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We discuss the characterization of two-dimensional targets based on their diffracted intensity. The target char-
acterization is performed by minimizing an adequate cost functional, combined with a level-set representation
if the target is homogeneous. One key issue in this minimization is the choice of an updating direction, which
involves the gradient of the cost functional. This gradient can be evaluated using a fictitious field, the solution
of an adjoint problem in which receivers act as sources with a specific amplitude. We explore the Born approxi-
mation for the adjoint field and compare various approaches for a wide variety of objects. © 2006 Optical So-

ciety of America
OCIS codes: 290.3200, 110.6960.

1. INTRODUCTION

In some practical applications, the phase measurement of
the scattered fields is too corrupted by noise to be useful,
and sometimes there is no phase measurement at all as
in, e.g., optical measurement setup. Even if there is some
effort nowadays to provide experimental setups that mea-
sure all components of the scattered ﬁelds,l’2 our purpose
herein is to investigate a method that images samples
from the modulus of the scattered field only. Indeed, it has
been shown that the scattered intensity could provide
useful information on the obstacles.?

Instead of extracting some phase information from
measurements® and then solving the inverse scattering
problem from the measured intensity and the preliminary
retrieved phase, we directly retrieve the targets under
test from the scattered intensity. Following the ideas of
Refs. 5 and 6, the approach suggested herein builds up
the parameter of interest, namely the contrast of permit-
tivity, iteratively. It is gradually adjusted by minimizing a
cost functional properly defined.

This minimization under constraints is reformulated in
terms of a Lagrangian functional, whose saddle point
leads to the definition of an adjoint problem.” By virtue of
the reciprocity principle, this adjoint problem is equiva-
lent to a forward-scattering problem where receivers act
as sources with correctly defined amplitudes. It will be
shown that the only difference between a standard mini-
mization process using modulus-phase data and this algo-
rithm is expressed in these weighting coefficients. This
implies that passing from full data to amplitude data re-
quires only one line change in a software program if an
adjoint field formalism is used.

This approach is then introduced for two cases of per-
mittivity profiles: a continuous profile and a step profile.
The first case is solved with a conjugate-gradient-type al-
gorithm. For the second case, a level-set representation is
introduced that fully takes into account prior information
stating that the obstacle is homogeneous.® Results using
modulus-only measurements will then be analyzed in a
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free-space configuration for those two cases of permittiv-
ity profiles. In particular, by using various numerical ex-
amples, we highlight the effect on the gradient computa-
tion and on the convergence of physical approximations
such as the Born approximation for both the forward and
adjoint fields. We also introduce a new initial guess based
on an appropriate use of a topological derivative, which is
no more than the variation of the cost functional due to
the inclusions of small dielectric balls.”?

This paper is organized as follows. In Section 2, a de-
scription of the geometry is provided. Section 3 is devoted
to the definition of the inverse scattering problem, with
the introduction of the cost functional and the associated
Lagrangian formulation. Then the gradient expression is
provided and several choices of computation are dis-
cussed. Section 4 focuses on the application of this gradi-
ent computation to the case of heterogeneous obstacles by
means of the conjugate-gradient algorithm or to the case
of homogeneous obstacles by means of level sets. The
method used to obtain the initial guess is also explained
in this section. Finally, Section 5 provides numerical ex-
amples for both homogeneous and heterogeneous ob-
stacles, with and without noise, showing the effects of a
correct gradient computation as well as the appropriate
use of a priori information on the nature of the scatterers.

