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Microwave Imaging—Location and Shape
Reconstruction from Multifrequency

Scattering Data
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Abstract—The problem of determining the shape and location
of an object embedded in a homogeneous dissipative medium
from measurements of the field scattered by the object is consid-
ered in this paper. The object is assumed to be an infinite cylinder
of known cross section illuminated by a TM plane wave and
the scattered field is measured on a line segment perpendicular
to the direction of incidence. Measurement data are carried
out at three different frequencies for a homogeneous cylinder
of known dielectric constant. The location and contour shape
are determined using two different reconstruction algorithms,
a Newton–Kantorovich (NK) method and the modified gradient
(MG) method whose effectiveness and robustness are compared.
Both methods are based on domain integral representations of
the field in the body. They involve an iterative minimization
of the defect between an integral representation of the field
measured on the line and the actual measured data. The NK
method involves a linearization of the nonlinear relation between
the field and the contrast, as well as the solution of a direct
scattering problem at each iteration. The MG method seeks the
simultaneous reconstruction of the field and the characteristic
function of the support of the scatterer without solving a direct
problem at each step. Both methods employed the same initial
guess and thea priori information that the characteristic function
is nonnegative.

Index Terms—Image reconstruction, inverse problems, itera-
tive methods, microwave imaging, modified gradient, Newton–
Kantorovich, nondestructive testing, shape reconstruction, to-
mography.

I. INTRODUCTION

T HE DEVELOPMENT of reconstruction algorithms for
active microwave imaging for applications in nondestruc-

tive testing and, more generally, for electromagnetic (EM)
and acoustic imaging has gained much interest during the
last decade [1]–[22], [32]. There are two general classes of
problems which are considered. The first class deals with a
global qualitative or quantitative reconstruction of the internal
constitutive object [1]–[17] and the second class deals with the
reconstruction external boundary and localization [18]–[22].
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Problems in civil engineering such as detection of voids or
mapping of reinforcement in concrete [23], [24] belong to the
second class.

Among the various algorithms developed, a first gener-
ation of algorithms was based on diffraction tomography
[1], [3]–[5], [7] which is a generalization of classical X-
ray computer tomography by taking into account diffraction
effects. These algorithms provide quasi-real-time approximate
reconstructions of the polarization current density distribution
(qualitative imaging) and also for a weak scatterer (Born
approximation) the complex permittivity distribution (quantita-
tive imaging). The limitations of diffraction tomography stim-
ulated the recent development of iterative methods for complex
permittivity reconstruction of highly contrasted objects [2],
[8]–[17]. Methods using a pseudoinverse transformation [2],
distorted Born [9], dual space [32], or Newton–Kantorovich
(NK) [11] algorithms deal with the nonlinearity of the inverse
scattering problem and are, therefore, computationally more
intense. They are also more sensitive to the ill-posedness.
Another method applied to this problem is the modified
gradient (MG) method [14], [15], which appears less sensitive
to ill-posedness.

EM inverse problems are characterized by their nonlinearity
and ill-posedness. The nonlinear nature of EM inverse prob-
lems makes the ill-posedness more severe. By ill-posedness (in
the sense of Hadamard) it is meant that one of the following
conditions is not satisfied: 1) the existence of the solution;
2) the uniquness of the solution; or the 3) continuity of the
inverse mapping. The continuous dependence of the solution
on the data is a necessary, but not a sufficient condition for the
stability of the solution. While constant progress in computing
facilities alleviates the computational burden, the ill-posedness
requires good regularization procedures.

For NK and distorted Born iterative methods, one starts
from a linearized form of the nonlinear problem and a standard
Tikhonov regularization with an identity operator being used.
Different strategies were used for finding the regularization
parameters [11], [13]. The MG method minimizes a cost
functional consisting of two normalized errors in satisfying
the field equation and in matching the measured data. The
problem is not linearized; however, the two components of the
functional are treated separately. No additional regularization
procedure was used in the MG method although recent work
indicates that the addition of the total variation as a regularizer
is very beneficial [25].
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Fig. 1. Cross section of a 2-D homogeneous object embedded in a dissipative
background under TM illumination with frequency diversity.

