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High-resolution optical diffraction microscopy
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In an optical diffraction microscopy experiment, one measures the phase and amplitude of the field diffracted
by the sample and uses an inversion algorithm to reconstruct its map of permittivity. We show that with an
iterative procedure accounting for multiple scattering, it is possible to visualize details smaller than l/4 with
relatively few illumination and observation angles. The roles of incident evanescent waves and noise are also
investigated. © 2003 Optical Society of America

OCIS codes: 180.6900, 110.6960, 290.3200.
1. INTRODUCTION
The need for new visualization tools with sub-100-nm
resolution is anticipated in various scientific fields. In bi-
ology, the three-dimensional morphologic observation of
the cell and its nucleus below 100 nm is now required for
the understanding of the different exchange mechanisms.
In semiconductor industries, the technology of silicon in-
tegrated circuits has reached process size scales of the or-
der of 0.1 micrometer, which necessitates high-resolution,
three-dimensional (3D) imaging systems for performing
nondestructive inspection of the wafers.

Several types of apparatus such as electronic micro-
scopes and atomic force microscopes have resolution
smaller than a nanometer. Yet they are devoted solely to
surface imaging, 3D reconstruction being possible only by
cutting slices of the sample. Optical near-field micros-
copy also presents a power of resolution smaller than 100
nm, and it is potentially useful for 3D imaging.1 While
quite promising, this technique requires the manipula-
tion of a probe in the vicinity (within a few nanometers) of
the object, which is not always convenient, in particular
for in vivo imaging.

Optical far-field microscopes, on the other hand, permit
the investigator to obtain 3D images without being inva-
sive, by focusing on different planes of the sample. Their
resolution is limited by the axial and lateral widths of
their point-spread function,2,3 which depends on the nu-
merical aperture of the objectives. In classic micro-
scopes, the resolution is typically one micrometer later-
ally and several micrometers axially. Considerable work
has been done to ameliorate the effects of the point-
spread function. The lateral resolution has been im-
proved by increasing the collected solid angle or, equiva-
lently (by means of the reciprocity theorem4), by
increasing the illumination solid angle. This can be done
by immersing the objective in a liquid with a high refrac-
tive index. Another method uses a hemispherical prism,
either to collect the scattered light, as in subsurface
microscopy,5 or to illuminate the sample, as in total inter-
nal microscopy.6 The axial power of resolution has also
been drastically improved by using an objective placed on
each side of the sample, thus doubling the solid angle of
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collection and illumination. Distance separations
smaller than 200 nm have been reported in all three di-
rections with the best fluorescence microscopes.7

A novel imaging technique known as optical diffraction
tomography (ODT) is now addressing the issue of 3D im-
aging with subwavelength resolution. It consists in illu-
minating the sample from many different directions and
collecting the diffracted field under many scattered
angles. In contrast to optical microscopy, in which the
object is visualized in an analogical way with little or no
numerical treatment for deblurring the image, ODT relies
entirely on a numerical inverse procedure for reconstruct-
ing the map of permittivity of the sample from the data of
the scattered field. For some time, this technique has
been limited to the study of absorbing objects whose typi-
cal length scale is much larger than the wavelength. In
the short-wavelength limit, the reconstruction algorithms
use a geometrical ray model of propagation inspired by
that developed in x-ray tomography, and only intensity
measurements are necessary for retrieving the 3D varia-
tions of the absorption in the sample. When the features
of the object of interest are of the same order as the wave-
length, one must take scattering into account. In this
case, although some reconstruction algorithms using in-
tensity data only have been proposed,8 most inverse pro-
cedures require amplitude and phase measurements.
The difficulty of measuring the phase in optics has cer-
tainly hindered the development of ODT. Different inter-
ferometric setups, such as phase-shifting holography and
heterodyne holography, give valuable information on the
phase and amplitude of the scattered field, but the control
of the phase of the incident beam when several illumina-
tion angles are required is very difficult. In many stud-
ies, only one incident direction is used, which limits the
power of resolution of the technique. Other approaches
that use in-line holography permit one to use successive
illuminations by inferring the phase from the interfero-
gram through extensive processing of the data. In the
past ten years, several ODT experiments have been con-
ducted with a resolution of the order of the wavelength.
Very recently, a means of compensating for the noncon-
trolled phase shift in a phase-shifting holography setup
2003 Optical Society of America



1224 J. Opt. Soc. Am. A/Vol. 20, No. 7 /July 2003 K. Belkebir and A. Sentenac
has been proposed.9 It has permitted performance of
ODT with a large number of successive illumination
beams and the attainment with accuracy of the phase and
amplitude of the scattered field. As a result, the resolu-
tion of the images has been improved by up to a quarter of
the wavelength.