2. STATEMENT OF THE PROBLEM

The geometry of the problem studied in this paper is
shown in Fig. 1 where a two-dimensional object of arbi-
trary cross section () is confined in a bounded domain D.
The embedding medium (), is assumed to be infinite and
homogeneous, with permittivity e,=gpe;,, and of perme-
ability u=pug (eg and wg being the permittivity and perme-
ability of the vacuum, respectively). The scatterers are as-
sumed to be inhomogeneous cylinders with a permittivity
distribution e(r)=¢gge,(r); the entire configuration is non-
magnetic (u=pg). A right-handed Cartesian coordinate
frame (O,uy,uy,u,) is defined. The origin O can be either
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Fig. 1. Geometry of the problem. A two-dimensional cylinder
with cross-section () and permittivity contrast y(x,y) is radiated
by an electromagnetic source located on a circle I'. The scattered
intensity is assumed to be available on I'.

inside or outside the scatterer and the z axis is parallel to
the invariance axis of the scatterer. The position vector
OM can then be written as OM=r+zu,. The sources that
generate the electromagnetic excitation are assumed to be
lines parallel to the z axis, located at (r;);<;<z. Taking
into account a time factor exp(-iwt), in the transverse
magnetic (TM) case, the time-harmonic incident electric
field created by the /th line source is given by

i i @Ho )
i(r) =E|(r)u, = PTHO (kyr — 1), (1)

where P is the strength of the electric source, w the angu-
lar frequency, HE)I) the Hankel function of zero order and
of the first kind, and %, is the wavenumber in the sur-
rounding medium.

For the inverse-scattering problem, we assume that the
unknown objects are successively illuminated by L elec-
tromagnetic excitations and for each the scattered field is
available along a contour I" at M positions. The direct
scattering problem may be formulated as two coupled
contrast-source integral relations: the observation equa-
tion [Eq.(2)] and the coupling equation [Eq. (3)],

Ej(r e )= f XENE(x)Glr,x')dr, @)
D

E/(r ¢ D)=E} + k2 J X@®)E,(x")Gr,r)dr', (3)
D

where x(r)=e¢,.(r)—gp,. denotes the permittivity contrast
that vanishes outside DDQ, G(r,r’) is the two-
dimensional free-space Green function, and % represents
the vacuum wavenumber. For the sake of simplicity, Eqgs.
(2) and (3) are rewritten as

ES=KxE, E,=E\+GxE,. (4)

3. INVERSE SCATTERING PROBLEM

The inverse scattering problem is stated as finding the
permittivity distribution in the box D such that the corre-
sponding scattered intensity predicted by the model via
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the coupling and the observation equation matches the
data. We propose an iterative approach to solve this ill-
posed and nonlinear problem. The first step is to define a
discrepancy criterion between the measured fields and
the simulated ones. This criterion depends on the amount
of available data, e.g., modulus and phase or modulus
only. The derivative of this cost functional must then be
explicitly obtained, and it will be shown that it introduces
an adjoint state equation where receivers act as sources
with amplitude that depends mainly on the expression of
the cost functional.

A. Cost Functional Definition

The parameter of interest, namely, the contrast y, is
gradually adjusted by minimizing a cost functional 7(y)
=EZL=1]-‘[Ef(X)] suitably defined under the constraints of
Eq. (4). If both amplitudes and phase must be matched,
the cost functional reads as

L

1
T = 52 wi|E - E; ()7, (5)
=1

where E°* corresponds to the available measurements
and w; to the appropriate weight coefficients, for example,
w;t=|EPS|2. If scattered intensity must be matched, the
cost functional reads as

L

1
Jx) = 52 wlI* ~ |ES(0PI3, (6)
=1

where I° corresponds to the available intensity measure-
ments and w; =[5,

B. Gradient Expression
This minimization problem under constraints can be re-
formulated using a Lagrangian functional £ as’

L
L(x,E*E,U,U) = > {F(ES) + (Uj|E; - KxE))r
=1
+(U/|E, - E} - GXE})p}, (7)

where y is the unknown contrast, F is the cost function to
minimize, E° and E correspond to the simulated scattered
and total fields, U* and U are Lagrange multipliers, (|); is
the scalar product on I' ((u|v)p=[ru* (r)v(r)dr), and (|)p is
the scalar product on D ((u|v)p=Jpu*(r)v(r)dr). This La-
grangian is used to express first- and second-order condi-
tions for a local minimizer, which are linked to the exis-
tence of a saddle point. This saddle point provides an
efficient way to compute the gradient of the cost func-
tional by introducing an adjoint field. The adjoint field,
owing to the reciprocity principle, is equivalent to the di-
rect field where receivers act as sources with an ampli-
tude linked to the cost functional expression

P,=Pi+GxP, Pi=-KVFE;). (8)
If both amplitude and phase must be matched, the inci-
dent adjoint field is given by
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P =w,K(E® - ES). 9)

If scattered intensity must be matched, the sources for
the adjoint problem read as

Pj=2wKE} (I} - |Ej]). (10)

Therefore the adjoint method is a very convenient way for
computing derivatives for several types of cost functional.