Fig. 2. Numerical modelization of a 10-mm diameter object. The backscat-
tered field is measured over 64 captors.

The problem of determining the shape and location of an
object imbedded in a homogeneous dissipative medium from
measurements of the field scattered by the object is considered.
The object is supposed to be an infinite cylinder of known
cross section illuminated by a TM plane wave and the scattered
field is measured only on a line segment perpendicular to
the direction of incidence rather than at all aspects as in
other examples. Measurement data are carried out at three
different frequencies for a homogeneous cylinder of known
dielectric constant. The multifrequency data is an attempt to
compensate for the aspect limitations of the measured data.
The location and contour shape are determined using two
different reconstruction algorithms, a NK method and the MG
method whose effectiveness and robustness are compared.
Both methods are based on domain integral representations
of the field in the object and discretized using the moment
method. The cost functional to be minimized is the normalized
error matching the measured scattered data. Different correc-
tion directions (standard gradient direction and Polak–Ribière
conjugate gradient direction) have been used on the MG
method. The initial guess have been determined with a back-
propagation scheme using the adjoint operator which provides
an estimate of the induced current. As a configuration of
practical interest, the reconstruction of a void inside concrete
has been studied

II. CONFIGURATION AND GEOMETRY

The geometry of the problem investigated in this paper is
illustrated in Fig. 1. An object region with known dielectric
permittivity is embedded in a homogenous medium which can
be lossy. The object is known to be contained in, but not
necessarily coincide with, a bounded region. This object
is illuminated by -incident plane waves corresponding to
frequencies. The scattered field is measured on a surface
situated in the exterior of the object domain. In the authors’
case, the surface is just a line segment perpendicular to the
propagation direction of the incident field. The problem is to
determine the location and the shape of the object from the
multifrequency scattered data assuming that the authors know
the texture of the object they are looking for. The inverse
problem studied is defined as the following: for given sets
of measurements of the scattered fieldcorresponding to
frequencies, find the characteristic functionof the object

if Object
elsewhere

(1)

For inversion, the authors relax the definition of the binary
characteristic function and assume that can take any
real value. Moreover, the authors incorporatea priori infor-
mation such that the characteristic function of the object is
nonnegative. Instead of reconstructing, the authors propose
to reconstruct an auxiliary functionsuch that , denoted
as the object function.

III. FORWARD PROBLEM

The two-dimensional (2-D) object confined in thedomain
is irradiated by a number of known incident fields ,

. For each excitation, the forward scattering
problem may be formulated as the domain integral equation

(2)

and

(3)

where is proportional to the free-space Green’s function
and to the contrast between the object and the embedding
medium

(4)

denotes the scattered field measured on the surface,
is the total field inside the test domain. is

the wavenumber in the object and the wavenumber in
exterior medium for each frequencyof the incident wave.

Using the operator notation, (2), (3) can be written in the
following compact form:

(5)

(6)
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Fig. 3. Reconstruction of the characteristic function� versus iteration with
the NK method for noiseless data.

where and are two integral operators mapping from
into and into itself, respectively (

is the square integrable function space). Synthetic data can
be generated by solving the direct problem using a moment
method [26]–[27] which transforms the integral equations into
matrix equations.

