSIC algorithm (multiple signal classification) for
imaging in random media. To our knowledge, the first proposal of solution was given in [20] using an approximation
by a homogeneous free-space back propagation. The method we propose does not involve any approximation. It is
based on the symmetry of the scattering operator which allows us to choose a particular SVD, called the symmetric
singular value decomposition (SSVD). Our aim is to explore several arguments which show that the use of the SSVD
of the scattering operator yields space–time focusing. Let us mention that after having achieved most part of the results
presented in this paper, we discovered that our idea of using this particular SVD was not really new. More than ten
years ago, C. Prada, initiator of the DORT method, suggested this idea while she was working on the temporal aspect
of the method. However nothing was published about this: the idea was only mentioned briefly in an unpublished
report [22], but with no justification.

The paper is organized as follows. We begin by describing in §1.2 the mathematical formulation of the problem
and we introduce the main notations which are used throughout the paper. Section 2 is devoted to space focusing in
the frequency domain. As the focusing properties of the DORT method hold for small scatterers, we make use of
an asymptotic model, usually called the Foldy–Lax model, which considers point-like scatterers. In this context, we
briefly recall the main features of the DORT method and we illustrate them by numerical results. Section 3 constitutes
the core of the paper. We first show in §3.1 how to reduce the problem to a phase synchronization issue and introduce
the SSVD of the scattering operator. We then prove in §3.2 that the choice of this SSVD is associated with the
optimum of a TR criterion. In §3.3, we explore the link between the SSVD and the TR experiment mentioned above.
Finally the numerical results of §3.4 illustrate the space–time focusing effect. The focus quality is evaluated by means
of an energy criterion which involves some technical calculations that are collected in the Appendix.
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1.2. Mathematical formulation of the problem
In the present paper, we consider a reference medium, possibly inhomogeneous in a bounded region, filling the

whole space Rd (with d > 1). This medium is characterized by a sound velocity function c = c(x) for x ∈ Rd. We
denote by G = G(x, y, t) the time-dependent Green’s function of the acoustic wave equation, which is solution to

1
c2(x)

∂2G(x, y, t)
∂t2 − ∆xG(x, y, t) = δ(x − y) ⊗ δ(t),

where δ stands for the Dirac measure at the origin, either in space or time. Moreover G is assumed to be causal in
the sense that G(x, y, t) = 0 for all (x, y) ∈ R2d and t < 0 (which ensures the uniqueness of G). Recall that for a
homogeneous medium, i.e., c ≡ 1, this function is given by

Ghom(x, y, t) =


H(t − |x − y|)

2π
√

t2 − |x − y|2
if d = 2,

δ(t − |x − y|)
4π |x − y|

if d = 3,
(1)

where H is the Heaviside function.
We consider an array of N point-like transducers located at xn for n = 1, . . . ,N which can emit incident waves of

the form

vinc(x, t) :=
N∑

n=1

(qn
t
? G(x, xn, ·))(t) =

N∑
n=1

∫
R

qn(t′) G(x, xn, t − t′) dt′ (2)

where qin(t) := (q1(t), . . . , qN(t))> represents the vector composed of the input signals which are applied to the trans-

ducers (the symbol > indicates transposition) and
t
? denotes the convolution with respect to time.

We suppose that our reference medium is perturbed by the presence of a family of P sound-soft scatterers Sp ⊂ Rd

for p = 1, . . . , P. In this case, when the same signals qin(t) are sent to the transducers, we observe instead of the incident
wave (2) a perturbed wave vinc + vsc where vsc represents the scattered wave, that is, the part of the wave due to the
presence of the scatterers, which is the causal solution to

1
c2(x)

∂2vsc

∂t2 − ∆vsc = 0 in Rd \ ∪P
p=1 Sp, (3)

vsc = −vinc on ∪P
p=1 ∂Sp. (4)

This wave is finally measured by the transducers, which yields a vector composed of N functions which is denoted by
qout(t) := (vsc(x1, t), . . . , vsc(xN , t))>. The linear operator

S : qin 7−→ qout

is called here the scattering operator. Note that this definition differs slightly from the scattering operator involved in
mathematical physics.

In this paper, we use a spectral representation of S, which amounts to representing all time-dependent signals as
superpositions of time-harmonic signals. Thus we introduce the Fourier transform F with respect to time defined by

f̂ (ω) := F f (ω) :=
∫ +∞

−∞

f (t) e+iωt dt

whose inverse is given by

f (t) = F −1 f̂ (t) =
1

2π

∫ +∞

−∞

f̂ (ω) e−iωt dω.

Note that in the case where f is real-valued, its Fourier transform satisfies the symmetry property

f (−ω) = f (ω) so that f (t) =
1
π

Re
∫ +∞

0
f̂ (ω) e−iωt dω. (5)

3



Define q̂in(ω) := F qin(ω) = (q̂1(ω), . . . , q̂N(ω))>. For all ω, q̂in(ω) represents the time-harmonic input signals
which emit a time-harmonic incident wave

v̂inc(x, ω) := (F vinc(x, ·))(ω) =

N∑
n=1

q̂n(ω) Ĝ(x, xn, ω), (6)

where Ĝ = Ĝ(x, y, ω) denotes the Fourier transform of G, that is, the time-harmonic Green’s function of the reference
medium. Its expression is well-known for a homogeneous medium (c ≡ 1) :

Ĝhom(x, y, ω) =


i
4

H(1)
0 (ω|x − y|) if d = 2,

eiω|x−y|

4π|x − y|
if d = 3,

where H(1)
0 is the Hankel function of the first kind and order 0. The interaction of v̂inc(x, ω) with the scatterers

produces a scattered wave v̂sc(x, ω) = (F vsc(x, ·))(ω) which is finally measured by the transducers. This yields the
time-harmonic scattering operator

Ŝω : q̂in(ω) 7−→ q̂out(ω) := (v̂sc(x1, ω), . . . , v̂sc(xN , ω))>. (7)

We can sum up the link between the time-dependent and time-harmonic scattering operators by the equality

S = F −1 Ŝ F , (8)

where Ŝ denotes the operator defined from the family {̂Sω; ω ∈ R} by the simple relation

(̂S q̂)(ω) = Ŝω(q̂(ω)).

The question we address in the present paper is the following: from the only knowledge of the operator S, how can
one generate a wave that focuses selectively in space and time on one of the scatterers? The answer we propose is the
subject of section 3. It is based on the DORT method presented in the next section.

2. Space focusing in the frequency domain

2.1. The scattering operator for small scatterers

As mentioned in the introduction, the spatial focusing properties related to the DORT method hold for small
enough scatterers. That is why we use in the sequel an asymptotic model in the frequency domain, which enables
us to replace the family {Sp ⊂ Rd; p = 1, . . . , P} by a family of P point-like scatterers located at y1, . . . , yP. The
model we use, often called the Foldy–Lax model [12], has the advantage to take into account an approximation of
the interactions between the scatterers. It is widely used by physicists. For instance, [18] presents an application
of the MUSIC method for estimating the locations and reflectivities of point-like inhomogeneities. A mathematical
justification of the Foldy–Lax model was recently proposed in [8] for the two-dimensional problem.