It can be shown (Subsection 2.A) that the gradient of
the cost functional is given by

L
(VI)|6xp=-Rel D EP;|dx) . (11)
=1 D

In the case of intensity measurements, this gradient
shows the ambiguity of the cost functional. On one hand,
the cost functional can be reduced if the computed field is
close to the measured field. On the other, the cost func-
tional can be reduced if the size of the scatterer is very
small, and we can neglect its contribution. In that case,
the adjoint field is null as is the gradient.

C. Gradient Approximation

The gradient evaluation requires the computation of two
forward problems. The first one computes the direct field
E; as the second one, where the receivers act as sources
with a prescribed amplitude, provides the adjoint field P;.
It might be interesting, in order to save some computa-
tional time, to perform some approximations such as the
Born approximation.

Three cases can be considered: (i) no approximation is
done for the direct and adjoint field computation (noted as
the FULL-FULL case in the following), (ii) the Born ap-
proximation is made only for the adjoint field computa-
tion (FULL—BORN), and (iii) finally, the Born approximation
is applied for both fields (BORN—BORN). In the last case,
the gradient is identical to the one that would be obtained
by assuming from the beginning that the Born approxi-
mation was valid. As expected, the way the gradient is
computed will have an effect on the minimization process,
as will be highlighted in Section 5 with some numerical
examples.

4. MINIMIZATION SCHEME

Once the discrepancy criterion has been defined and its
derivative computed, a minimization algorithm can be ap-
plied, which can be specified according to the a priori in-
formation available. For example, if the permittivity pro-
file of the unknown obstacle is assumed to be continuous,
a standard conjugate-gradient-type algorithm can be
used. If, on the contrary, one is interested in looking at
homogeneous-by-part obstacles, this a priori information
can be introduced via a level-set formulation in which the
cost functional derivative is still needed. In all cases, the
initial guess selection is a key point for the convergence of
the minimization process.

A. Initial-Guess Selection

The initial-guess computation is based on topological
asymptotic expansion results.” The topological derivative
aims at introducing some small dielectric balls of constant
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permittivity ¢, into a known background of permittivity
&(r). These balls induce variations on the electromagnetic
fields that are expressed via a topological asymptotic ex-
pansion formula. Let us denote by B, a small dielectric
ball of size p|B| centered at point r (|B| is the measure of a
reference ball B). This means that reB,CB, if 0<p
<p’'<1. The topological asymptotic expansion of our cost
function can then be expressed by10

Jx = (&, = eu,)lp (€= &) lpxp } = TX
L

= (£- &p)lp} = - p° Re(e, - abr)k(2)|B|<E ElPl) +o(p?),
=1

(12)

where 1 is the conventional characteristic function, E,
(resp. P)) verifies Eq. (3) [resp. Eq. (9)] with x(r)=&r)
—&pr, VreD. This topological derivative provides, there-
fore, information on where to place balls such that the
cost functional is reduced and is directly linked to the to-
pology of the scatterers. In fact, if we assume that ¢é=g,,,
this gradient is no more than the first step of the inver-
sion process, as expressed in Eq. (11) assuming that there
is no initial guess.

Using this topological derivative, as we do not know the
value of g,, we construct the initial guess with

L

Xo(r) = nRe >, E)(r)P,(r), (13)
=1

where 7 is a constant defined such that J(xq) is minimal.
The fields E; and P; are the direct and adjoint fields com-
puted for x(r)=£-gy,, Vr € D, with & very close from g, It
would have been more natural to use y=0 on the entire
test domain D (which would have corresponded to (=0)
but then, owing to definition of the cost functional for in-
tensity measurements, the adjoint field would have been
null as would the topological derivative.

