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Three-dimensional subwavelength optical imaging using the coupled dipole method
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We simulate a three-dimensional optical diffraction tomography experiment in which the scattered field from
an unknown object is measured for various observation and incident angles. We propose a fast inversion
scheme based on the coupled dipole method that enables us to reconstruct the three-dimensional map of
permittivity of the object from the far-field data. We show that a power of resolutiow/ 4fcan be expected
and that the method is robust to noise.
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I. INTRODUCTION configurations are used and that both the phase and ampli-
tude of the scattered field are detected. This last point is the
There has been considerable interest in the developmentain problem of ODT from an experimental point of view.
of methods which extend the spatial resolution of opticalindeed, it is very difficult to control the phase of the incident
microscopy beyond the classical diffraction limit and providefield in an optical experiment, even more so when many
information on the three-dimensional structure of the samplegifferent incident directions are required. Yet, under the as-
Among their potential applications, one quoiesvivo cell  symption that the sample does not alter much the transmitted
imaging or the optical control of wafers in semiconductor specylar beam, it is possible to compensate the noncontrolled

industries. _ _ incident phase-shift and thus to obtain the absolute phase of
The existing imaging systems with a resolution smallery, o scattered field for all illuminatiors.

than several tensi of nar;'or(]ete'rs, such as atlomlc ;otr)ce rr]mcro- Several elaborate nonlinear inversion schemes have been
scopes or optical near-field microscopgre plagued by the proposed, mainly in the acoustic and microwave domains, in

need of approaching a probe in the vicinigy few nanom- 0" gimplified case of two-dimensional geometries. These
eterg of the object. Moreover, they are generally limited 10 (g hniques, that account for multiple scattering and incorpo-
surface imaging although, recently, an inversion procedurg,se somen priori information on the scatterer, may possess

has begn prqposed to extract, .fr'om the near-field data, the power of resolution smaller thae/ (7NA).8 Yet, their nu-

thrge-tqlmlepm?_n?oll map of perm|tt|vm([hof thtf] SaLnE’IZ' _merical cost is high and their extension to the three-
P 'CE _ar-PI]e n;_lcrosc_opesl,_ on the other hand, permityensional vectorial problem remains problematic. In this

one to obtain three-dimensional Images In a convenient, NNz o cage, the few proposed inversion schemes are usually

invasive way. Their transverse resolution is limited by thebased on Born approximation and thev often nealect the vec-
Rayleigh criterion,\/(2NA), where NA=n sin 6 is the nu- torial nature of tr?(ffield'g‘ll y 9

merical aperture of the objective, withthe index of refrac- In this paper, we simulate an ODT experiment and inves-
tion of the medium 'surroundmg the sample aﬁlmg half- tigate the power of resolution of the inversion technique. In
angle of the collection cone of the lenSésEnlarging the gec | A, we describe briefly the coupled dipole method
numerical aperture can be done by immersing the objectivcp) that enables one to calculate the field scattered by a

in a liquid with a high refractive index or by using & hemi- , 66 _dimensional object. In Sec. Il B, we propose a fast lin-
spherical prism to collect the scattered light, as in subsurfacg, inversion scheme based on the CDM. In Sec. IIl. we

microscopy> However, the distance of separation of the besty osent reconstructions of various objects and study the ro-
microscopes working with visible light and immersed objec-j, ,siess of the inversion scheme to uncorrelated and corre-

tives does not exceed 200 nm in the transverse plane angieq noise. Finally, in Sec. IV we conclude on the advan-

=00 nm in the axial direction. ) i tages and drawbacks of our method.
Optical diffraction tomographyODT) is another far-field

imaging technique that permits one to retrieve the internal
structure of semitransparent objects. Although its principles
have been established more than 30 years®agds only
recently that ODT has addressed with success the issue of  A. Formulation of the forward scattering problem
three-dimensional imaging with subwavelength resolution.

