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We simulate a three-dimensional optical diffraction tomography experiment in which the scattered field from
an unknown object is measured for various observation and incident angles. We propose a fast inversion
scheme based on the coupled dipole method that enables us to reconstruct the three-dimensional map of
permittivity of the object from the far-field data. We show that a power of resolution ofl /4 can be expected
and that the method is robust to noise.
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I. INTRODUCTION

There has been considerable interest in the development
of methods which extend the spatial resolution of optical
microscopy beyond the classical diffraction limit and provide
information on the three-dimensional structure of the sample.
Among their potential applications, one quotesin-vivo cell
imaging or the optical control of wafers in semiconductor
industries.

The existing imaging systems with a resolution smaller
than several tens of nanometers, such as atomic force micro-
scopes or optical near-field microscopy,1 are plagued by the
need of approaching a probe in the vicinity(a few nanom-
eters) of the object. Moreover, they are generally limited to
surface imaging although, recently, an inversion procedure
has been proposed to extract, from the near-field data, the
three-dimensional map of permittivity of the sample.2

Optical far-field microscopes, on the other hand, permit
one to obtain three-dimensional images in a convenient, non-
invasive way. Their transverse resolution is limited by the
Rayleigh criterion,l / s2NAd, whereNA=n sin u is the nu-
merical aperture of the objective, withn the index of refrac-
tion of the medium surrounding the sample andu the half-
angle of the collection cone of the lenses.3,4 Enlarging the
numerical aperture can be done by immersing the objective
in a liquid with a high refractive index or by using a hemi-
spherical prism to collect the scattered light, as in subsurface
microscopy.5 However, the distance of separation of the best
microscopes working with visible light and immersed objec-
tives does not exceed 200 nm in the transverse plane and
500 nm in the axial direction.

Optical diffraction tomography(ODT) is another far-field
imaging technique that permits one to retrieve the internal
structure of semitransparent objects. Although its principles
have been established more than 30 years ago,6 it is only
recently that ODT has addressed with success the issue of
three-dimensional imaging with subwavelength resolution.7

It consists of successively illuminating the sample under dif-
ferent directions and collecting the diffracted field for many
scattered angles. Then, a numerical inversion procedure is
developed to reconstruct the three-dimensional map of per-
mittivity of the sample from the measured data. ODT differs
from classic microscopy in that many different illumination

configurations are used and that both the phase and ampli-
tude of the scattered field are detected. This last point is the
main problem of ODT from an experimental point of view.
Indeed, it is very difficult to control the phase of the incident
field in an optical experiment, even more so when many
different incident directions are required. Yet, under the as-
sumption that the sample does not alter much the transmitted
specular beam, it is possible to compensate the noncontrolled
incident phase-shift and thus to obtain the absolute phase of
the scattered field for all illuminations.7

Several elaborate nonlinear inversion schemes have been
proposed, mainly in the acoustic and microwave domains, in
the simplified case of two-dimensional geometries. These
techniques, that account for multiple scattering and incorpo-
rate somea priori information on the scatterer, may possess
a power of resolution smaller thanl / s7NAd.8 Yet, their nu-
merical cost is high and their extension to the three-
dimensional vectorial problem remains problematic. In this
latter case, the few proposed inversion schemes are usually
based on Born approximation and they often neglect the vec-
torial nature of the field.7,9–11

In this paper, we simulate an ODT experiment and inves-
tigate the power of resolution of the inversion technique. In
Sec. II A, we describe briefly the coupled dipole method
(CDM) that enables one to calculate the field scattered by a
three-dimensional object. In Sec. II B, we propose a fast lin-
ear inversion scheme based on the CDM. In Sec. III, we
present reconstructions of various objects and study the ro-
bustness of the inversion scheme to uncorrelated and corre-
lated noise. Finally, in Sec. IV we conclude on the advan-
tages and drawbacks of our method.