If a priori information on the nature of the scatterer is
given, such as the obstacle is homogeneous, a truncation
at midvalue is performed to obtain a binary image.

B. Retrieval of an Inhomogeneous Profile

If no a priori information is available on the nature of the
scatterer, a sequence {y,} is built up iteratively according
to the following relation:

Xn=Xn-1% andn,’ (14)

where d,, is an updating direction and «,, is a weight that
is determined at each iteration step by minimizing the
cost functional J(x,) [Eq. (6)]. During the local search for
a,, the field E remains fixed to the value obtained at pre-
vious iteration. As a search direction d,,, the authors take
a Polak Ribiere conjugate direction

<gn|gn _gn—1>D
lgnally

where g, is the gradient of J(x) with respect to y. As de-
scribed in Subsection 3.C, this gradient can be exactly
computed or approximated.

dn=gn + yndn—b Yn= (15)
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C. Retrieval of a Binary Profile

As the nonlinear inverse problem stated above is highly
ill-posed, all available information is useful for improving
the quality of the reconstructions. In some cases, it is pos-
sible to assume that the dielectric properties of the ob-
stacle are known and furthermore that this obstacle is ho-
mogeneous. The contrast of permittivity will then be a
binary function of the following form:

X(r) =& - 8br(r € Q)9 X(r) =0 (r & Q), (16)

where ¢, is known and constant. In this approach, which
is reduced to a shape optimization problem, the param-
eter of interest, namely, the shape (), is gradually ad-
justed by minimizing the same cost functional as previ-
ously under the constraints of Egs. (2) and (3). A sequence
of shapes {Q),,} is constructed in order to minimize the cost
functional F((,), which requires several elements: (i) the
shape representation, (ii) the computation of the deriva-
tive of the cost functional according to shape, and (iii) the
construction of the iterative sequence. To represent the
shape, let us introduce an auxiliary function called a
level-set function ¢ such that

Q ={r € D such that ¢(r) < 0}. (17)

This representation handles naturally all topological
changes such as fusion or separation and does not require
us to know in advance the number of scatterers and the
positions of their centers. The cost functional .7, which
now depends on ¢, must then be derived according to this
level-set representation to obtain

L

(VI($)|6¢)p =~ Re(e, — ep)\ SDIVHD, EP|6) ) |
=1

D
(18)

where &(¢) corresponds to the one-dimensional Dirac
delta function concentrated on the interface ¢=0, i.e., the
interface d(). As described in Subsection 3.C, this gradient
can be exactly computed or approximated. An artificial
time variable ¢ is introduced, and the minimization is
done by finding the steady state solution of

¢t=_vj(¢)7 (19)

assuming that the §(¢) function is extended everywhere
in D with value 1. This equation is solved using the
Osher—Sethian numerical scheme described in Ref. 11.

5. NUMERICAL EXPERIMENTS

In this section we report examples of reconstructions of
dielectric samples to illustrate the efficiency of the inver-
sion algorithms presented in the previous sections. In all
cases, synthetic data are generated thanks to a fast for-
ward solver described in detail in Ref. 12. This forward
solver is based on a second-order accurate space discreti-
zation that is capable of handling homogeneous as well as
inhomogeneous profiles. The convolution-type structure of
the integral equation is exploited and solved via a
conjugate-gradient fast Fourier transform (CG-FFT)
method. Moreover, a special extrapolation procedure is
used, by “marching on in” the source position, to generate
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Fig. 2. (Color online) Initial guess using the topological
asymptotic expansion results (a) with modulus-only data; (b)
with modulus and phase data. The object under test HomoCyrL16
is constituted by two circular cylinders of contrast y=0.6. Black
circles in the images correspond to boundaries of actual
cylinders.
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Fig. 3. (Color online) Reconstructed contrast distribution using
a conjugate-gradient method, for the HomoCyL16 object. The up-
dating direction d,, involves a gradient derived from a solution of
an adjoint problem. (a) Both the internal field and the adjoint
field are computed accurately (FULL-FULL case); (c) same as in (a)
but the evaluation of the adjoint field assumes the Born approxi-
mation (FULL-BORN case); (e) the Born approximation is assumed
for both the internal field and for the adjoint field (BORN—BORN
case). Curves (b), (d), and (f) represent the evolution in logarith-
mic scale of the minimized cost functional with respect to the it-
eration steps for the reconstructions plotted in (a), (c), and (e),
respectively.