It consists of successively illuminating the sample under dif- The coupled dipole methodCDM) was introduced by
ferent directions and collecting the diffracted field for manyPurcell and Pennypacker in 1973 for studying the scattering
scattered angles. Then, a numerical inversion procedure f light by nonspherical dielectric grains in free spa¢&he
developed to reconstruct the three-dimensional map of pewbject under study is represented by a cubic arrai @o-
mittivity of the sample from the measured data. ODT differslarizable subunits. The electromagnetic field at each subunit
from classic microscopy in that many different illumination can be expressed with the following self-consistent equation:

II. THEORY
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A N B. Formulation of the inverse scattering problem
E(ri'w):EmC(ri,w)Jrj:lEj;&iT(ri’rj’w)a(rj’“’)E(ri’w)’ @) We assume that an unknown object is confined in a

. bounded boX) (test domain or an investigating dompaand
whereE"(r;, w) is the incident field at the position in the illuminated successively by=1, ... L electromagnetic exci-
absence of the scattering objettjs the linear response to a tationE\Y] . For each excitatioh, the scattered fielf is
dipole in free spacé&}anda(r, ) is the polarizability of the measured on a surfadeat M points. The inverse scattering
subunitj. As the electromagnetic wave is time harmonic de-problem is now stated as finding the permittivity distribution
pendent we can omib in the expressions. The polarizability &, inside the investigating are@ such that the associated

is written as scattered field matches the measured ffe!lg___ L. Many ac-

o) curate iterative techniques have been developed to solve this

alr)) = —a.ro, 2) inverse problem. In these methods, starting from an initial
1-(213)ik%a’(r)) guess, one adjusts the parameter of interest gradually by

; minimizing a cost functional involving the measured

with ) . .
scattered-field data. Two main approaches can be found in

3 g4(r) - ¢ the literature. In the first on€¥;??the linearized methods, the
0 _o 1 0 ’ ’
alr)= A eq(r)) + 260" (3 field in the test domain is considered fixed. This field is the

solution of the forward problem, E@5), for the best avail-
whered is the spacing of lattice discretizationy(r;) the  aple estimation of the permittivity at each iteration step, or it
relative permittivity of the object, and, andk the relative s the reference field if the Born approximation is assumed.
permittivity and the wave number of the homogeneous metn the second approa@k?* typically the modified gradient
dium which contains the object, respectively. The material ismethod, the field inside the test domdihis an unknown
isotropic so thak,(r;) and the polarizability are scalar. The that is obtained, together with the permittivity, by the mini-
radiative reaction term in the polarizability, @), is impor-  mization procedure. A hybrid meth&tf® that combines the
tant if one wants to compute the optical fortes® or the ideas from the two approaches has also been developed. All
extinction cross section of an objéétBut the correction these methods deal with two-dimensional inverse scattering
brought by the radiative reaction term, if we are interestechroblems. In three-dimensions, most techniques use a linear
only by the scattered field, is small and can be neglected iihversion based on Born approximatfdfand are restricted
our study. Hence the polarizability reduces to the Clausiusto the scalar case. Recently, a more advanced method,
Mossotti expression, E3).!8 In that case, for a nonabsorb- namely the contrast source inversi¢8Sl) method?” has

ing object, the polarizability is real. been introduced for solving the full vectorial three-
Once Eg.(1) is solved, the total field scattered by the dimensional probler?®2°In the CSI method the induced di-
object at an arbitrary positionis given by poles are reconstructed iteratively by minimizing at each it-
N eration step a cost functional involving both the far-field
— pinc , A A equation, Eq(6), and the domain-field equation, E&).
EN=E UHETU’”)“(”)E(”)' “@ Inspired by the CSI method, we propose in the present
) ] paper a simpler iterative scheme. The dipoles are recon-
We can write Eq(1) in the condensed form structed using a reduced cost functional involving only the

— —ie = far-field equation. We build up a sequerfgg, according to
E=E"+Ap, 5 the following recursive relation:

where the overline ok indicates a vector8 which gathers B =Byt d 7

the electric field at each subunit of the object: Pin=Pin-1¥ FinCln:

E=[Exry), By(ro) E(ry), ... Brn) By(rn) Er)]- =p(ri) WhereELn is an updating direction and will be specified later
=a(r;)E(r)) is the dipole moment of the subumiandA is a  in the paper. The weighting scalar numigy, is determined
square matrixwhose size is B X 3N) which contains the at each iteration step by minimizing the cost functio/g|
field tensors susceptibilities(r;,r;). that represents the discrepancy between the @aeasure-