This model is based on the fact that in the case of one single sound-soft scatterer (P = 1) whose size is small
compared to the wavelength, the time-harmonic scattered field v̂sc behaves like the field emitted by a point source (see
[17]). More precisely, one has

v̂sc(x, ω) ≈ σ(ω) v̂inc(y, ω) Ĝ(x, y, ω),

where y ∈ Rd is the location of the scatterer and σ(ω) ∈ C is its reflectivity coefficient. For instance, in a homogeneous
medium (c ≡ 1), if the scatterer is circular (d = 2) or spherical (d = 3) with radius ε, we have

σ(ω) =

{
−4i/H(1)

0 (ωε) if d = 2,
4πε if d = 3.

(9)
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For several obstacles (P > 1), the scattered field appears as a superposition of similar behaviours,

v̂sc(x, ω) ≈
P∑

p=1

σp(ω) v̂p(ω) Ĝ(x, yp, ω) (10)

where v̂p(ω) represents the exciting field on the p-th scatterer. Choosing v̂p(ω) = v̂inc(yp, ω) as for a single scatterer
amounts to neglecting the interactions between the scatterers. The Foldy–Lax model consists in correcting the latter
choice by adding the waves scattered by all the other obstacles, i.e.,

v̂p(ω) = v̂inc(yp, ω) +
∑
q,p

σq(ω) v̂q(ω) Ĝ(yp, yq, ω) for p = 1, . . . , P.

If we denote by V̂ω and V̂ inc
ω the vectors of CP with components v̂p(ω) and v̂inc(yp, ω) respectively, this coupling

between the exciting fields can be written equivalently as(
I − Ĥω Σω

)
V̂ω = V̂ inc

ω , (11)

where Σω is the P × P diagonal matrix composed of the reflectivity coefficients, i.e., (Σω)pp := σp(ω), and Ĥω is the
P × P matrix defined by

(Ĥω)pq := Ĝ(yp, yq, ω) if q , p and (Ĥω)pp := 0.

The use of the Foldy–Lax model yields a simple expression for the time-harmonic scattering operator (7). Indeed,
applying (10) to x = xn for n = 1 to N yields

q̂out(ω) = Ĝ>ω Σω V̂ω, (12)

where Ĝω denotes the P × N matrix defined by

(Ĝω)pn := Ĝ(xn, yp, ω),

and we recall that the superscript > indicates transposition. Moreover, noticing from (6) that the right-hand side of
(11) writes as V̂ inc

ω = Ĝω q̂in(ω), we have V̂ω = (I − Ĥω Σω)−1 Ĝω q̂in(ω). Substituting this expression in (12) yields
finally

Ŝω = Ĝ>ω (Σ−1
ω − Ĥω)−1 Ĝω. (13)

This product of three matrices can be interpreted as the succession of three steps in the scattering process. First Ĝω

represents the propagation of the incident wave from the transducers to the scatterers. Then (Σ−1
ω − Ĥω)−1 describes

the reflection on the scatterers (note that this matrix reduces to Σω if Ĥω is neglected, which amounts to neglecting
the interaction between the scatterers). And finally Ĝ>ω corresponds to back-propagation from the scatterers to the
transducers.

Remark 1. It is readily seen that the scattering operator is symmetric (but not hermitian) in the sense that Ŝω = Ŝ>ω
(but Ŝω , Ŝ∗ω where Ŝ∗ω is the adjoint matrix, i.e., the conjugate transpose matrix) since both matrices Σω and Ĥω are
symmetric. This can be seen as a consequence of the reciprocity principle.

2.2. The DORT method

The DORT method [21, 23, 24] consists in a singular value decomposition (SVD) of the scattering operator Ŝω:

Ŝω = V̂ω D̂ω Ŵ∗
ω (14)
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where D̂ω is a N ×N diagonal matrix with nonnegative real numbers on the diagonal, whereas V̂ω and Ŵω are unitary
N × N matrices. The diagonal entries of D̂ω are known as the singular values of Ŝω and the columns of V̂ω and Ŵω

are called the left and right singular vectors, respectively.
A real number λ ≥ 0 is a singular value of Ŝω if and only if there exist unit vectors v̂ and ŵ in CN such that

Ŝωŵ = λ v̂ and Ŝ∗ωv̂ = λ ŵ. (15)

Vectors v̂ and ŵ are respectively left and right singular vectors of Ŝω.

Remark 2. The SVD of Ŝω is not unique (actually D̂ω is unique but not V̂ω and Ŵω). This is obvious if at least one
eigenvalue is degenerate, that is, if the dimension of the associated space of right (respectively, left) singular vectors is
greater than one. On the other hand, for a simple (or non-degenerate) singular value, the right and left singular vectors
are unique up to a multiplication by a unit complex number. Indeed it is readily seen that if a pair (v̂, ŵ) satisfies (15),
then so does (eiφ v̂, eiφ ŵ) for all φ ∈ R.

Remark 3. The singular values of Ŝω are the square roots of the eigenvalues of the positive hermitian matrix Ŝ∗ω Ŝω
and the right singular vectors of Ŝω coincide with the eigenvectors of Ŝ∗ω Ŝω. The initial presentation of the DORT
method (see, e.g., [23, 24]) consisted in the diagonalization of the latter matrix, called the time reversal operator
because it was derived from an iterative TR process. The basic loop of this process consists of the following steps: for
given input signals q̂, the array of transducers first emit an incident wave; the associated scattered wave in then mea-
sured, which yields Ŝω q̂; and finally this measure is time-reversed, which amounts to a conjugation in the frequency
domain (see (21)). The time-reversed measure can then be used to re-emit a new incident wave. The time reversal
operator T̂ω describes two successive iterations of this loop, that is,

T̂ω q̂ := Ŝω Ŝω q̂ = Ŝω Ŝω q̂ so T̂ω = Ŝω Ŝω = Ŝ∗ω Ŝω,

where the last equality follows from the symmetry of Ŝω.

Remark 4. From a practical point of view, the knowledge of the scattering operator follows from experimental mea-
surements. It is thus important to understand how the accuracy of the singular vectors is affected by errors. For the
DORT method, this issue comes within the framework of perturbation theory for the SVD, which is well-known [25].
In short, the singular values are perfectly conditioned (in the sense that the error on the singular values is bounded by
some norm of the error on the scattering operator), whereas the situation is more involved for singular vectors. Indeed
singular vectors corresponding to close singular values can be extremely sensitive. Perturbation results concern in
this case singular subspaces, that is, subspaces spanned by the singular vectors associated with a given group of close
singular values.

The main interest of the DORT method lies in the selective focusing properties related to the singular vectors of Ŝω.
In our context of point-like scatterers, it is well understood [14, 23, 24] that if the reference medium is homogeneous
and if the scatterers are distant enough from each other (they are often referred to as ideally resolved in this case), then

1. the number of scatterers P is equal to the number of nonzero singular values of Ŝω (provided that P ≤ N
and that the rank of Ĝω is equal to P, which excludes some exceptional situations such as scatterers located
symmetrically with respect to the array, see, e.g., [18]);

2. when these singular values are simple, each right singular vector (column of Ŵω) associated with each nonzero
singular value generates a wave which focuses selectively on each scatterer.