accurate initial estimates for the CG method to reduce the
computation time. In contrast, the inversion solver is
based on a standard method of moment without any use
of the CG-FFT method.'? This solver is needed for com-
puting both the internal and adjoint fields. The dielectric
permittivity, as well as the electromagnetic field, is inter-
polated by piecewise-constant basis functions with
collocation-point test functions.
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Fig. 4. Comparisons between the reconstructed contrast pre-
sented in Fig. 3 and the actual one along the x axis. Left column
comparisons are presented along the line y=-0.3\, which corre-
sponds to a cut along a diameter of the large cylinder of Fig. 3.
The right column presents comparisons along the line y=0.2\,
which corresponds to a cut along a diameter of the small cylinder
of Fig. 3. The solid curves correspond to the actual profiles, while
the dotted curves correspond to the reconstructed ones. (a) and
(b) correspond to Fig. 3(a). (¢c) and (d) correspond to Fig. 3(c). (e)
and (f) correspond to Fig. 3(e).
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Fig. 5. (Color online) Same as in Fig. 3, but the inversion is per-
formed using the level-set scheme described in Subsection 4.C,
where it is assumed that the permittivity contrast of targets un-
der test is known.
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The receivers as well as the sources are assumed to be
infinite lines located on a circle I' of radius 1.5\, \ being
the wavelength in the vacuum. In addition, we consider
64 sources and receivers evenly distributed on the mea-
surement circle I'. The mesh size of the forward solver to
generate data is N\/64. The investigated domain D is a
square box with sides of 2\, subdivided for numerical pur-
poses into 30 square cells, leading thus to a mesh size of
N\/15 for inversion schemes. Consequently, the mesh size
used in the inversion is different from the one used to
generate data, preventing any “inverse crime.” In all the
following examples, the initial guess is chosen as de-
scribed in Subsection 4.C with an initial contrast of y=¢
—gp,=1.01. For such contrast value, the Born approxima-
tion is applicable. Finally, all iterative schemes have been
conducted up to the 512th iteration to ensure that conver-
gence, if any, is achieved. In all cases, the evolution of the
cost function is presented. By letting the inversion algo-
rithm run, we then have a good indication of the conver-
gence speed, the discrepancy accuracy, and the trends of
the methods. In particular, we can check to see whether
we have reached a plateau or whether the algorithm is
unstable.

A. Reconstruction of Spatially Homogeneous Profiles

1. HomoCYL16 Object

First, we consider two circular homogeneous cylinders of
radii ¢1=0.15\ and a3=0.3\ and of relative permittivity
€,=1.6. The small cylinder is located at (-0.2\,0.2)\),
while the other cylinder is located at (—0.3\,—0.3\).
Henceforth, this object under test is referred as the Ho-
MOCYL16 object.

To emphasize the influence of the phase information,
two initial estimates obtained with the same topological
expansion method are plotted in Fig. 2 for the Ho-
MOCYL16 object. In Fig. 2(a), only modulus information is
used, whereas in Fig. 2(b) modulus and phase are taken
into account. It is clear that the phase contains important
topological information. Therefore, by using modulus-only
data, we are penalized more in the reconstruction process
than when using a scattered field.

Figure 3 presents the reconstructed contrast y within
the investigated domain D, using the inversion algorithm
described in Subsection 3.B, for various choices of descent
direction. Clearly, the best result, Fig. 3(a), is obtained
when both the internal and the adjoint fields are com-
puted without assuming the Born approximation (FULL—
FULL case). Comparing the reconstructed profiles with the
actual one, Fig. 4 shows that not only the shape is well
retrieved but also the refractive index. Surprisingly, the
other cases, in particular the BORN-BORN case [Fig. 3(e)],
lead to relatively accurate reconstructions of the target
under test. We emphasize that the object under test has
the characteristic dimension about N\ and the dielectric
contrast of y=0.6 for which the Born approximation is not
valid.