In an ODT experiment, the scattered field is detectdd at mentg and the scattered field corresponding to the best avail-
observation points fot. successive illuminations. Denoting able estimate of the obje, .. The cost functionalF, is
by f, the vector of the scattered field at each observatiordefined as

points for thelth illumination, we can write the far-field L

equation, Eq(4), in the following condensed form: Fo®rn) = We > |Ify - B 12, (8
- = I=1
fi=Bp, (6)

wherel=1,---,L, andB is a matrix whose size isN8 X 3N. whereWr is a normalizing coefficient,

B contains the tensors field susceptibiliti&sr,r;) wherer; 1

denotes a point in the discretized objget1, ... N, whiler Wr=— 9)
is an observation poink=1,... M. Note thatB does not > ||f|||§

depend on the angle of incidence. I=1
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and||Q||is the deduced norm from the inner product of two
vectors(R, Q) defined onl". This inner product reads as

(RQ)r= 2 R(ry - Q(ry),

rkEF

(10

whereR" denotes the complex conjugate Rf
Substitutingp, , from Eq. (7) in Eq. (8) leads to a poly-
nomial expression of the weighting coefficieffig,. The cost
functional F,(p, ») is then reduced to a simple cost function
Fn(Bi n) with respect tol scalar coefficientg, .. The mini-

mization is accomplished according to a Polak-Ribiere con-

jugate gradient procedufg.
As updating directiond, , the authors took the Polak-
Ribiére conjugate gradient direction

aI,n zgl,n;p"' 7|,nal,n—la (11

with

_ <§I,n;ﬁa§l,n;ﬁ_ Ql,n—l;p_>Q
161 n-151l5

where(-, )¢ is the same inner product as Ed0) but acting
on vectors defined of.

The vector functiorg, 5 is the gradient of the cost func-
tional F with respect tq, evaluated for thén—1)th quanti-
ties. This gradient reads as

Yo ’ (12)

Onp= W B[f, - §5|,n—1], (13

Whereg_’r is the transpose complex conjugate matrix of the

matrix B.

Once the sourceg, are reconstructed, one can determine

the fieldsE, inside Q using Eq.(5). The polarizabilitya® at
the positionr; is then given by

L
> Er(ry) -pi(ry)
I=1

ao(rj) = L

2 ErpP
I=1

(14)

Notice that, if the material under the test is assumed to b
without lossesg; is real, the polarizability may be rewritten
as

L
2 E(r) -pi(r))
=1

L

2 |El(rj)|2
I=1

a%r) =R (15)

The permittivitye, distribution is determined easily using
Eqg. (3).
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FIG. 1. Sketch of the illumination and detection configuration of
the ODT experiment. The points regularly placed on the half sphere
are the observation points in far-field.

Ill. RESULTS

In this section, we simulate an ODT experiment and we
present reconstructed maps of permittivity for various ob-
jects.

A. Isolated object

We first consider a unigue homogeneous object, with rela-
tive permittivity ¢;, embedded in a homogeneous medium
with relative permittivity eg. We definee=¢,/g¢ and \ the
wavelength in the homogeneous medium.

Figure 1 is a sketch of the experimental configuration.
The unknown object is drawn in a plain line while the box in
dashed line indicates the domain of investigation taken in the
reconstruction procedure. We take 31 incident angles, and
M =65 observation points. The latter are regularly placed on
a half sphere with radius 400 above the€x,y) plane so that
one can consider that the scattered field is detected in far-
field along 65 directions in a cone of half-angle 80°. Each
electromagnetic excitation is a plane wave with wave vector
k belonging to théx,z) plane withk,>0. The incident angle

with respect to the-axis 6, varies from -80° to 80°. In this

example, the polarization of the incident electric field lies in
the (x,z) plane as shown in Fig. 1. We have done the same
study with an incident polarization parallel to they) plane
and obtained very similar results.