Figures 1 to 3 illustrate these results by some numerical experiments in the two-dimensional case. We first consider
the case of a homogeneous medium (i.e., c ≡ 1) filling the whole plane R2. The part of the plane represented on each
figure is the square [0, 2] × [0, 2]. Our array is composed of 128 transducers (N = 128) regularly distributed along
the segment {0} × [0, 2] which corresponds to the left edge of each figure. Two scatterers (P = 2), with respective
diameters 2 × 10−3 and 10−3, are located at (1.2, 0.3) and (1.7, 1.9) respectively. They are represented by white disks
(not to scale). The time-harmonic scattering operator has two non-zeros singular values in this case. For the circular
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Figure 1: Modulus of the incident field generated by the right singular vectors of Ŝω associated with the dominant (left) and second (right) singular
values. Case of a homogeneous medium with ω = 40.

Figure 2: Same as Figure 1 in the case of a scattering medium with ω = 40.

Figure 3: Same as Figure 2 for ω = 90.
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frequency ω = 40, that is, a wavelength λ = 2π/ω ≈ 0.16, Figure 1 shows the modulus of the incident field generated
by the associated singular vectors. We clearly see the spatial focusing effect: the field becomes maximal in an elliptical
area centered at each scatterer, generally called the focal spot. If ` denotes the length of the array (here ` = 2) and
d is the distance between the array and the considered scatterer, the transverse radius of this area is given by λd/`
(Rayleigh resolution formula, see, e.g., [6]) provided that λ � ` � d. For instance λd/` ≈ 0, 1 for the largest scatterer,
which is consistent with the observed focal spot though the assumption ` � d is not fulfilled.

In Figures 2 and 3, we consider the case where a scattering medium is located between the array and the scatterers.
Here our scattering medium consists of 500 point-like scatterers with same diameter 2 × 10−4 (represented by black
points) randomly displayed in the rectangle [0.3, 0.8] × [0, 2]. In this situation, the Green’s function of the reference
medium appears as a perturbation of the Green’s function of the homogeneous medium:

Ĝ(x, y, ω) = Ĝhom(x, y, ω) + Ĝsc(x, y, ω)

where the perturbation Ĝsc(x, y, ω) can be computed by the Foldy–Lax model described in section 2.1, which requires
us to invert the 500 × 500 matrix involved in equation (11). Figure 2 represents again the modulus of the incident
field generated by the singular vectors associated with the non-zero eigenvalues of Ŝω for the same circular frequency
ω = 40 as in Figure 1. We see that the presence of the scattering medium has damaged considerably the spatial
focusing effect. Focal spots are still observed, but their intensity is reduced significantly, for the acoustic field seems
to be trapped in the scattering medium. Figure 3 shows that for the higher circular frequency ω = 90, spatial focusing
is recovered.

The physical notions of ballistic and diffusive regimes (see, e.g., [10]) can help us to interpret these numerical
observations. We have to compare the thickness L of the scattering medium with the mean free path which is given
here by

Lfp :=
4ω

N |σ(ω)|2

where N is the number of scatterers per unit surface and σ(ω) is the reflectivity coefficient defined in (9). The so-
called ballistic regime corresponds to the case where L � Lfp. In such a situation, when a plane wave crosses the
scattering medium, its direction of propagation is not much affected and the perturbation of the plane wave essentially
consists in the specular reflections on the scatterers. Higher order successive reflections are negligible. On the other
hand, when L � Lfp, the latter may become significant, which leads to resonant phenomena inside the scattering
medium. In such a diffusive regime, the structure of a wave crossing the medium is strongly perturbed. In the case of
Figure 2 (ω = 40), we have Lfp ≈ 0.28 whereas L = 0.5, which rather corresponds to the diffusive regime. In the case
of Figure 3 (ω = 90), we have Lfp ≈ 0.47, which corresponds to an intermediate regime. In particular, resonances are
still observed in the scattering medium. By increasing the frequency further, we would enter the ballistic regime and
the focus quality would improve.

3. Space-time focusing

3.1. From frequency domain to time domain
A phase synchronization issue.

We arrive now at the main purpose of the paper, which is to take advantage of the selective focusing properties of
the DORT method in the frequency domain in order to construct a time-dependent wave which focuses in space and
time on one given scatterer chosen as a target. Suppose that for all frequency ω in a given frequency band [ω1, ω2]
(which depends on the specifications of the transducers), we know a triplet (λ(ω), v̂(ω), ŵ(ω)) of singular elements
of the scattering operator corresponding to our target: λ(ω) > 0 is a singular value, which is assumed simple for
simplicity, and the associated left and right singular vectors v̂(ω) and ŵ(ω) are unit vectors of CN such that

Ŝωŵ(ω) = λ(ω) v̂(ω) and Ŝ∗ωv̂(ω) = λ(ω) ŵ(ω). (16)

The fact that these singular elements correspond to our target means that the time-harmonic wave generated by the
right singular vector ŵ(ω) focuses spatially on this target. As this spatial focusing occurs for all ω ∈ [ω1, ω2], it holds
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true for any frequency superposition of these waves. So if we consider a pair (χ, φ) of real-valued functions defined
on [ω1, ω2], the time-dependent input signal defined by

qφ(t) :=
1
π

Re
∫ ω2

ω1

χ(ω) eiφ(ω) ŵ(ω) e−iωt dω (17)

generates a time-dependent wave which focuses in space on our target. But can we choose these functions so that
the above superposition of time-harmonic signals yields also time focusing? Instead of searching for a pair (χ, φ), we
assume here that χ is known and we restrict ourselves to the determination of the phase function φ : [ω1, ω2] 7→ R
(which justifies the fact that χ is not involved in the notation qφ above). In other words, the issue we are faced with
is to synchronize the singular vectors of Ŝω in order to achieve space–time focusing (recall that eiφ(ω) ŵ(ω) is a right
singular vector of Ŝω whatever φ(ω), see remark 2).

The fact that one needs to know all information at all frequencies within the band may seem to be very restrictive.
In practice, the time-dependent scattering operator follows from experimental measurements. A numerical Fourier
transform then yields the time-harmonic scattering operator for a finite set of frequencies within the band, and the
SVD must be computed for each of them.

Continuity assumptions in the frequency domain.
From a practical point of view, the signals qφ(t) we are interested in must have a finite duration of emission.

However this is incompatible with the expression (17) of qφ(t). Indeed, from (5), it is clear that the Fourier transform
q̂φ of qφ is given by

q̂φ(ω) =


χ(ω) eiφ(ω) ŵ(ω) if ω ∈ [ω1, ω2],
0 if ω ∈ R+ \ [ω1, ω2],
q̂φ(−ω) if ω ∈ R−.

(18)

In particular q̂φ has a compact support in the frequency domain, so qφ cannot be compactly supported in the time
domain since it is an entire function of t. However qφ(t) may be close to 0 outside a bounded interval provided that
q̂φ(ω) is regular enough (recall that the Riemann–Lebesgue theorem tells us that if tn qφ(t) ∈ L1(R), then q̂φ(ω) ∈
Cn(R)). In such a case, (17) can be considered as an approximation of a compactly supported signal.