The evolution of the cost functional in the case of FULL—
BORN [Fig. 3(d)] exhibits a minimum around iteration 128.
Indeed, the corresponding image, not plotted here, is al-
most as good as Fig. 3(a). After this iteration, the cost
functional starts to increase again to reach a plateau
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Fig. 6. (Color online) Same as in Fig. 3, but with the object un-
der test HoMoCYL20, which is constituted by circular cylinders of
permittivity contrast y=1.

whose corresponding image is presented in Fig. 3(c). This
is because near the minimum, exact gradient computa-
tion is of high importance, especially as it is of very small
value and numerical noise might cause the divergence of
the iterative process. This divergence shows the impor-
tance of a correct computation of the gradient. In all
cases, such behavior is not observed for the two other
schemes, where the computations of the forward and the
adjoint fields are consistent.

The same behavior can be observed using a priori in-
formation on the nature of the scatterers by means of the
level-set scheme described in Subsection 4.C. Figure 5
shows the reconstructed images obtained after 512 itera-
tions with different ways of computing the gradient. The
initial guess was computed as previously and was trun-
cated at midvalue to obtain a binary image. Again, FULL—
FULL and BORN-BORN cases provide very satisfactory re-
sults compared with the FULL-BORN case. The oscillations
in the cost functional appear when the size of the image
changes are of the order of the cell size.

2. HoMoCyL20 Object

Consider the same two cylinders slightly closer and with
relative permittivity &,=2.0 instead of ¢,=1.6. The small
cylinder is now located at (-0.15\,0.15\). From now on,
this object will be referred to as HoMOCYL20. Figure 6
presents results of the reconstructed contrast profile us-
ing the conjugate-gradient algorithm for various choices
of the gradient. Contrary to the preceding case, the con-
vergence in the case of FULL-FULL [Fig. 6(a)] is slow. The
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Fig. 7. Comparisons between the reconstructed contrast pre-
sented in Fig. 6 and the actual one along the x axis. Left column
comparisons are presented along the line y=-0.3\, which corre-
sponds to a cut along a diameter of the large cylinder of Fig. 6.
The right column presents comparisons along the line y=0.15\,
which corresponds to a cut along a diameter of the small cylinder
of Fig. 6. The solid curves correspond to the actual profiles, while
the dotted curves correspond to the reconstructed ones. (a) and
(b) correspond to Fig. 6(a); (¢c) and (d) correspond to Fig. 6(c); (e)
and (f) correspond to Fig. 6(e).
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Fig. 8. (Color online) Same as in Fig. 6, but the inversion is per-
formed using the level-set scheme described in Subsection 4.C.
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Fig. 9. (Color online) Modulus of electromagnetic fields in the test domain D for a source located at (1.5\,0). (a) Incident field; (b)
internal field of the object LUNEBERG; (c) internal field of the object INHOMOSIN.
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Fig. 10. (Color online) Reconstruction of the inhomogeneous ob-
ject LUNEBERG from noiseless data, using the conjugate-gradient
method described in Subsection 3.B. (a) FULL-FULL case; (¢) FULL—
BORN case; (e) BORN—BORN case. The second column of the figure
presents the evolution in logarithmic scale of the minimized cost
functional versus iteration steps that correspond to images plot-
ted in the first column.

best result is obtained for the case of FULL-FULL, while for
the other cases, FULL-BORN and BORN—BORN, the recon-
structed targets are blurred and melded with artifacts.
Figure 7 shows quantitative comparisons between recon-
structed targets and the actual ones along the diameters
of the cylinders.

As the level-set algorithm used is very strong a priori
on the nature of the scatterer, the reconstructions are im-
proved for this obstacle, and the artifacts disappear as
shown in Fig. 8. This effect is also partly due to multiple-
scattering effects,'® which are fully taken into account
when using a FULL-FULL approach for the gradient com-
putation and explains how the small scatterer is well re-
constructed. Again, the FULL-BORN case provides the
worst result and starts to diverge after a while. On the
other hand, this case was the first to converge toward an
acceptable solution.
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Fig. 11. (Color online) Same as in Fig. 10 but with the object
INHOMOSIN.