The object under study is a cube whose siza’sax a
with a=A/4, ande=2.25. The scattered field at each obser-
vation point and for each incident angle is calculated with
the CDM [Egs. (5) and (6)]. The direct problem is solved
with a discretization inN=125 subunits with widthd
=\/20. Notice that we avoid using the same discretization in
the forward and the inverse problems, hence the reconstruc-

As initial estimate forp, the authors took the estimate tion procedure is applied to a test domain discretized into
obtained by the back-propagation procedure. This techniqusubunits of widthd=A/10.
is described for the two-dimensional problem in Refs. 26, 31, Figure 2 shows the maps of the relative permittivity ob-
and 32. The extension to the three-dimensional problem itained after inversion. In Figs(@, 2(c), and Ze) the size of
straightforward and therefore does not need to be presentdbe test domain is 138X 1.8\ X 1.8\ (6859 subunitswhile
herein. in Figs. 2b), 2(d), and 2f) the size of the test domain is
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- x/\ - </ FIG. 3. (a) Map of the relative permittivity in théx,y) plane

(z=0). (b) Map of the relative permittivity in the(x,z) plane

FIG. 2. Reconstructed map of permittivities for two sizes of the (x=0). (c) Relative permittivity vsz for y=0, x=\/8. (d) Relative
test domain. The left side is computed when the size is\ 1.8 permittivity vsx for y=z=0.
X 1.8\ X 1.8\ and the right side when the size i 8 3\ X 3\. (a)
and (b) are the maps of the relative permittivity in the plaixgz)
for y=0. (c) and(d) are the maps of the relative permittivity in the
plane(x,y) for z=0. (e) and(f) are the relative permittivity v for
y=z=0. The bold square indicates the position of the cube.

until the known relative permittivity is reached. In fact this
posttreatment amounts to reducing the size of the test domain
and permits one to avoid the dilution effect. As the mesh of
the test box does not fit exactly the volume of the unknown

3\ X 3\ X 3\ (29 791 subunits The center of the cubpn-  Object, we stop the iterative process when the average of the
dicated by the bold square in Figs@a-2(d)] is located at relative reconstructed permittivity is equal to €. Figure 3
(\/8,0,0. The time of computation for the inversion of the Shows the images obtained after the posttreatment. We see
smallest probleniN=6859 subunitsis less than 7 min on a that in the(x,y) plane [Figs. 3b) and 3d)] the object is
modern computefOpteron at 2 GHg Most of the calcula- perfectly localized and the reconstructed shape is close to' the
tion time (80%) is taken by the resolution of E¢5) which ~ real one. On the other hand, the reconstruction of the object
permits one to obtain the electromagnetic field from the di-deteriorates in théx,2) or (y,2) plane. This lack of accuracy
poles in the test domain. This step could be avoided by adh the z direction is due to the illumination and collection
suming that the field is close to the incident field, thus re-configuration of our experiment. In transmission diffraction
sorting to the Born approximation. In this case, the method i$omography, the incident field comes from below the sample
close to the singular value decomposition technique prewhile the detectors are placed above the sample. In this case,
sented in Ref. 9. We note that, whatever the size of the bofhe portion of the Ewald sphere that is covered with the
used for the reconstruction, we always localize the positioriar-field data is two times smaller in the axial direction than
of the object. Yet, the value of the relative permittivity is In the transverse plarfeHence the resolution is twice as
greatly underestimated and this effect is stronger when thirge along thez axis than in the(x,y) plane. The same
size of the test domain is increased. Indeed, we note that witAhenomenon is observed with classic optical transmission
our simple inversion scheme, the dipoles in the test domaifnicroscopes. To improve the axial resolution, it is necessary
are never equal to zero. Hence we get a kind of “dilution” ofto illuminate and collect the diffracted light from both sides
the object which reduces the value found for the relativeof the sample. This has been done in the microscopé®
permittivity of the object. To get a physical insight into this and the same resolution is obtained in the transverse and
phenomenon, we define the “optical volume” of the cube, inaxial directions in that case.

analogy with the optical path, @(s-1), and we callV the We now s_tudy the robustness of our algorithm with re-
volume of the test domain andthe average of the relative SPect to noise. We corrupt the scattered far-field data,
reconstructed permittivity obtained insite When the algo-  fi=1,...L, by an additive uncorrelated noise on each compo-
rithm’s convergence is obtained we find thike—1) ~a3(e nent of the electric field at each position of observation,

-1). When the volumeV increasesg diminishes and the

relative permittivity at the location of the object is lower. FU(r) = £1(ry) + uA?, (16)
This systematic behavior suggests a possible posttreatment to
improve the quality of the reconstruction. where v stands for the components along y, or z, A

If one knows the value of the relative permittivity of the =max(fi-;_,|), andk=1,... M. ¢ is a random number
object under study, which is often the case, one can put thiken for each component of the positions of observation and
values of the weaker dipoles at zero and iterate the processgles of incidence with uniform probability density in
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ference pattern of dipoles as far as possible, i.e., at the
5 0 1 extremity of the test domain. Thus the reconstruction of
x/ A small centered objects is not affected.