It is then natural to assume at least that q̂φ(ω) ∈ C0(R). This means on the one hand that χ and φ both belong to
C0([ω1, ω2]) and χ(ω1) = χ(ω2) = 0, on the other hand that ŵ(ω) depends also continuously on ω ∈ [ω1, ω2]. This
assumption is not restrictive. Indeed we can assume without loss of generality that our family of singular elements is
continuous in the sense that λ(ω), v̂(ω) and ŵ(ω) are continuous functions of ω. One can always find such a family.
This follows from classical arguments of perturbation theory [16] using the fact that Ŝω is a continuous (even C∞)
function of ω (which derives from the regularity of the time-harmonic Green’s function Ĝ(·, ·, ω)).

A particular singular value decomposition.
The phase choice we propose is related to the symmetry of the scattering operator (see remark 1). Indeed, this

property implies that there exists a particular SVD, called the symmetric singular value decomposition (SSVD) or
Takagi’s factorization [15], which writes as

Ŝω = Ûω D̂ω Û∗ω (19)

where D̂ω is the diagonal matrix composed of the singular values and Ûω is unitary. This decomposition is a particular

version of (14) with Ŵω = V̂ω = Ûω, i.e., the right and left singular vectors are conjugate of each other. From
a practical point of view, the way to obtain the SSVD from a given SVD is straightforward, especially for simple
singular values. Indeed, as Ŝω is symmetric, conjugating (16) yields

Ŝ∗ωŵ(ω) = λ(ω) v̂(ω) and Ŝωv̂(ω) = λ(ω) ŵ(ω).
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This shows that if (v̂(ω), ŵ(ω)) is a pair of left and right singular vectors, then so is (ŵ(ω), v̂(ω)). For a simple
singular value λ(ω), we deduce from remark 2 that there exists θ(ω) ∈ R such that

(ŵ(ω), v̂(ω)) = eiθ(ω) (v̂(ω), ŵ(ω)).

As a consequence,

Ŝωŵ(ω) = e−iθ(ω) λ(ω) ŵ(ω).

This relation tells us how to change the phase of our right singular vector in order to obtain a singular vector of the
SSVD (19). Indeed by setting

ŵs(ω) := eiθ(ω)/2 ŵ(ω),

we see that

Ŝω ŵs(ω) = λ(ω) ŵs(ω), (20)

which means that ŵs(ω) is a singular vector of the SSVD. Note that contrary to the singular vectors of a SVD (see
remark 2), ŵs(ω) is defined uniquely up to a multiplication by −1.

In the sequel our aim is to show that if we choose this particular singular vector ŵs(ω) instead of an arbitrary
one ŵ(ω) in the definition (17) of qφ(t), then the optimal choice for φ is either φ ≡ 0 or φ ≡ π/2. We begin in the
next section by proving that both phase functions lead to the minimum of a function which describes a time reversal
process. But do they yield an optimal focusing? A ideal way to give a mathematical answer to this question would be
to prove that these constant phase functions lead to the minimum of a function which would quantify the focus quality.
Unfortunately, we were not able to find such a function. The only mathematical answer we can give is based on the
connection between these constant phase functions and the time reversal experiment mentioned in the introduction. It
is the subject of §3.3. We finally present in §3.4 some numerical results which confirm the space–time focusing effect.

3.2. Optimality of a time reversal gap functional
Hereafter we denote by J the time reversal transformation with origin t = 0 : for every real-valued function

f = f (t), function J f is simply given by J f (t) := f (−t). Using the Fourier transform, it is readily seen that F J f (ω) =

F f (ω), or equivalently

J = F −1 Ĵ F where Ĵ f̂ := f̂ . (21)

This is nothing but the well-known fact that time reversal becomes complex conjugation in the frequency domain.
Our idea of using the SSVD originates from a heuristic argument which can be explained as follows. Suppose that

the array emits several short pulse waves, respectively at times t j for j = 1, . . . , J, that propagate along different paths
leading to the aimed scatterer. Let T j denote the travel time related to the j-th path. After the interaction of these
incident waves with the scatterer, suppose that the associated scattered wave propagate back to the array along the
same respective paths. Thus they will reach the array respectively at times t′j := t j + 2T j for j = 1, . . . , J. Obviously,
the incident pulse waves will arrive at the same time t∗ on the scatterer only if t j + T j = t∗ for all j. In this case, the
times of emission and reception become symmetric with respect to t∗ in the sense that t′j − t∗ = t∗ − t j for all j. More
precisely, up to a scaling factor related to the reflectivity of the scatterer, the input and the output are time-reversed
with respect to the focus time t∗.

This very simple model prompted us to search for phase functions such that this time reversal property could be
nearly satisfied. This is the subject of Theorem 5 below which leads us to the SSVD in the case where the aimed
focus time is t∗ = 0. Actually the connection between this time reversal property and the SSVD can be seen directly
in the characterization (20) of the singular vectors of the SSVD, which can be written Ŝω ŵs(ω) = λ(ω) Ĵ ŵs(ω). This
relation means that when the input signal sent to the transducers is ŵs(ω), then the measure of the scattered field is,
up to a positive real factor λ(ω), the time reversed input signal. As relation (20) holds for all frequencies ω ∈ [ω1, ω2],
all time-harmonic signals are time-reversed with respect to the same origin t = 0. To a certain extent, this means that
working with singular vectors of the SSVD amounts to synchronizing the time-harmonic emitted waves at time t = 0.
In the above comments, one can replace ŵs(ω) by i ŵs(ω). The only change is that the positive real factors become
negative. These are the two possible choices which yield a synchronization at t = 0.
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Theorem 5. Suppose that
{
(λ(ω), ŵs(ω)) ∈ R+ × CN ; ω ∈ [ω1, ω2]

}
is a continuous family of singular elements of

the SSVD of Ŝω. Let χ ∈ C0([ω1, ω2]) chosen such that χ(ω1) = χ(ω2) = 0. For all (µ, φ) ∈ R ×C0([ω1, ω2]), define

G(µ, φ) := ‖(S − µ J)qφ‖2Rt ;CN :=
∫
R

∥∥∥(S − µ J)qφ(t)
∥∥∥2
CN dt

where ‖ · ‖CN denotes the Euclidean norm in CN and

qφ(t) :=
1
π

Re
∫ ω2

ω1

χ(ω) eiφ(ω) ŵs(ω) e−iωt dω.

Then the minimum of G(µ, φ) is reached at (µ+, φ+) and (µ−, φ−) where

µ± := ±
∫ ω2

ω1

λ(ω) χ(ω)2 dω
(∫ ω2

ω1

χ(ω)2 dω
)−1

, φ+ ≡ 0 and φ− ≡
π

2
.

