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Superresolution of three-dimensional optical imaging by use of
evanescent waves
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We simulate a three-dimensional optical diffraction tomography experiment in which superresolution is
achieved by illuminating the object with evanescent waves generated by a prism. We show that accounting for
multiple scattering between the object and the prism interface is mandatory to obtain superresolved images.
Because the Born approximation leads to poor results, we propose a nonlinear inversion method for retrieving
the map of permittivity of the object from the scattered far field. We analyze the sensitivity to noise of
our algorithm and point out the importance of using incident propagative waves together with evanescent
waves to improve the robustness of the reconstruction without losing the superresolution. © 2004 Optical
Society of America
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There has been considerable interest in the develop-
ment of optical microscopes with lateral resolution
below the usual Rayleigh criterion, l��2NA�, where
l is the wavelength of the illumination and NA
is the numerical aperture of the imaging system.
The resolution has been improved well below the
classical limit in optical near-field microscopy1 by
bringing a probe within a few nanometers of the
sample. In far-field f luorescence microscopy an
important amelioration has been obtained by taking
advantage of nonlinear effects2 or by use of numerical
postprocessing with strong prior information on the
f luorescent sources. In classical far-field microscopes
the NA has been increased with immersed lenses,
hemispherical prisms,3 or the placement of several
objectives on opposite sides of the sample.4,5 It has
also been proposed to illuminate the sample with
many structured illuminations and to mix the differ-
ent images through simple arithmetics.6 This last
technique is, in principle, close to optical diffraction
tomography (ODT), in which the sample is illuminated
under various angles of incidence, the phase and
intensity of the diffracted far-field is detected along
several directions of observation,7 and a numerical
procedure is used to retrieve the map of permittivity
of the object from the far-field data.8 In general,
the inversion methods are based on the Born ap-
proximation, so that there is a linear relationship
between the scattered f ield and the permittivity of the
object.9 Experimental and theoretical studies have
shown that using several illuminations permits one
to exceed the classical diffraction limit by a factor
of 2.6,8 To ameliorate further the resolution of the
system, it has been proposed to illuminate the sample
with evanescent waves through a prism in total inter-
nal ref lection.10 Actually, superresolution is obtained
if the objects are close to the surface of the prism or
even deposited onto it.11 In this case the inf luence of
the interface cannot be neglected, as was done in the
pioneering work on this technique.10 In this Letter we
simulate accurately a full-vectorial three-dimensional
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ODT experiment in total internal ref lection con-
figuration. We point out that multiple scattering
between the object and the interface is not negligible.
Hence, contrary to what happens for configurations
without an interface, the Born approximation leads
to nonsatisfactory results even for objects that are
small with respect to the wavelength. We thus pro-
pose a full-vectorial nonlinear inversion method and
investigate its power of resolution. Last, we show
that the robustness of the reconstruction with respect
to noise can be signif icantly increased by use of both
propagative- and evanescent-wave illumination beams.

The geometry of the problem is depicted in Fig. 1.
Assume that an unknown three-dimensional object
is entirely confined in a bounded box V , �3 (in-
vestigation domain) and illuminated successively by
l � 1, . . . ,L electromagnetic waves Einc

l�1, ...,L. For each
excitation l the scattered field fl is measured at M
points on a surface G located outside the investiga-
tion domain V. We use the coupled dipole method

Fig. 1. Sketch of the ODT experiment.
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(CDM) to model the scattered field by an arbitrary
three-dimensional object deposited on a semi-inf inite
medium.12 In this method the scatterer is discretized
into a cubic lattice of N subunits with spacing d that
are considered radiating dipoles. The self-consistent
local field at a subunit i inside V can be written as

El�ri [ V� � Einc
l �ri� 1

NX
j�1

$
G�ri, rj �a�rj �El�rj � , (1)

where
$
G is the field susceptibility tensor that takes

into account the substrate12 and i � 1, . . . ,N . a�rj �
denotes the polarizability of subunit j depending on d
through the Clausius–Mossotti relation.12 The scat-
tered field on G reads as

Ed
l �rm [ G� �

NX
j�1

$
G�rm,rj �a�rj �El�rj� . (2)

For each illumination the forward scattering problem,
Eqs. (1) and (2), can be reformulated symbolically as

Ed
l � GfaraEl , (3)

El � Einc
l 1 GnearaEl , (4)

where Gfar and Gnear are matrices that contain the
field susceptibility tensor and are �3N 3 3M� and
�3N 3 3N�, respectively. The inverse scattering
problem consists of finding the permittivity distri-
bution ´ inside investigation area V such that the
associated scattered f ield matches measured field
fl�1, ...,L. To solve this nonlinear and ill-posed in-
verse scattering problem, we propose an iterative
approach as described for the two-dimensional case
in Ref. 13. In this approach, starting from an initial
guess, the parameter of interest (the polarizability
distribution and subsequently the permittivity) is
adjusted gradually by minimizing a cost functional
F �a� involving the discrepancy between the data fl
and the scattered f ield that is predicted by the model
through Eqs. (3) and (4). In fact, the inverse problem
is stated as an optimization problem in which for each
iteration step n the cost functional

Fn�an� �
LX

l�1

kfl 2 GfaranEl,nk
2
G

¡ LX
l�1

kflk2G (5)

is minimized by the Polak–Ribière conjugate gradi-
ent procedure as in Ref. 13. When the extended Born
approximation14 is assumed, local f ield El is approxi-
mated by incident field Einc

l . When multiple scatter-
ing is taken into account, local field E is the solution
of Eq. (4) for the best available estimation of the polar-
izability distribution, i.e.,