II. THEORY

A. Formulation of the forward scattering problem

The coupled dipole method(CDM) was introduced by
Purcell and Pennypacker in 1973 for studying the scattering
of light by nonspherical dielectric grains in free space.12 The
object under study is represented by a cubic array ofN po-
larizable subunits. The electromagnetic field at each subunit
can be expressed with the following self-consistent equation:
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Esr i,vd = Eincsr i,vd+ o
j=1,jÞi

N

Tsr i,r j,vdasr j,vdEsr j,vd, s1d

whereEincsr i ,vd is the incident field at the positionr i in the
absence of the scattering object,T is the linear response to a
dipole in free space,13 andasr j ,vd is the polarizability of the
subunit j . As the electromagnetic wave is time harmonic de-
pendent we can omitv in the expressions. The polarizability
is written as

asr jd =
a0sr jd

1 − s2/3dik3a0sr jd
, s2d

with

a0sr jd =
3d3

4p

«1sr jd − «0

«1sr jd + 2«0
, s3d

where d is the spacing of lattice discretization,«1sr jd the
relative permittivity of the object, and«0 and k the relative
permittivity and the wave number of the homogeneous me-
dium which contains the object, respectively. The material is
isotropic so that«1sr jd and the polarizability are scalar. The
radiative reaction term in the polarizability, Eq.(2), is impor-
tant if one wants to compute the optical forces14–16 or the
extinction cross section of an object.17 But the correction
brought by the radiative reaction term, if we are interested
only by the scattered field, is small and can be neglected in
our study. Hence the polarizability reduces to the Clausius-
Mossotti expression, Eq.(3).18 In that case, for a nonabsorb-
ing object, the polarizability is real.

Once Eq.(1) is solved, the total field scattered by the
object at an arbitrary positionr is given by

Esr d = Eincsr d + o
j=1

N

Tsr ,r jdasr jdEsr jd. s4d

We can write Eq.(1) in the condensed form

E = Einc + A%p, s5d

where the overline onE indicates a vector 3N which gathers
the electric field at each subunit of the object:
E=fExsr 1d ,Eysr 1d ,Ezsr 1d , . . . ,Exsr Nd ,Eysr Nd ,Ezsr Ndg. psr id
=a0sr idEsr id is the dipole moment of the subuniti andA% is a
square matrix(whose size is 3N33N) which contains the
field tensors susceptibilitiesTsr i ,r jd.

In an ODT experiment, the scattered field is detected atM
observation points forL successive illuminations. Denoting
by f l the vector of the scattered field at each observation
points for the lth illumination, we can write the far-field
equation, Eq.(4), in the following condensed form:

f l = B%pl , s6d

wherel =1,¯ ,L, andB% is a matrix whose size is 3M 33N.

B% contains the tensors field susceptibilities,Tsr k,r jd wherer j

denotes a point in the discretized object,j =1, . . . ,N, while r k

is an observation point,k=1, . . . ,M. Note thatB% does not
depend on the angle of incidence.

B. Formulation of the inverse scattering problem

We assume that an unknown object is confined in a
bounded boxV (test domain or an investigating domain) and
illuminated successively byl =1, . . . ,L electromagnetic exci-
tation El=1,. . .,L

inc . For each excitationl, the scattered fieldf l is
measured on a surfaceG at M points. The inverse scattering
problem is now stated as finding the permittivity distribution
«1 inside the investigating areaV such that the associated
scattered field matches the measured fieldf l=1,. . .,L. Many ac-
curate iterative techniques have been developed to solve this
inverse problem. In these methods, starting from an initial
guess, one adjusts the parameter of interest gradually by
minimizing a cost functional involving the measured
scattered-field data. Two main approaches can be found in
the literature. In the first one,19–22the linearized methods, the
field in the test domain is considered fixed. This field is the
solution of the forward problem, Eq.(5), for the best avail-
able estimation of the permittivity at each iteration step, or it
is the reference field if the Born approximation is assumed.
In the second approach,23,24 typically the modified gradient
method, the field inside the test domainV is an unknown
that is obtained, together with the permittivity, by the mini-
mization procedure. A hybrid method25,26 that combines the
ideas from the two approaches has also been developed. All
these methods deal with two-dimensional inverse scattering
problems. In three-dimensions, most techniques use a linear
inversion based on Born approximation9,11 and are restricted
to the scalar case. Recently, a more advanced method,
namely the contrast source inversion(CSI) method,27 has
been introduced for solving the full vectorial three-
dimensional problem.28,29 In the CSI method the induced di-
poles are reconstructed iteratively by minimizing at each it-
eration step a cost functional involving both the far-field
equation, Eq.(6), and the domain-field equation, Eq.(5).