From these two examples, one may conclude that the
inversion in the FULL-FULL case is more accurate than the
two other cases. It requires more computation time than
the BORN—BORN case, but it takes into account the
multiple-scattering effect. Compared with the FULL-BORN
case, the extra computational burden is minimal, as
nearly everything has already been computed to obtain
the internal field, and the results are more satisfactory.

B. Reconstruction of Spatially Continuous Profiles

We now consider two inhomogeneous profiles, denoted as
LUNEBERG and INHOMOSIN. These two profiles consist of
an inhomogeneous circular cylinder of radius a=0.7\, lo-
cated at (0.15\,-0.15\). The contrasts within the objects
are radially varying. For the profile LUNEBERG, the con-
trast is of the form y(p)=1-(p/a)?, while for the object IN-
HOMOSIN, the contrast is of the form y(p)=sin®(mp/a),
where p denotes the radial coordinate in the frame of the
center of the cylinder. These profiles are spatially continu-
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Fig. 12. (Color online) Comparisons between the reconstructed
profiles and the actual one along a horizontal line y ~-0.15\ for
the LUNEBERG (first column) and INHOMOSIN objects (second col-
umn). The solid curves stand for the actual profiles while the dot-
ted curves correspond to the reconstructed ones. (a), (b) FULL—
FULL; (¢), (d), FULL-BORN; and (e), (f) BORN—BORN.
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Fig. 13. (Color online) Same as in Figs. 10 and 11 but with 10%
additive noise in the data. The first column corresponds to the
LUNEBERG object while the second column corresponds to the IN-
HomOSIN object.
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Fig. 14. Same as in Fig. 12 but with 10% additive noise.

ous and cannot be represented by a binary level-set rep-
resentation nor by the extended one for the representa-
tion of multiple constitutive materials as suggested in
Ref. 14. In addition, these obstacles present internal
fields that are strongly different from the incident fields
as shown in Fig. 9. The object LUNEBERG is known as an
ideal two-dimensional Luneberg lens. For the object IN-
HoMOSIN, the presence of whispering-gallery modes that
propagate along the interior boundary of the cylinder is
predicted.15

1. Inversion from Noiseless Data

Figures 10 and 11 present results of the reconstruction of
the target LUNEBERG and INHOMOSIN, respectively. In all
cases, the support of the object under test is well re-
trieved. However, in the case of the computation under
the assumption of the Born approximation for both the in-
ternal field and the adjoint field, the reconstructed con-
trast profile is meaningless as is clearly shown in Fig. 12.
A perfect reconstruction is obtained for the FULL-FULL
case for both profiles.

2. Inversion from Noisy Data

In this subsection we present results of inversion from
noisy data. We restrict ourselves to the case of inhomoge-
neous targets (LUNEBERG and INHOMOSIN) targets, in
view of the fact that no prior information is introduced.
The case of homogeneous targets is expected to be more
robust against the presence of noise in data. Uniform
white noise has been added to the simulated intensity
data. Hence, the input data used for the inversion are cor-
rupted according to the following relation:
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I™(r) = (1 + bu)I?(x), (20)

where T?bs denotes the corrupted data, u €[-1,1] is a ran-
dom number, and b monitors the level of noise. Figure 13
presents the results of the inversion for the LUNEBERG
and the INHOMOSIN targets. For these numerical experi-
ments, the level of noise b is as high as 10%. It is clearly
shown (see Fig. 14) that the FULL-FULL scheme is more ro-
bust against the presence of noise in the data than the
other two inversion schemes (FULL-BORN and BORN-—
BORN).