IV. NEWTON–KANTOROVICH METHOD

In this section the authors describe the NK method [19]
which the authors use to solve the nonlinear equations
relating the data set to the object function

(7)

The NK method iteratively builds up the solution of (7) by
successively solving the direct problem and a local linear
inverse problem. At each iteration, an estimate of the object
function is given by

(8)

Fig. 4. Reconstruction of the characteristic function� versus iteration with
the NK method for noisy data with a SNR of 30%.

where is an update correction that is obtained by solving
in the least squares sense the linearized forward problem

(9)

where is a linearized version of the nonlinear operator
relating the scattered field to the object function. is the
scattered field calculated through the forward problem solver
with a previous estimate of . Unfortunately, the problem
of finding the solution of (9) is ill-posed and needs regu-
larization. The authors use a zeroth-order standard Tikhonov
regularization [28]

(10)

where is the regularization parameter,is the identity ma-
trix, and the overbar means the transposed complex conjugate.
The regularization parameteris chosen as described in [11].
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V. MODIFIED GRADIENT METHOD

The MG method is iterative as is the NK algorithm, but
the approach is very different. Two sequences (total
field inside the test domain) and (object function) are
constructed using the following recursive relations:

(11)

(12)

(13)

(14)

where and are two residual errors. The first one is
the residual error with respect to the incident fields in the test
domain computed from the coupling equation (6). The second
error is the error on the scattered field computed from the
observation equation (5). For each stepthe two functions

and are the update directions for the functions
and , respectively, while the complex numbers and
the real parameter are weights that are chosen at each step
so as to minimize the cost functional :

(15)

where the subscripts and are included in the norm
and later the inner product in to indicate the

domain of integration. Once the and update directions
are found, is but a nonlinear expression in complex
variables and one real variable . The minimization of

is accomplished using the Polak–Ribière conjugate gradient
method [30].

As update directions and , the authors take

(16)

(17)

where is the gradient of the coast functional with
respect to the total field assuming that the object function do
not changes. is also the gradient of the cost functional

but with respect to the assuming that the total field do
not change. and are defined as in the Polak–Ribière
conjugate-gradient method

(18)

(19)

VI. I NITIAL GUESS

In both iterative methods, the authors cannot start from a
zero estimate for the object function; instead, a more careful
choice must be made. The contrast gradientin the MG
method vanishes for zero values of and in the NK method
the operator is null for zero values of . The authors use
the initial guess as in [15] which is determined in three steps.

(a)

(b)

Fig. 5. Evolution of: (a) Normalized rms (NRMS) error of the characteristic
function� versus iteration. Curve A: for noisy data with a SNR of 30%. Curve
B: for noiseless data. (b) NRMS error of the scattered field versus iteration.
Curve A: for noisy data with a SNR of 30%. Curve B: for noiseless data.

First Step: The authors calculate an estimate of the sources
induced in the object from the first-kind Fredholm
integral equation relating the sources inwith the scattered
field measurements on the surface

(20)

The estimate is obtained by back propagating the mea-
sured data into the domain by the equation

(21)

Where is the adjoint of the operator and maps
into . The complex parameter is chosen to minimize
the cost function defined as the quadratic error in the
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Fig. 6 Reconstruction of the characteristic function� versus iteration with
the MG method for noiseless data. Update directionsdn and�n were taken
to be zero at the points of the test domain where the characteristic� exceeds
the limit value.

scattered field

(22)
The minimum of with respect to is given by

(23)

Second Step:The authors calculate the initial total field
inside the test domain, which is not needed for the NK method
by applying the coupling equation (6)

(24)

Fig. 7. Reconstruction of the characteristic function� versus iteration with
the MG method for noiseless data. Only the update direction relative to� (dn)
is taken to be zero.

Third Step: The initial guess follows from a minimiza-
tion procedure of the error in the constitutive relationship

. For the initial estimate this relation is rewritten as

(25)

Once the initial estimates for the sources and the total
field have been determined, the initial guess for the object
function is then determined by minimizing the following
cost function:

(26)
Minimization of this expression yields

(27)
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Fig. 8. Reconstruction of the characteristic function� versus iteration with
the MG method noisy data with a SNR of 30%. Only the update direction
relative to� (dn) is taken to be zero.