Inspired by the CSI method, we propose in the present
paper a simpler iterative scheme. The dipoles are recon-
structed using a reduced cost functional involving only the
far-field equation. We build up a sequencepl,n according to
the following recursive relation:

pl,n = pl,n−1 + bl,ndl,n, s7d

wheredl,n is an updating direction and will be specified later
in the paper. The weighting scalar numberbl,n is determined
at each iteration step by minimizing the cost functionalFn
that represents the discrepancy between the data(measure-
ments) and the scattered field corresponding to the best avail-
able estimate of the objectpl,n. The cost functionalFn is
defined as

Fnspl,nd = WGo
l=1

L

if l − B%pl,niG
2 , s8d

whereWG is a normalizing coefficient,

WG =
1

o
l=1

L

if liG
2

s9d
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andiQiG is the deduced norm from the inner product of two
vectorskR ,QlG defined onG. This inner product reads as

kR,QlG = o
r kPG

R*sr kd ·Qsr kd, s10d

whereR* denotes the complex conjugate ofR.
Substitutingpl,n from Eq. (7) in Eq. (8) leads to a poly-

nomial expression of the weighting coefficientsbl,n. The cost
functionalFnspl,nd is then reduced to a simple cost function
Fnsbl,nd with respect toL scalar coefficientsbl,n. The mini-
mization is accomplished according to a Polak-Ribière con-
jugate gradient procedure.30

As updating directiondl,n the authors took the Polak-
Ribière conjugate gradient direction

dl,n = gl,n;p + gl,ndl,n−1, s11d

with

gl,n =
kgl,n;p̄,gl,n;p̄ − gl,n−1;p̄lV

igl,n−1;p̄iV
2 , s12d

wherek· , ·lV is the same inner product as Eq.(10) but acting
on vectors defined onV.

The vector functiongl;p̄ is the gradient of the cost func-
tional F with respect top̄l evaluated for thesn−1dth quanti-
ties. This gradient reads as

gl,n;p̄ = WGB%†ff l − B%pl,n−1g, s13d

whereB%† is the transpose complex conjugate matrix of the

matrix B%.
Once the sourcespl are reconstructed, one can determine

the fieldsEl insideV using Eq.(5). The polarizabilitya0 at
the positionr j is then given by

a0sr jd =

o
l=1

L

El
!sr jd ·plsr jd

o
l=1

L

uElsr jdu2
. s14d

Notice that, if the material under the test is assumed to be
without losses,«1 is real, the polarizability may be rewritten
as

a0sr jd = Re5o
l=1

L

El
!sr jd ·plsr jd

o
l=1

L

uElsr jdu2 6 . s15d

The permittivity«1 distribution is determined easily using
Eq. (3).

As initial estimate forpl the authors took the estimate
obtained by the back-propagation procedure. This technique
is described for the two-dimensional problem in Refs. 26, 31,
and 32. The extension to the three-dimensional problem is
straightforward and therefore does not need to be presented
herein.

III. RESULTS

In this section, we simulate an ODT experiment and we
present reconstructed maps of permittivity for various ob-
jects.

A. Isolated object

We first consider a unique homogeneous object, with rela-
tive permittivity «1, embedded in a homogeneous medium
with relative permittivity«0. We define«=«1/«0 and l the
wavelength in the homogeneous medium.

Figure 1 is a sketch of the experimental configuration.
The unknown object is drawn in a plain line while the box in
dashed line indicates the domain of investigation taken in the
reconstruction procedure. We takeL=31 incident angles, and
M =65 observation points. The latter are regularly placed on
a half sphere with radius 400l, above thesx,yd plane so that
one can consider that the scattered field is detected in far-
field along 65 directions in a cone of half-angle 80°. Each
electromagnetic excitation is a plane wave with wave vector
k belonging to thesx,zd plane withkz.0. The incident angle
with respect to thez-axis ui varies from −80° to 80°. In this
example, the polarization of the incident electric field lies in
the sx,zd plane as shown in Fig. 1. We have done the same
study with an incident polarization parallel to thesx,yd plane
and obtained very similar results.

The object under study is a cube whose size isa3a3a
with a=l /4, and«=2.25. The scattered field at each obser-
vation point and for each incident angle is calculated with
the CDM [Eqs. (5) and (6)]. The direct problem is solved
with a discretization inN=125 subunits with widthd
=l /20. Notice that we avoid using the same discretization in
the forward and the inverse problems, hence the reconstruc-
tion procedure is applied to a test domain discretized into
subunits of widthd=l /10.