En, l �

∑
I 2 Gnearan21

∏
21

Einc
l , (6)

with I being the identity matrix.
We check the performance of the inverse procedure

on synthetic data by simulating an ODT experiment
with the CDM. Consider two cubes of side l�4 and of
relative permittivity 2.25 separated by l�10, deposited
on a semi-infinite medium with a relative permittivity
of ´sub � 2.25 (as depicted in Fig. 1). The superstrate
is a vacuum, whereas the substrate is made of glass.
The object is illuminated by 16 plane waves coming
from the substrate, whose wave vectors and electric
field are either in the �x, z� plane or in the � y, z� plane.
Let u

inc
l be the angle of incidence with respect to the

z axis corresponding to the lth illumination. For the
total internal ref lection experiment, all the incident
plane waves are totally ref lected at the interface; hence
u
inc
l [ �280,243�

S
�80, 43� deg. The amplitude and

phase of the scattered fields are detected at 65 points
regularly distributed on a half-sphere G (see Fig. 1).
The radius of the sphere is 400l so that only data from
far-field components are considered. Azimuthal angle
of observation u, defined as the angle between the dif-
fracted wave vector and the z axis, ranges from 280± to
80±. In all the examples the synthetic data are com-
puted with a mesh size of l�40, which differs from that
used in the inversion, l�20. In all the reported results
we display the map of the reconstructed relative per-
mittivity distribution after enough iterations for the
cost function to reach a plateau. During the mini-
mization process the value of the relative permittivity
was enforced not to exceed 2.25; thus the convergence
was obtained within 100 iterations. We first investi-
gate the eff iciency of the extended Born approxima-
tion14 (worse results were obtained with the standard
Born approximation). In Figs. 2(a) and 2(b) we plot
the top and side views of the reconstructed relative per-
mittivity in the �x, y� and �x, z� planes with the linear
inversion method. We observe that the two cubes are
not resolved and that the relative permittivity quickly
saturates at 2.25, especially in the vicinity of the inter-
face. This result can be explained easily by studying
the behavior of the local f ield inside a small dielectric
sphere placed above a substrate and illuminated under
normal incidence in transmission. When the distance
between the object and the interface tends to zero, the
amplitude of the local field increases and departs from
the transmitted incident field. Thus, although the ex-
tended Born approximation underestimates the local

Fig. 2. Reconstructed relative permittivity distribution
with only evanescent-wave illumination: (a), (b) with the
extended Born approximation; (c), (d) with the nonlinear
inverse scheme.
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Fig. 3. Reconstructed relative permittivity distribution
with the nonlinear inverse algorithm from corrupted data
with noise: (a), (b) with evanescent waves; (c), (d) with
evanescent and propagative waves.

field, the inversion method compensates this error by
overestimating the polarizability of the dipoles close
to the interface. The failure of the linear inversion
method is clearly due to the presence of the interface.
Indeed, we checked the linear inversion method with
the same two cubes separated by l�7 and illuminated
by propagative plane waves only. When objects are
deposited on the interface, the reconstructed map of
the permittivity is similar to that obtained in Figs. 2(a)
and 2(b), whereas, when the objects are in vacuum,
they are correctly resolved. Hence it is mandatory to
account for the multiple scattering between the objects
and the interface in the inverse problem. In Figs. 2(c)
and 2(d) we plot the maps of the relative permittivity
obtained by taking into account the multiple scatter-
ing effect, i.e., the self-consistent Eq. (4) for the local
field is solved at each iteration step. The improve-
ment in the resolution and accuracy is manifest. The
ability to resolve two cubes separated by l�10 is due to
both the nonlinear inversion method that accounts for
the multiple scattering and the set of incident evanes-
cent plane waves that maximizes the radius of the
Ewald sphere that can be covered in such a configu-
ration.11 When only propagative waves are used, i.e.,
u
inc
l [ �243, 43� deg, the two cubes are not resolved.
In Fig. 3 we checked the robustness of the inverse

method by adding an uncorrelated noise to the scat-
tered far-field data. The noise amplitude is 20% of
the maximum of the scattered field for all the illu-
minations. We note, by comparing Figs. 3(a) and 3(b)
with Figs. 2(c) and 2(d), that the reconstructed map
of the permittivity is strongly affected by the noise.
The same algorithm, used in a homogeneous configura-
tion, shows a better robustness to noise. In our opin-
ion this is because the incident waves that illuminate
the objects are evanescent. Indeed, the convergence
of iterative inverse schemes deteriorates when the fre-
quency of the illumination is increased.15 Now, one
can consider evanescent waves as high-frequency illu-
mination. It is possible to circumvent the sensitivity
of the reconstruction to noise by using both evanes-
cent and propagative waves as illumination. Indeed,
it has been shown that low-frequency illumination, al-
though yielding poorly resolved images, ameliorates
the convergence of iterative inversion schemes.15 In
Figs. 3(c) and 3(d) we plot the reconstructed map of
the permittivity obtained when u

inc
l [ �280, 80� deg

is used to build the set of data. This result has to
be compared with Figs. 3(a) and 3(b), in which only
evanescent waves are used. The robustness of the in-
version algorithm is clearly improved. Note that the
resolution is not deteriorated by the use of propagative
waves together with evanescent waves.

In conclusion, we have presented a realistic optical
diffraction tomography experiment that can image
three-dimensional objects with a resolution much
higher than the one reached with classical micro-
scopes. The superresolution is attained by illumi-
nating the sample with evanescent waves and taking
into account the multiple scattering between the
objects and the interface in the inversion procedure.
We stress that the Born approximation leads to poor
results in this configuration and that adding incident
propagative waves to the evanescent waves permits
one to improve the robustness with respect to noise of
the reconstruction.
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