For the NK method, the authors use the initial estimate of the
object function defined in (27) and for the MG scheme the
authors add the estimate of the total field inside the test
domain given in (24).

VII. N UMERICAL RESULTS

In this section, the authors present the results of different
numerical examples. In these examples, the test domain is
taken to be square and subdivided into 1717 subsquares
of equal sizes. The object to reconstruct is a void (Fig. 2)
embedded in a dissipative medium characterized by a relative
dielectric permittivity and a conductivity
S/m. These values correspond to a relatively dry concrete
medium [23]. The authors utilize three frequencies (7, 10,
and 13 GHz) and the reflected scattered field is taken over
64 points along a segment line of 32 cm perpendicular to
the propagation vector. For the central frequency 10 GHz, the
wavelength in the background medium is about 1 cm. The

(a)

(b)

Fig. 9. (a) Evolution of the cost functionalFn versus iteration. (b) Character-
istic function� versus iteration. Curves A, B, and C correspond, respectively,
to noisy data with a SNR of 30% noiseless data and to the case depicted in
Fig. 7.

object diameter is 1 cm embedded at a depth of about 4.5 cm
(from the interface to the object center).

The reconstruction of the object characteristic function is
carried out by NK and MG iterative methods. The initial guess
is based on the backpropagation scheme explained in Section
VI.

Figs. 3 and 4 show the reconstruction of the characteristic
function with the NK method. Fig. 3 is obtained
from noiseless synthetic data and Fig. 4 from noisy data and
a signal-to noise ratio (SNR) of 30%. The binary feature
[29] of the problem is not taken into account here. That is,
even though is known to take only the values zero or
one, this information was not integrated in the algorithm and
was allowed to vary continuously or, in the discretized case,
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to take on any constant value in each subsquare with one
important restriction that values exceeding unity were forced
to remain at one. The authors note that, in the case of noiseless
data, the reconstruction give a satisfactory result after very
few iterations, particularly for the illuminated side. But the
NK method diverges with 30% noisy data. This is clearly
shown in Fig. 5(a) and (b) with the normalized normalized
root mean square (NRMS) error of the scattered field and of
the characteristic function, respectively, versus the number
of iterations for noisy (curve A) and noiseless (curve B) data.

Figs. 6–8 show the reconstructions of the characteristic
function with the MG method. The initial guess is
based on the backpropagation scheme, as is the NK method.
The iterative procedure begins with a sequence of update
directions ( and is taken to be the conjugate gradient
direction) [15] and retained until the normalized change in the
field

(28)

is smaller than (taken to be 102), then is taken to be
the conjugate gradient direction. As in the NK method, values
of exceeding unity were forced to remain at one. For Fig.
6, the update directions and were taken to be zero
at the points of the test domain where the characteristic
exceeds the limit value. For Fig. 7, only the update direction
relative to is taken to be zero. A better reconstruction is
observed in the case of Fig. 7. Fig. 8 shows the reconstruction
with noisy data and a SNR of 30%. Fig. 9(a) and (b) shows,
respectively, the cost functional and the normalized rms
error of the characteristic function. Curve A in each figure
corresponds to the noisy data whose reconstruction is shown
in Fig. 8, curve B corresponds to the noiseless data whose
reconstruction was carried out with update directions as used
for the reconstruction in Fig. 6, while curve C corresponds to
the case depicted in Fig. 7.

VIII. C ONCLUSION

Two iterative methods (one based on NK and the other
on MG) have been used for determining the shape and
location of a cylindrical object embedded in a dissipative
background medium under TM illumination at three different
frequencies. Measurements of the scattered field were obtained
along a line segment. Noiseless and noisy synthetic data
were used in order to investigate the performance of the
two reconstruction algorithms. Both methods gave satisfactory
results for noiseless data. However, for noisy data with a
SNR of 30%, the NK method diverged while the MG method
succeeded in reconstructing an image with a noisy distortion
roughly equivalent to the magnitude of the noise.
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