) o Unfortunately, it is most likely that the experimental noise
FIG. 4. (8) and(b) map of the relative permittivity in théx,y)  yj|| pe correlated. Indeed, due to the envisaged experimental
plane atz=0. (¢) and (d) Map of the relative permittivity in the  gor5  one can expect systematic cumulative errors on the
(x,2) plane atx=0. (&) and(c) correspond tai=0.1 and(b) and(d)  yase measurements as one moves away from the specular
Eioagk:eodsli'rgg)vﬁfr:agi\éisiex;rgltilv:{]gz(o;ﬁt)-/d_azs_hgdFiililenvtirt]lf l;;géres direction. We have investigated the behavior of the inversion
u=0.3. - tﬁchfnique in the presence of correlated noise on the phase, in
the form,

[0,27], andu is a real number smaller than unity that moni- Tl ) — fU i g -

tors the noise level. We take the same object and the same i =firge™ with 4= g + v, 7
experimental conditions as those of Figga)2and 2c). In  wherev=x, y, or z, I=1,... L, andk=1,... M. ¢, is a

Fig. 4 we present the reconstructed map of permittivity in theGaussian noise with mean 0 and standard deviatiovhile

(x,y) and(x,2) planes foru=10% and 30%, and in Fig(d) ¢, is a correlated noise defined ag=(y/2)kq—k|/|K]|

the relative permittivity along th& axis for the three differ- whereky is the wave vector of the scattered field. In our
ent values ofu=0 (no noisg, 0.1, and 0.3. We note that in experimental configuration, Fig. 1, the most important error
Fig. 4(e) the two curvesi=0 andu=0.1 are confounded, and on the phase, ma&y,)~ vy, occurs whenkdx:—kX and 6,

the curves obtained far=0.3 depart from the others only at =+80°.

both extremities of the investigation line. If we look care- We observe in Fig. @) that this kind of noise has a small
fully at the map of the relative permittivity, Figs() and  effect on the map of the permittivity, even when the value of
4(d), we see that the perturbation due to the noise appeathe phase error reachesr3 for the furthest directions of
essentially at the edge of the test domain and more particwebservation. In fact, its main effect is to move the location of
larly at the corner of the box. This behavior is found what-the object in thex direction, Fig. %d). This phenomenon is
ever the size of the investigation box. The perturbation indirectly linked to the fact that the object is not at the center
duced by the noise is thus easily eliminated with theof the test box. The second effect is to decrease the value of
posttreatment proposed in Fig. 3 albeit with some precaues and create some object ghosts. If we add an uncorrelated
tions. We introduce a second test domain, smaller than th&aussian noiser, to the correlated noise, we observe in Fig.
original one, and we apply the regularization only within this5(c) the same behavior as for the white noise previously
second zone. Thus the dipoles located at the edges of the firsfudied: in addition to the lateral shift, a perturbation at the
test domain are never forced to zero. Their role is to absorlkedge of the test domain appears. Clearly, a correlated noise
the noise so that it does not perturb the second test domainannot be eliminated with a simple post-treatment. However,
We finally obtain an image very close to that of Fig. 3. Theas it stands, the reconstruction scheme is able to provide a
observed robustness of the inversion scheme must, howeveather accurate map of permittivity even with phase errors
be qualified. Indeed, the noise we have chosen is uncorreeaching 2r/3 in certain directions.

lated and can be regarded as a high frequency function added _

to the scattered amplitudes. Since the far-field data are basi- B. Many objects

cally linked to the induced dipoles through a Fourier trans- We have also checked the efficiency of the inverse tech-
form, the noise perturbation will be interpreted as the internique when many objects are embedded in the homogeneous
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104 104 objects in the first case whereas the separation was clearly

visible in the second one.