Proof. Thanks to (8) and (21), Parseval’s identity yields

G(µ, φ) =
1

2π
‖(̂S − µ Ĵ)q̂φ‖2Rω;CN =

1
2π

(
aφ µ2 − 2bφ µ + cφ

)
, (22)

where q̂φ := F qφ and

aφ := ‖q̂φ‖2Rω;CN , bφ := Re(̂S q̂φ , Ĵq̂φ)Rω;CN and cφ := ‖̂S q̂φ‖2Rω;CN .

Note that the expression of aφ follows from the fact that Ĵ is an isometry. From (18) and (20), we deduce

aφ = 2
∫ ω2

ω1

χ(ω)2 dω,

bφ = 2
∫ ω2

ω1

λ(ω) χ(ω)2 cos(2φ(ω)) dω and

cφ = 2
∫ ω2

ω1

λ(ω)2 χ(ω)2 dω.

For a fixed φ, the minimum of the second-order polynomial in the right-hand side of (22) is reached at µφ := bφ/aφ.
Moreover

G(µφ, φ) =
1

2π

cφ − b2
φ

aφ

 .
As aφ and cφ do not actually depend on φ, the minimum of this function is reached for the maximum of b2

φ, that is,
when cos(2φ(ω)) = ±1. Hence φ(ω) = kπ/2 for some integer k. And of course it is sufficient to consider both cases
k = 0 and k = 1 since the other cases correspond to the same signals qφ(t) or their opposites.

Function G(µ, φ) is a time reversal gap functional since it quantifies the gap between the measure of the scattered
field and the time-reversed input signal rescaled by a real factor. If λ(ω) was constant in the whole frequency band
[ω1, ω2], say λ(ω) = λc, we would have µ± = ±λc and G(µ±, φ±) = 0. Hence qφ± (t) would be an eigenvector of
the operator J S associated with the eigenvalue ±λc. In this case, the TR property satisfied in the frequency domain
holds true in the time domain: the measure of the time-dependent scattered field is, up to a real factor ±λc, the time-
reversed input signal. Theorem 5 tells us that in the general case, the phase functions φ+ ≡ 0 and φ− ≡ π/2 bring
us as close as possible to this situation: qφ± (t) is close to some kind of eigenvector of J S. But of course, this is not
really an eigenvector since the time reversal gap ε := G(µ±, φ±) does not vanish in general. It can be interpreted by
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means of the notion of pseudospectra [26]: µ± belongs to the ε-pseudospectrum of J S and qφ± (t) is a corresponding
ε-pseudoeigenvector.

Let us finally emphasize the particular role of time t = 0 in our approach. As mentioned above, the focus time
provided by the SSVD is t = 0, which is related to the origin of time reversal in the definition of G. From a practical
point of view, for imaging methods based on back propagation, some stopping criteria has to be be used in order to
stop the numerical back propagation at the right time of refocusing (see, e.g., [9]). This issue does not arise in our
approach, since the focus time is always t = 0.

3.3. Space–time focusing: from active sources to passive scatterers

In the previous section, the link between Theorem 5 and space–time focusing is only based on a heuristic argument.
The purpose of this section is to reinforce this link by a mathematical argument: we show that under certain conditions,
the optimal signals of Theorem 5 yield the same space–time refocusing as the time reversal experiment for active
sources which is mentioned in the introduction.

Mathematical interpretation of the time reversal experiment.
Suppose that at some point y ∈ Rd, an active point-like source emits a short pulse defined by

v(`)
act(x, t) :=

1
π

Re
∫ ω2

ω1

χact(ω) (−iω)` Ĝ(x, y, ω) e−iωt dω, (23)

where ` ∈ N and χact is a cutoff function chosen as in Theorem 5. This wave can be seen as a spectral truncation of
a time-derivative of the time-dependent Green’s function since v(`)

act(x, t) = (∂`/∂t`)G(x, y, t) if (ω1, ω2) = (0,+∞) and
χact ≡ 1 (see (5)). Except in this latter situation, v(`)

act is not causal but it can be considered as an approximation of a
causal function for a large enough frequency band (ω1, ω2). The measure of v(`)

act by the array is then given by

q(`)(t) =
1
π

Re
∫ ω2

ω1

χact(ω) (−iω)` ĝ(ω) e−iωt dω where

ĝ(ω) := (Ĝ(x1, y, ω), . . . , Ĝ(xN , y, ω))>. (24)

The idea of the TR experiment consists in using the time-reversed measure

J q(`)(t) = q(`)(−t) =
1
π

Re
∫ ω2

ω1

χact(ω) (iω)` ĝ(ω) e−iωt dω (25)

as input signals to emit a new wave

v(`)
back(x, t) :=

1
π

Re
∫ ω2

ω1

χact(ω) (iω)`
 N∑

n=1

Ĝ(xn, y, ω) Ĝ(x, xn, ω)

 e−iωt dω.

The fact that this wave propagates back to the original source can be understood easily in the case of a full aperture
spherical array located far enough from the inhomogeneities of the medium. Assume that the family of points xn is
distributed regularly on the surface S R := {z ∈ Rd; ‖z‖ = R}. Hence, in the above formula, the sum can be interpreted
as an approximation of an integral on S R, that is,

N∑
n=1

Ĝ(xn, y, ω) Ĝ(x, xn, ω) ≈ C
∫

S R

Ĝ(z, y, ω) Ĝ(x, z, ω) dS (z),

where C > 0 depends on N and the space dimension d. The asymptotic behaviour of the latter integral for large R
follows from the Helmholtz–Kirchhoff formula [13]:∫

S R

Ĝ(z, y, ω) Ĝ(x, z, ω) dS (z)
R→+∞
≈

Ĝ(x, y, ω) − Ĝ(x, y, ω)
2iω

for ‖x‖ � R.
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As a consequence,

v(`)
back(x, t) ≈

C
2π

Re
∫ ω2

ω1

χact(ω) (iω)`−1
(
Ĝ(x, y, ω) − Ĝ(x, y, ω)

)
e−iωt dω.

Going back to the expression (23) of v(`)
act, we conclude that

v(`)
back(x, t) ≈

C
2

(
(−1)`−1v(`−1)

act (x, t) − v(`−1)
act (x,−t)

)
.

In this expression, v(`−1)
act (x, t) approximates a time-derivative of the Green’s function, which is causal, whereas the

other term v(`−1)
act (x,−t) represents the time-reversed of this function and then appears as an approximation of an anti-

causal function. As a consequence,

v(`)
back(x, t) ≈


−

C
2

v(`−1)
act (x,−t) if t < 0,

(−1)`−1 C
2

v(`−1)
act (x, t) if t > 0.

This means that for t < 0, v(`)
back behaves like a converging wave which propagates towards the initial source y and

refocuses at this point at time t = 0,whereas for t > 0, v(`)
back diverges from y. This gives us a mathematical interpretation

of the TR experiment.