Figure 2 shows the maps of the relative permittivity ob-
tained after inversion. In Figs. 2(a), 2(c), and 2(e) the size of
the test domain is 1.8l31.8l31.8l (6859 subunits) while
in Figs. 2(b), 2(d), and 2(f) the size of the test domain is

FIG. 1. Sketch of the illumination and detection configuration of
the ODT experiment. The points regularly placed on the half sphere
are the observation points in far-field.
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3l33l33l (29 791 subunits). The center of the cube[in-
dicated by the bold square in Figs. 2(a)–2(d)] is located at
sl /8 ,0 ,0d. The time of computation for the inversion of the
smallest problemsN=6859 subunitsd is less than 7 min on a
modern computer(Opteron at 2 GHz). Most of the calcula-
tion time s80%d is taken by the resolution of Eq.(5) which
permits one to obtain the electromagnetic field from the di-
poles in the test domain. This step could be avoided by as-
suming that the field is close to the incident field, thus re-
sorting to the Born approximation. In this case, the method is
close to the singular value decomposition technique pre-
sented in Ref. 9. We note that, whatever the size of the box
used for the reconstruction, we always localize the position
of the object. Yet, the value of the relative permittivity is
greatly underestimated and this effect is stronger when the
size of the test domain is increased. Indeed, we note that with
our simple inversion scheme, the dipoles in the test domain
are never equal to zero. Hence we get a kind of “dilution” of
the object which reduces the value found for the relative
permittivity of the object. To get a physical insight into this
phenomenon, we define the “optical volume” of the cube, in
analogy with the optical path, asa3s«−1d, and we callV the
volume of the test domain and«̄ the average of the relative
reconstructed permittivity obtained insideV. When the algo-
rithm’s convergence is obtained we find thatVs«̄−1d<a3s«
−1d. When the volumeV increases,«̄ diminishes and the
relative permittivity at the location of the object is lower.
This systematic behavior suggests a possible posttreatment to
improve the quality of the reconstruction.

If one knows the value of the relative permittivity of the
object under study, which is often the case, one can put the
values of the weaker dipoles at zero and iterate the process

until the known relative permittivity is reached. In fact this
posttreatment amounts to reducing the size of the test domain
and permits one to avoid the dilution effect. As the mesh of
the test box does not fit exactly the volume of the unknown
object, we stop the iterative process when the average of the
relative reconstructed permittivity is equal to 0.7«. Figure 3
shows the images obtained after the posttreatment. We see
that in the sx,yd plane [Figs. 3(b) and 3(d)] the object is
perfectly localized and the reconstructed shape is close to the
real one. On the other hand, the reconstruction of the object
deteriorates in thesx,zd or sy,zd plane. This lack of accuracy
in the z direction is due to the illumination and collection
configuration of our experiment. In transmission diffraction
tomography, the incident field comes from below the sample
while the detectors are placed above the sample. In this case,
the portion of the Ewald sphere that is covered with the
far-field data is two times smaller in the axial direction than
in the transverse plane.7 Hence the resolution is twice as
large along thez axis than in thesx,yd plane. The same
phenomenon is observed with classic optical transmission
microscopes. To improve the axial resolution, it is necessary
to illuminate and collect the diffracted light from both sides
of the sample. This has been done in the 4p microscope33

and the same resolution is obtained in the transverse and
axial directions in that case.

We now study the robustness of our algorithm with re-
spect to noise. We corrupt the scattered far-field data,
f l=1,. . .,L, by an additive uncorrelated noise on each compo-
nent of the electric field at each position of observation,

f̃ l
vsr kd = f l

vsr kd + uAeif, s16d

where v stands for the components alongx, y, or z, A
=maxsuf l=1,. . .,Lud, and k=1, . . . ,M. f is a random number
taken for each component of the positions of observation and
angles of incidence with uniform probability density in

FIG. 2. Reconstructed map of permittivities for two sizes of the
test domain. The left side is computed when the size is 1.8l
31.8l31.8l and the right side when the size is 3l33l33l. (a)
and (b) are the maps of the relative permittivity in the planesx,zd
for y=0. (c) and(d) are the maps of the relative permittivity in the
planesx,yd for z=0. (e) and(f) are the relative permittivity vsx for
y=z=0. The bold square indicates the position of the cube.