It is worth noting that the reconstructed image depends on
the illumination configuration. In our case the incident beam
is varied in the(x,z) plane and the centers of the cubes
belong to thex axis. A simple analysis of the portion of the
Ewald sphere covered with these illuminations shows that
this configuration is the best for obtaining details alongxhe
axis. Indeed, if the plane of incidence is changed to(the)

@ 1.05 q‘h plane, the inversion procedure does not allow one to distin-

M guish the two objects. Now, in general, the orientation of the

objects is unknown. Thus the solution consists of illuminat-

-1 0 1 ing the sample with at least two orthogonal planes of inci-
dence, i.e., théx,z) and the(y,z) planes. In this case, the

FIG. 6. Two identical cube&=2.25 with a=\/4 separated by separation between the two cubes is less pronounced than
\/4 along thex direction: the center of the first cube is located at that presented in Fig.(6) but the posttreatment gives the
(-\/4,0,0 and of second cube &k/4,0,0. (8)-(c) Map of the  same maps of permittivity as those presented in Fig). 6
relative permittivity in the planéx,y) with z=0. The bold square Finally, to investigate further the power of resolution of
represents the position of the cubga) Reconstruction with no  gyr technique, we have taken two cubes separated /By
n0|se(b) Reconstruction with 30% of nOiSQC) Reconstruction along thex ax|s The |nvers|0n procedure, even Wlth the
with the regularization used in Fig. &) Relative permittivity vsx  posttreatment, failed to reconstruct the two objects. In this
aty=z=0: plain line with crosses fau=0, dashed line with circles case, it is necessary to implement more sophisticated inver-
for u=0.1, and point-dashed line with squares 6er0.3. sion proceduregsuch as those developed in 9D

a)

medium. If the objects are far from each other, we first take IV. CONCLUSION
a large test domain with a loose mgsbr example d=\/2) ) . . o .
in order to localize the objects. Then, we reduce the domain We have simulated a three-dimensional transmission dif-
of investigation to small boxes surrounding every detectedraction tomography experiment applied to the optical do-
site (we can take many separated test domaarsl we di- ~main. The_ inversion algorithm, .balls.ed on the c_oupled dipole
minish the spacing of the mesh in each box. This technique i§'ethod, gives the map of permittivity of the object from the
a simple extension of the posttreatment described in the prdar-field amplitudes. This technique does not possess all the
vious section and it can be applied indifferently to objects far€finements of nonlinear inversion procedures but it is simple
apart or close to each other. to implement and its numerical cost is reasonable inasmuch
To investigate the power of resolution of our imaging sys-as it does not require one to inverse any matrix. Moreover, it
tem, we take two small cubes of widéte\/4 and separated a@ppears quite robust to white noise or phase errors. Taking
by /4 along thex direction. The conditions of illumination into account the weakness of the algorithm, we have pro-
and discretization are the same as those used in Figs. 3-5P0sed a posttreatment that significantly improves the images.
Figures §a)—-6(c) show the map of the relative recon- We show that it is possible to distinguish two objects sepa-
structed permittivity in thex,y) plane atz=0 with or with- ~ rated bya/4 with relatively few illumination and collection
out noise and with posttreatment. All the conclusions drawrfngles. The main interest of this simple inversion technique
for an isolated object apply in the case of several objectdS its versatility. We intend to extend it to configurations in
First, the perturbation due to the white noise, Etp), ap- which the object is placeq in the vicinity of a substrate. This
pears only at the edge of the investigation box and does n&@n be achieved by adding to the tensor of the free-space
alter the reconstruction of the permittivity. Then, in Fige)e ~ Susceptibility the tensor of the surface susceptibffityn a
and @b), the two objects are localized, yet the separatiod™ore general way if the object is in an environment where
between the two cubes is not frankly markisge Fig. 6d) We can compute the tensor susceptibilifpr example, a
plain line with crosses Last, if we use the posttreatment, Multilayer syster?’? or a grating® the method presented here
Fig. 6(c), the map of the reconstructed relative permittivity ¢@n be applied.
perfectly fits the real shape of the objects in tRkey) plane.
The reconstruction in théx,y) plane, not shown, displays
the same lack of accuracy as that observed in K. ®ore This work was supported by a grant of the Ministére de la
precisely, we have checked that the resolution is twice aRecherche, ACI 02 2 0225, and the Conseil Général des
large along the axis than that along the axis, by studying Bouches du Rhéne and the Conseil Régional PACA. The
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