Back to passive scatterers.
Let us now come back to our problem and suppose for simplicity that there is only one scatterer located at y. In

this case, the expression (13) of the time-harmonic scattering operator simplifies as

Ŝω = σ(ω) ĝ(ω) ĝ(ω)>,

where σ(ω) is the reflectivity coefficient of the scatterer (see (9)) and ĝ(ω) is defined in (24). This shows in particular
that the rank of Ŝω is 1. Moreover,

Ŝω ei arg(σ(ω))/2 ĝ(ω) = |σ(ω)| ‖ĝ(ω)‖2CN

(
ei arg(σ(ω))/2 ĝ(ω)

)
,

which means that

λ(ω) := |σ(ω)| ‖ĝ(ω)‖2CN and ŵs(ω) :=
e−i arg(σ(ω))/2 ĝ(ω)
‖ĝ(ω)‖CN

are singular elements of the SSVD of Ŝω. From (9), we infer that arg(σ(ω)) either vanishes (if d = 3) or is small (if d =

2 : the asymptotic of H(1)
0 for small arguments shows that arg(σ(ω)) = O((ln ε)−1)). Hence ŵs(ω) ≈ ĝ(ω)/‖ĝ(ω)‖CN .

Thus the respective behaviours of the optimal signals of Theorem 5 are given by

qφ± (t) ≈
1
π

Re
∫ ω2

ω1

χ(ω) eiφ± ĝ(ω)
‖ĝ(ω)‖CN

e−iωt dω,

where we recall that φ+ ≡ 0 and φ− ≡ π/2. Comparing the latter formula with (25), we see that if both cutoff functions
χ and χact satisfy

χ(ω) = χact(ω)ω` ‖ĝ(ω)‖CN ,

then, up to a change of sign, qφ+
(t) (respectively, qφ− (t)) behaves like q(`)(−t) for even ` (respectively, odd `). We

conclude that the wave emitted by an optimal signal of Theorem 5 is similar to the back-propagating wave produced
by the TR experiment when the initial wave is some spectral truncation of a time-derivative of the Green’s function.
In short, our method for passive scatterers yields some kind of optimal space–time focusing. This is justified above
for one single scatterer. Using similar arguments as in [14], it is easy to see that this holds true for distant enough
scatterers. The next section illustrates these results and also shows that the focus quality decreases if the scatterers
become close.
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Figure 4: In the case of a homogeneous medium, modulus of the field generated by the optimal signal qφ+ (t) of Theorem 5 for the largest obstacle
at times t = −2.0, −1.4, −1.0, −0.6, 0.0 and 0.4 (the field is rescaled so that its modulus belongs to [0, 1]).

Figure 5: Same as Figure 4 for the smallest obstacle.
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Figure 6: Same as Figure 4 in the case of a scattering medium.

Figure 7: Same as Figure 5 in the case of a scattering medium.
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3.4. Numerical results

We finally present some numerical experiments which confirm the space–time focusing effect related to the optimal
signals of Theorem 5 (more numerical results are presented in [7]). We consider the same geometrical configuration
as in section 2.2. The cutoff function we have chosen is a truncated Gaussian function given by

χ(ω) = 1[ω1,ω2](ω) exp
(
−

(ω − ω0)2

2γ2

)
where [ω1, ω2] = [20, 100], ω0 = 60 and γ = 10. Note that strictly speaking, this function is not continuous at ω1 and
ω2 as assumed in Theorem 5. However the Gaussian function is very small at these points (about 3 × 10−4).

Figures 4 to 7 show in various situations the evolution of the incident wave generated by the optimal signal qφ+
(t)

of Theorem 5. From (2), (5) and (6), this wave can be expressed as

vinc(x, t) =
1
π

Re
∫ ω2

ω1

 N∑
n=1

q̂n(ω) Ĝ(x, xn, ω)

 e−iωt dω

where q̂1(ω), . . . , q̂N(ω) are the components of q̂φ+
(ω) = F qφ+

(ω) = χ(ω) ŵs(ω). The above frequency integral is
approximated by a standard Simpson rule and vinc(x, t) is computed at various times on a regular x-grid covering the
square [0, 2] × [0, 2] represented on each picture.

In Figures 4 and 5, we first consider the case of a homogeneous medium. In Figure 4, we use the family of singular
vectors of the SSVD of Ŝω associated with the dominant eigenvalue, which focus in space on the largest scatterer
located at (1.2,0.3). In Figure 5, the singular vectors are those associated with the second singular value which is
related to the smallest obstacle located at (1.7,1.9). In both cases, the space–time focusing appears very clearly: the
array seems to emit an angular portion of a radial wave which propagates towards the target and concentrates near it
at time t = 0. Note that the focal spot is smaller for the largest scatterer since it is closer to the array of transducers.
As the medium is homogeneous, we can observe that the structure of the signals are very simple, which is shown
in Figure 8 (left) for the largest obstacle: all the transducers emit approximately the same signal starting at different
times which only depend on the distances between the transducers and the target.

Figures 6 and 7 illustrate the influence of the same scattering medium as in section 2.2, i.e., 500 point-like scat-
terers randomly displayed in the rectangle [0.3, 0.8]× [0, 2]. Again space–time focusing is confirmed. The focal spots
observed at time t = 0 are slightly smaller than in the homogeneous case, which is the well-known super-resolution
effect of a scattering medium (see, e.g., [3, 5]). On the other hand, the structure of the wave is strongly perturbed.
Resonance phenomena are observed inside the scattering medium, which slow down the propagation of the wave. In
order to compensate these effects, a part of the wave is emitted earlier so that the various components meet at the same
time t = 0 near the target. This is shown in Figure 8 (right) where we recognize a main front whose shape is similar
to the homogeneous case, but which is now preceded by an unstructured contribution.

The above comments remain valid if we use the optimal signal qφ− (t) of Theorem 5 instead of qφ+
(t). Actually the

differences between both cases are not so easy to detect. Figure 9 shows a zoom on the focal spots observed at t = 0
around the largest scatterer in the case of a homogeneous medium. We see that both focal spots are about the same
size. They seem to be shifted by a quarter wavelength, which is consistent with the fact that in the frequency domain,
both signals are in phase quadrature.

In order to quantify the focus quality, we propose an energy criterion which simply consists in comparing the
acoustic energy concentrated in a given vicinity of the target with the total energy emitted by the array of transducers.
Let u = u(x, t) denote the wave emitted in the reference medium by the array for some input signal q(t) (see (2)). For
a given box B ⊂ Rd around our target, we define a focus quality function by

QB(t) :=
EB(t)
Etot

where EB(t) :=
1
2

∫
B

(
∂u
∂t

(x, t)
)2

+ |∇u(x, t)|2 dx

represents the local acoustic energy contained in B at time t (see (27)) and Etot stands for the total energy emitted by
the array. As our array consists of point-like transducers, the fact that Etot is finite is not obvious. As a matter of fact,
we show in the appendix that during the emission, this energy is infinite, but becomes finite as soon as the transducers
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Figure 8: Representation of the optimal signal qφ+ (t) of Theorem 5 (rescaled in [−1,+1]) associated with the largest obstacle, in the homogeneous
medium (left) and in the presence of the scattering medium (right). The horizontal coordinate is time and the vertical one is the transducer’s number.