FIG. 3. (a) Map of the relative permittivity in thesx,yd plane
(z=0). (b) Map of the relative permittivity in thesx,zd plane
(x=0). (c) Relative permittivity vsz for y=0, x=l /8. (d) Relative
permittivity vs x for y=z=0.
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f0,2pg, andu is a real number smaller than unity that moni-
tors the noise level. We take the same object and the same
experimental conditions as those of Figs. 2(a) and 2(c). In
Fig. 4 we present the reconstructed map of permittivity in the
sx,yd andsx,zd planes foru=10% and 30%, and in Fig. 4(e)
the relative permittivity along thex axis for the three differ-
ent values ofu=0 (no noise), 0.1, and 0.3. We note that in
Fig. 4(e) the two curvesu=0 andu=0.1 are confounded, and
the curves obtained foru=0.3 depart from the others only at
both extremities of the investigation line. If we look care-
fully at the map of the relative permittivity, Figs. 4(b) and
4(d), we see that the perturbation due to the noise appears
essentially at the edge of the test domain and more particu-
larly at the corner of the box. This behavior is found what-
ever the size of the investigation box. The perturbation in-
duced by the noise is thus easily eliminated with the
posttreatment proposed in Fig. 3 albeit with some precau-
tions. We introduce a second test domain, smaller than the
original one, and we apply the regularization only within this
second zone. Thus the dipoles located at the edges of the first
test domain are never forced to zero. Their role is to absorb
the noise so that it does not perturb the second test domain.
We finally obtain an image very close to that of Fig. 3. The
observed robustness of the inversion scheme must, however,
be qualified. Indeed, the noise we have chosen is uncorre-
lated and can be regarded as a high frequency function added
to the scattered amplitudes. Since the far-field data are basi-
cally linked to the induced dipoles through a Fourier trans-
form, the noise perturbation will be interpreted as the inter-

ference pattern of dipoles as far as possible, i.e., at the
extremity of the test domain. Thus the reconstruction of
small centered objects is not affected.

Unfortunately, it is most likely that the experimental noise
will be correlated. Indeed, due to the envisaged experimental
setup, one can expect systematic cumulative errors on the
phase measurements as one moves away from the specular
direction. We have investigated the behavior of the inversion
technique in the presence of correlated noise on the phase, in
the form,

f̃ l
vsr kd = f l

vsr kdeic with c = cg + ca, s17d

where v=x, y, or z, l =1, . . . ,L, and k=1, . . . ,M. cg is a
Gaussian noise with mean 0 and standard deviations while
ca is a correlated noise defined asca=sg /2dukd−k u / uk u
where kd is the wave vector of the scattered field. In our
experimental configuration, Fig. 1, the most important error
on the phase, maxscad<g, occurs whenkdx

=−kx and ui

= ±80°.
We observe in Fig. 5(b) that this kind of noise has a small

effect on the map of the permittivity, even when the value of
the phase error reaches 2p /3 for the furthest directions of
observation. In fact, its main effect is to move the location of
the object in thex direction, Fig. 5(d). This phenomenon is
directly linked to the fact that the object is not at the center
of the test box. The second effect is to decrease the value of
« and create some object ghosts. If we add an uncorrelated
Gaussian noise,s, to the correlated noise, we observe in Fig.
5(c) the same behavior as for the white noise previously
studied: in addition to the lateral shift, a perturbation at the
edge of the test domain appears. Clearly, a correlated noise
cannot be eliminated with a simple post-treatment. However,
as it stands, the reconstruction scheme is able to provide a
rather accurate map of permittivity even with phase errors
reaching 2p /3 in certain directions.

B. Many objects

We have also checked the efficiency of the inverse tech-
nique when many objects are embedded in the homogeneous

FIG. 4. (a) and (b) map of the relative permittivity in thesx,yd
plane atz=0. (c) and (d) Map of the relative permittivity in the
sx,zd plane atx=0. (a) and(c) correspond tou=0.1 and(b) and(d)
to u=0.3. (e) Relative permittivity vsx at y=z=0: plain lineu=0,
dashed line with crossesu=0.1, and point-dashed line with squares
u=0.3.

FIG. 5. (a)–(c) Map of the relative permittivity in thesx,yd
planesz=0d. (a) s=0, g=p /3. (b) s=0, g=2p /3. (c) s=p /3, g
=p /3. (d) Relative permittivity vsx for y=z=0. Solid line is with-
out noise, crosses correspond tog=p /3 (a), and circles tog
=2p /3 (b).
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medium. If the objects are far from each other, we first take
a large test domain with a loose mesh(for example,d=l /2)
in order to localize the objects. Then, we reduce the domain
of investigation to small boxes surrounding every detected
site (we can take many separated test domains) and we di-
minish the spacing of the mesh in each box. This technique is
a simple extension of the posttreatment described in the pre-
vious section and it can be applied indifferently to objects far
apart or close to each other.