6. CONCLUSION

We have examined two configurations of inverse scatter-
ing from intensity measurements that are of practical in-
terest. The first one was related to the retrieval of hetero-
geneous objects, while the second was more specific to
homogeneous ones. A cost functional criterion has been
defined and minimized to compute the best available es-
timate. We have shown that the gradient computation is
similar to the one that would have been obtained using
modulus and phase information. Indeed, this gradient is
obtained by combining an internal field and an adjoint
field where the receivers act as sources with a prescribed
amplitude that differs according to the available data. We
have also shown that this gradient can be used as an ini-
tial guess, based on topological derivative results.

We have explored the Born approximation for the inter-
nal and the adjoint fields, and numerical examples have
shown that the inversion in the FULL-FULL case was more
accurate than a Born approximation for the adjoint
and/or the internal field. This behavior has been observed
for both homogeneous and heterogeneous obstacles. Even
if the computational burden is slightly higher in the
FULL-FULL case, this can be significantly reduced by using
fast forward solvers. In addition, the FULL-FULL scheme is
more robust against the presence of noise than the other
two schemes.

The numerical examples have also shown the influence
of a priori information, particularly when the obstacles
are homogeneous. In those cases, the level-set represen-
tation provides final results where the boundaries of the
obstacle are better resolved. It would be interesting to see
what would be the extension of the inverse scattering
problem with intensity measurements with
homogeneous-by-parts obstacles using the ideas of
Ref. 14.

It has also been shown that the gradient of the cost
functional is null if the initial guess is a flat background,
a situation that does not appear when modulus and phase
data are used. To compute properly the topological
asymptotic expansion and use it as an initial guess, it
would be interesting to look at the second-order deriva-
tives following the ideas of Ref. 16.

Finally, this work can easily be extended to the case of
obstacles placed on a substrate, which is the typical con-
figuration of optical diffraction setups. The main differ-
ence will lie in the Green functions, which will have to
take into account the interfaces. The next step will be to
handle real data sets.

Vol. 23, No. 11/November 2006/J. Opt. Soc. Am. A 2745

APPENDIX A: GRADIENT COMPUTATION

The parameter of interest, here the contrast y, must mini-
mize a properly defined cost functional 7(y) [see Eq. (5)
and Eq. (6)] under the constraints of Eq. (4). Let us as-
sume furthermore that the cost functional is such that,
for all SE*,

F(E® + SE°) = F(E®) + Re(VF(E®)|SE*)r + o(|| OE¥y-) -

If, for example, amplitude and phase measurements must
be matched, this means Vf(Ef):—wl(E?bs—Ef). If inten-
sity measurements must be matched, this means VA(E})
=20, E* (I~ |E}]?).

Let us denote by £ the Lagrangian functional defined
in Eq. (7). It can be noticed that if the fields E° and E both
satisfy the forward equations then

LIx.E*(0),E(0, U, Ul=TJ(x), VU, VU.

If we differentiate this equation in the Sy direction, we
get
<Vu7(X)|5X>D = <0X['(X7ES’E? Usv U)|6X>D
+ <&E3£(X’E87E7 US’ (f)ﬂXES‘ 5X>D
+ <(9EE(X’E35E9 Us, l])ﬁXE| 5X>D

The quantities U® and U are chosen in order to elimi-
nate the last terms in the summation, i.e., they must sat-
isfy the adjoint equations

<(;E5‘C(X5ES’E9 US’U)|5ES>F = 0’ v 5ES’ (Al)

(9gL(X.E*,E,U°,U)|6E)p=0, V JE. (A2)

This implies that the Lagrangian coefficient U] must sat-
isfy the following equation:

U = - VFES).

Substituting this into Eq. (A2), combined with the reci-
procity principle G'=G, and using the notation U,=xP;
the adjoint state equation is induced:

Pl= GXPZ—KtVf(E;)

This equation is similar to the forward problem equation
where only the incident field has changed. For the adjoint
problem, the incident field is due to the receivers that act
as sources with an amplitude specified by VF(ES).

Let us go back to the derivation in the Sy direction,
computed at the saddle-point position. This means that

(VIWI8x)p = (XL, E*,E,U*,U)|6x)p
L
=-Re 2 ElPl 5)( ,
1=1 D
where P; satisfy the adjoint state equation.
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