Figure 9: In the case of a homogeneous medium, zoom in the box [1.0, 1.4] × [0.18, 0.42] of the focal spots obtained at time t = 0 with the optimal
signals qφ+ (t) (left) and qφ− (t) (right) of Theorem 5 associated with the largest obstacle.
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Figure 10: Representation of the focus quality function QB(t) for t ∈ [−2,+2] and the box B of Figure 9 in three configurations: the homogeneous
medium of Figure 4 (left), the scattering medium of Figure 6 (middle) and the same scattering medium with the second scatterer moved at point
(0.5, 1.6) (right). For each case, the dashed line corresponds to the optimal signal qφ+ (t) of Theorem 5 and the solid line, the signal (25) of the TR
experiment with ` = 0 and χact = χ.
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become silent (provided that the input signals are regular enough). A suitable expression of Etot is given in Proposition
6.

Figure 10 compares the focus quality functions computed for two signals: on the one hand, the optimal signal
qφ+

(t) of Theorem 5 associated with the largest obstacle and on the other hand, the signal (25) of the TR experiment
with ` = 0 and χact = χ. On the left, we consider the same configuration as in Figure 4, that is, the case of the
homogeneous medium. We see that both curves coincide, which is consistent with the results of section 3.3. The
maximum of QB(t) is reached at time t = 0 with 44 % of the total energy concentrated in the box represented in Figure
9. Note that in our model, the array emits the same wave on both sides, so QB(t) cannot exceed 50 %. The case of
the scattering medium of Figure 6 is represented in the middle part. Both curves are close, which confirms again the
results of section 3.3, but here the maximum of QB(t) is around 19 %, which shows that a great part of the energy
is ‘lost’ in the scattering medium. Finally, in the right part, we consider again the scattering medium but the second
obstacle is moved closer to the target. Of course, QB(t) is unchanged for the signal of the TR experiment since it
does not depend on the second obstacle. On the other hand, the focus quality decreases for the optimal signal qφ+

(t)
(maximum at 15 %). This is a well-known effect of the DORT method, which maximizes the energy of the scattered
wave and then leads to illuminate all obstacles when they are close to each other.

4. Conclusion

In the present paper, we have shown that the use of the symmetric singular value decomposition (SSVD) of the
time-harmonic scattering operator allows us to synchronize its singular vectors in the frequency domain in order to
achieve space–time focusing. We have developed several theoretical and numerical arguments which support this
assertion. In particular, we have seen that for distant enough scatterers, the choice of the SSVD for unknown passive
scatterers yields the same refocusing as time reversal for an active source, which can be considered as an optimal
refocusing. Nevertheless two criticisms can be made.

On the one hand, from a practical point of view, the principle of DORT method is based on the measure of the
scattered wave. As mentioned in the introduction, this means that one has to measure separately the incident and
the perturbed waves (that is, in the absence and in the presence of the target) and compute their difference. In many
situations, it is impossible to make this double measure. However when the medium is weakly inhomogeneous and
when the array is located on one side of the medium (open aperture case), only a tiny part of the incident wave
propagates back to the array so that one can consider that one measures directly the scattered field.

On the other hand, from a mathematical point of view, it is quite frustrating to be unable to relate the use of the
SSVD to a mathematical criterion which should evaluate the quality of space–time focusing. The energy criterion
proposed in section 3.4 seems very natural. But can we affirm that according to this criterion or another focusing
criterion, the best signals are those of Theorem 5? The question remains open.

Appendix: Energy emitted by point sources

Let Ω be a domain of Rd, bounded or not, with boundary Γ and u = u(x, t) a causal solution to the acoustic wave
equation

∂2u
∂t2 − ∆u = f in Ω × R,

for a given causal function f = f (x, t). By multiplying this equation by ∂u/∂t and integrating over Ω, we deduce
classically from Green’s formula the energy conservation law:

d
dt
EΩ(t) = PΩ(t) + FΓ(t), (26)

where EΩ(t) denotes the acoustic energy at time t, PΩ(t) is the power produced by the source f and FΓ(t) is the
incoming energy flux across Γ, which are defined respectively by

EΩ(t) :=
1
2

∫
Ω

(
∂u
∂t

(x, t)
)2

+ |∇u(x, t)|2 dx, (27)
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PΩ(t) :=
∫

Ω

f (x, t)
∂u
∂t

(x, t) dx and (28)

FΓ(t) :=
∫

Γ

∂u
∂ν

(x, t)
∂u
∂t

(x, t) dγx, (29)

where ν is the unit normal on Γ pointing outside Ω. Formula (26) holds provided that u is regular enough so that the
definitions above make sense, for instance if f ∈ L2(Ω × R). The purpose of this appendix is to deal with the case
where f represents the excitation produced by point sources located at xn for n = 1, . . . ,N, i.e.,

f (x, t) =

N∑
n=1

qn(t) δ(x − xn),

where functions qn are assumed causal. In this case, definitions (27)–(29) are not adapted. Indeed, because of the
singular behaviour of u near the sources, the integrals on Ω diverge, which means that the usual acoustic energy is
infinite for point sources. However we show below that this energy becomes finite as soon as the sources become
silent. Our aim is to exhibit an explicit expression of this energy. Surprisingly, we did not succeed in finding one in
the literature!

We consider only the cases of dimensions 2 and 3. Formula (2) provides us the field produced by point sources.
Thanks to the expression (1) of the Green’s function in a homogeneous medium, it can be written more explicitly as

u =

N∑
n=1

un where (30)

un(x, t) :=


∫ max{t,|x−xn |}

|x−xn |

qn(t − τ)

2π
√
τ2 − |x − xn|

2
dτ if d = 2,

qn(t − |x − xn|)
4π|x − xn|

if d = 3.
(31)

We see here that if qn is regular enough, then un has a similar regularity outside a vicinity of xn. Hence, outside a
collection of small balls Bn(ε) := {x ∈ Rd; |x − xn| ≤ ε}, energy conservation (26) holds. We shall use an integrated
version of this equation:

EΩ(ε)(t) =

∫ t

0
FΓ(ε)(s) ds, (32)

where Ω(ε) := Rd \ ∪n=1,N Bn(ε) and Γ(ε) := ∂Ω(ε) = ∪n=1,N∂Bn(ε) (note that PΩ(ε)(t) = 0 since f vanishes in Ω(ε)).
The following proposition tells us that we can pass to the limit ε→ 0 in this equation when the sources become silent.

Proposition 6. Suppose that all functions qn belong to C2(R) and have a compact support contained in [0,T ] for
some T > 0. Then for all t > T, the limit limε→0 EΩ(ε)(t) exists and is independent of t. It is given by

Etot =

N∑
n=1

N∑
m=1

Enm where

Enn :=


∫ T

0

∫ T

τ

q′n(s − τ) qn(s) ds
dτ

2π τ
if d = 2,∫ T

0

q′n(s)2

4π
ds if d = 3,

Enm :=
∫ T

0
qn(s)

∂um

∂t
(xn, s) ds for n , m.
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Remark 7. Using Parseval’s identity, these expressions are easily converted to the frequency domain. We obtain

Enn :=


−1
2π

∫ T

0

1
τ

d
dτ

(
F −1

(
|q̂n|

2
))

(τ) dτ if d = 2,

1
4π2

∫ +∞

0
|ωq̂n(ω)|2 dω if d = 3,

Enm := −
1
π

Re
∫ +∞

0
iωĜ(xm, xn, ω) q̂m(ω) q̂n(ω) dω for n , m.