To investigate the power of resolution of our imaging sys-
tem, we take two small cubes of widtha=l /4 and separated
by l /4 along thex direction. The conditions of illumination
and discretization are the same as those used in Figs. 3–5.

Figures 6(a)–6(c) show the map of the relative recon-
structed permittivity in thesx,yd plane atz=0 with or with-
out noise and with posttreatment. All the conclusions drawn
for an isolated object apply in the case of several objects.
First, the perturbation due to the white noise, Eq.(16), ap-
pears only at the edge of the investigation box and does not
alter the reconstruction of the permittivity. Then, in Figs. 6(a)
and 6(b), the two objects are localized, yet the separation
between the two cubes is not frankly marked[see Fig. 6(d)
plain line with crosses]. Last, if we use the posttreatment,
Fig. 6(c), the map of the reconstructed relative permittivity
perfectly fits the real shape of the objects in thesx,yd plane.
The reconstruction in thesx,yd plane, not shown, displays
the same lack of accuracy as that observed in Fig. 3(a). More
precisely, we have checked that the resolution is twice as
large along thez axis than that along thex axis, by studying
the image of two cubes separated byl /4 andl /2 along the
z axis. As expected, we were not able to distinguish the two

objects in the first case whereas the separation was clearly
visible in the second one.

It is worth noting that the reconstructed image depends on
the illumination configuration. In our case the incident beam
is varied in thesx,zd plane and the centers of the cubes
belong to thex axis. A simple analysis of the portion of the
Ewald sphere covered with these illuminations shows that
this configuration is the best for obtaining details along thex
axis. Indeed, if the plane of incidence is changed to thesy,zd
plane, the inversion procedure does not allow one to distin-
guish the two objects. Now, in general, the orientation of the
objects is unknown. Thus the solution consists of illuminat-
ing the sample with at least two orthogonal planes of inci-
dence, i.e., thesx,zd and thesy,zd planes. In this case, the
separation between the two cubes is less pronounced than
that presented in Fig. 6(d) but the posttreatment gives the
same maps of permittivity as those presented in Fig. 6(c).

Finally, to investigate further the power of resolution of
our technique, we have taken two cubes separated byl /7
along thex axis. The inversion procedure, even with the
posttreatment, failed to reconstruct the two objects. In this
case, it is necessary to implement more sophisticated inver-
sion procedures(such as those developed in 2D8).

IV. CONCLUSION

We have simulated a three-dimensional transmission dif-
fraction tomography experiment applied to the optical do-
main. The inversion algorithm, based on the coupled dipole
method, gives the map of permittivity of the object from the
far-field amplitudes. This technique does not possess all the
refinements of nonlinear inversion procedures but it is simple
to implement and its numerical cost is reasonable inasmuch
as it does not require one to inverse any matrix. Moreover, it
appears quite robust to white noise or phase errors. Taking
into account the weakness of the algorithm, we have pro-
posed a posttreatment that significantly improves the images.
We show that it is possible to distinguish two objects sepa-
rated byl /4 with relatively few illumination and collection
angles. The main interest of this simple inversion technique
is its versatility. We intend to extend it to configurations in
which the object is placed in the vicinity of a substrate. This
can be achieved by adding to the tensor of the free-space
susceptibility the tensor of the surface susceptibility.34 In a
more general way if the object is in an environment where
we can compute the tensor susceptibility(for example, a
multilayer system35 or a grating36) the method presented here
can be applied.
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FIG. 6. Two identical cubess«=2.25d with a=l /4 separated by
l /4 along thex direction: the center of the first cube is located at
s−l /4 ,0 ,0d and of second cube atsl /4 ,0 ,0d. (a)–(c) Map of the
relative permittivity in the planesx,yd with z=0. The bold square
represents the position of the cubes.(a) Reconstruction with no
noise. (b) Reconstruction with 30% of noise.(c) Reconstruction
with the regularization used in Fig. 3.(d) Relative permittivity vsx
at y=z=0: plain line with crosses foru=0, dashed line with circles
for u=0.1, and point-dashed line with squares foru=0.3.
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