In the above formulas, Enn represents the energy produced by the source located at xn if it was alone, whereas the
other terms Enm for n , m stand for the interactions between the sources. In order to prove Proposition 6, we need to
know the behaviour of un near xn, which is summarized in the following lemma.

Lemma 8. Suppose that qn ∈ C2(R) is causal. Then un ∈ C2((Rd \ Bn(ε)) × R) for all ε > 0. Moreover, when ε tends
to 0, the following asymptotic expansions hold uniformly for x ∈ ∂Bn(ε) and t ∈ [0,T ] for any given T > 0 :

∂un

∂t
(x, t) =


1

2π

(∫ max{t,ε}

ε

q′n(t−τ)
τ2

√
τ2−ε2 dτ + q′n(t)

)
+O(ε) if d = 2,

q′n(t)
4πε

−
q′′n (t)
4π

+ o(1) if d = 3,

∂un

∂ν
(x, t) =


qn(t)
2πε

+ O(1) if d = 2,
qn(t)
4πε2 + O(1) if d = 3.

Moreover, if d = 2, the integral involved in the expression of ∂un/∂t is O(| log ε|).

Proof. The case d = 3 is easy. From (31), we see that un ∈ C2((R3 \ Bn(ε)) × R) and for x ∈ ∂Bn(ε), we have

∂un

∂t
(x, t) =

q′n(t − ε)
4πε

and
∂un

∂ν
(x, t) =

q′n(t − ε)
4πε

+
qn(t − ε)

4πε2 .

Using a Taylor expansion of qn(t − ε) and q′n(t − ε), the conclusion follows.
The case d = 2 is more intricate. The C2-regularity of un is easily deduced from its expression (31), which shows

in addition that for x ∈ ∂Bn(ε),

∂un

∂t
(x, t) =

1
2π

∫ tε

ε

q′n(t − τ)
ρε(τ)

dτ

where ρε(τ) :=
√
τ2 − ε2 and tε := max{t, ε}. Noticing that ρ′ε(τ) = τ/ρε(τ) and integrating by part, we deduce that

∂un

∂t
(x, t) =

1
2π

∫ tε

ε

(
q′n(t − τ)

τ2 +
q′′n (t − τ)

τ

)
ρε(τ) dτ. (33)

The first term in the integral yields the dominant contribution, which is O(| log ε|) because∣∣∣∣∣∣
∫ tε

ε

q′n(t − τ)
τ2 ρε(τ) dτ

∣∣∣∣∣∣ ≤ sup
τ∈[0,t]

|q′n(τ)|
∫ tε

ε

dτ
τ
,

since ρε(τ) ≤ τ for all τ ≥ ε. To evaluate the second one, rewrite it as∫ tε

ε

q′′n (t − τ)
τ

ρε(τ) dτ =

∫ tε

ε

q′′n (t − τ) dτ +

∫ tε

ε

q′′n (t − τ)
(
ρε(τ)
τ
− 1

)
dτ.
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The first integral of the right-hand side is equal to q′n(t − ε) = q′n(t) + O(ε) whereas the second one is O(ε) since
|ρε(τ)/τ − 1| ≤ ε2/τ2. This gives the asymptotic behaviour of ∂un/∂t.

We proceed similarly for ∂un/∂ν starting from an expression of un(x, t) similar to (33) (with q′n and q′′n replaced by
qn and q′n, respectively). Taking the normal derivative and using again an integration by parts, it is easily seen that

∂un

∂ν
(x, t) =

ε

2π

∫ tε

ε

(
3 qn(t − τ)

τ4 +
3 q′n(t − τ)

τ3 +
q′′n (t − τ)

τ2

)
ρε(τ) dτ.

By the same argument as above, the last term in the integral yields a contribution O(ε| log ε|) whereas the second one
is O(1). The dominant contribution is given by the first term. Indeed we have∫ tε

ε

3qn(t−τ)
τ4 ρε(τ) dτ = qn(t)

∫ tε

ε

3ρε(τ)
τ4 dτ+

∫ tε

ε

3(qn(t−τ)−qn(t))
τ4 ρε(τ) dτ,

where the last integral is O(ε−1) (since |qn(t − τ) − qn(t)| ≤ C τ for some C > 0) and∫ tε

ε

3 ρε(τ)
τ4 dτ =

∫ tε

ε

d
dt

(
ρε(τ)3

ε2τ3

)
dτ =

1
ε2 + O(1).

This completes the proof.

Proof (of Proposition 6). From (30) and the definition (29) of the energy flux, the energy conservation law (32) writes
as

EΩ(ε)(t) =

N∑
n,m,p=1

E
p
nm(t, ε) where

E
p
nm(t, ε) :=

∫ t

0

∫
∂Bp(ε)

∂un

∂ν
(x, s)

∂um

∂t
(x, s) dγx ds.

Lemma 8 shows that if p , n and p , m, then Ep
nm(t, ε) = O(εd−1). Moreover if n , m, then Em

nm(t, ε) = O(ε) if d = 3
(respectively, Em

nm(t, ε) = O(ε| log ε|) if d = 2) whereas

En
nm(t, ε) =

∫ t

0
qn(s)

∂um

∂t
(xn, s) ds + O(ε).

Finally, if n = m, in the three-dimensional case, we have

En
nn(t, ε) =

∫ t

0

(
qn(s) q′n(s)

4πε
−

qn(s) q′′n (s)
4π

+ o(1)
)

ds

=
qn(t)2

8πε
+

∫ t

0

q′n(s)2

4π
ds −

qn(t) q′n(t)
4π

+ o(1).

Thus we see that for all time t such that qn(t) , 0, this quantity diverges as O(ε−1) when ε tends to 0. On the other
hand, when qn(t) = 0, it has a finite limit given by the second term.

Similarly, in the two-dimensional case, Lemma 8 shows that

En
nn(t, ε) =

∫ t

ε

∫ s

ε

q′n(s−τ) qn(s)
2π τ2 ρε(τ) dτ ds +

∫ t

0

q′n(s) qn(s)
2π

ds + O(ε| log ε|).

The second integral of the right-hand side is equal to qn(t)2/(4π). The first one can be rewritten as∫ t

ε

(∫ t

τ

(q′n(s − τ) − q′n(s)) qn(s) ds +
qn(t)2 − qn(τ)2

2

)
ρε(τ)
2π τ2 dτ.
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Hence this quantity diverges as O(| log ε|) if qn(t) , 0, since∫ t

ε

ρε(τ)
τ2 dτ =

∫ t

ε

d
dt

(
−
ρε(τ)
τ

+ log(ρε(τ) + τ)
)

dτ = − log ε + O(1).

On the other hand, when qn(t) = 0, Lebesgue’s dominated convergence theorem shows that it tends to∫ t

0

(∫ t

τ

(q′n(s − τ) − q′n(s)) qn(s) ds −
qn(τ)2

2

)
dτ

2π τ
,

which can be rewritten in the simpler form shown in the proposition.
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