Most inversion procedures used in ODT experiments
are based on the Rytov or Born approximations under
which the 3D Fourier components of a 3D scatterer are
obtained from the two-dimensional (2D) Fourier compo-
nents of the scattered field10 by changing the angle of the
incident plane wave. The reconstruction of the map of
permittivity is then performed with a simple Fourier
transform. To compensate for the missing cones in the
Fourier space attributable to the limited solid angle of col-
lection and illumination, reconstruction procedures that
use interpolation techniques, backpropagation algo-
rithms, and least-squares minimizations have been
developed.6,11 These methods, which are used in many
fields of physics in acoustic or microwave domains, prove
to be robust with respect to noise. They are justified
when there is a linear relationship between the scattered
field and the Fourier components of the permittivity, i.e.,
under a weak-scattering approximation. However, this
assumption limits the field of application of ODT. Now in
microwave domains, inverse scattering problems have
been addressed with iterative methods that account for
multiple scattering and improve the result of linear
inversions.12,13

We present an iterative method of reconstruction
whose first step is the classic backpropagation algorithm.
We adapt it to the configuration of ODT in transmission9

and total internal microscopy.1 We show that a resolu-
tion below l/4 in the lateral and axial directions can be
anticipated with relatively few illuminations and far-field
measurements. The sensitivity of the reconstruction to
noise is also addressed.

2. CONFIGURATION OF THE EXPERIMENT
The illumination and detection configurations under con-
sideration here are typical of what can be done in a trans-
mission diffraction tomography experiment9 in which
both the phase and the amplitude of the diffracted field
are measured.

A. Presentation of the Structure
The structure consists of two cylinders with rectangular
cross section deposited on a semi-infinite substrate as
shown in Fig. 1. The geometry is invariant along the Oy
axis. The width of the rectangles along the Ox axis is l/6
as is the distance separating the two cylinders. Hereaf-
ter, l is the wavelength of the incident beam in vacuum.
The height along Oz of the first rectangle is l/6 while that
of the second rectangle is l/3. The height difference is a
means of testing the accuracy of the reconstruction in the
axial direction. The separation distance and the lateral
widths of the cylinders will give insight on lateral resolu-
tion. Both cylinders and substrate are homogeneous
with permittivity «b 5 2.25. The superstrate is air. We
call «(x, z) the permittivity of the whole geometry. For
convenience, we introduce «r(z), the permittivity of the
reference geometry without the cylinders; «r(z) 5 «b for
z , 0 and «r(z) 5 1 for z > 0. The perturbation intro-
duced by the cylinders is described by the contrast of per-
mittivity x(x, z) 5 «(x, z) 2 «r(z). Hereafter, we note
r 5 (x, z).

The object is illuminated by a plane wave coming from
the substrate in the plane orthogonal to Oy with angle u l
with respect to the 0z axis. This plane wave can either
be transmitted into the superstrate or totally reflected at
the interface. All the electric fields are directed along the
Oy axis so we consider only scalar equations. We mea-
sure the phase and amplitude of the scattered field in the
superstrate along the direction defined by the angle u in
Fig. 1.

B. Volume Integral Representation of the Field
Throughout the paper, a time dependence on exp(2ivt) is
assumed and ignored. The y component of the electric
field El satisfies the Helmholtz equation

DEl~r! 1 «r~z !k0
2El~r! 5 Sl 2 k0

2x~r!El~r!, (1)

where k0 5 2p/l is the wave number in vacuum and Sl
is the source that radiates the incident beam. The sub-
script l in El indicates the dependence of the electric field
on the incident field generated by Sl . Introducing the
Green’s-function solution of

DG~r, r8! 1 «~z !k0
2G~r, r8! 5 2d ~r 2 r8! (2)

that satisfies the outgoing-wave boundary condition, one
can rewrite the differential equation (1) into an integral
equation

El~r! 5 El
ref~r! 1 k0

2E
V

G~r, r8!x~r8!El~r8!dr8, (3)

where El
ref is the field that would exist in the reference ge-

ometry and V is the domain where the contrast of permit-
tivity is not null. When the incident beam is a plane
wave coming from the substrate with amplitude unity
and angle of incidence u l , then, for z . 0, El

ref is the
Fresnel transmitted plane wave,

El
ref~r! 5 t~k l!exp~ik lx 1 ig lz !, (4)

and, for z , 0, the sum of the incident and specularly re-
flected field in the substrate,

Fig. 1. Geometry of the problem.
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El
ref~r! 5 exp~ik lx 1 ig l

bz ! 1 r~k l!exp~ik lx 2 ig l
bz !,

(5)

where k l 5 A«bk0 sin ul , gb(k l) 5 («bk0
2 2 k l

2)1/2, g (k l)
5 (k0

2 2 k l
2)1/2 with positive imaginary part, r(k l)

5 @gb(k l) 2 g (k l)#/@gb(k l) 1 g (k l)#, and t(k l)
5 2gb(k l)/@gb(k l) 1 g (k l)#. For z > 0 and z8 > 0 , the
Green’s function is given by14

G~r, r8! 5 E i

4pg ~k!
$exp~ig ~k!uz 2 z8u!

2 r~k!exp@ig ~k!~z 1 z8!#%

3 exp@ik~x 2 x8!#dk. (6)

In the far field along the direction given by the angle u in
the superstrate, the Green’s function can be approxi-
mated as

G~r, r8! 5 ~2p/k0r !1/2g ~k!g~k, r8!exp~ik0r 2 ip/4!,
(7)

where r 5 uru, k 5 k0x/r 5 k0 sin u and g(k, r8)
5 @i/4pg (k)# $ exp @ 2ikx8 2 ig ( k ) z8 # 2 r ( k ) exp @ 2ikx8
1 ig (k)z8#%. The scattered far field el

d 5 El 2 El
ref can

thus be written in the form

el
d~r! 5 El

d~k!exp~ik0r !/Ar. (8)

In a tomography experiment, the phase and amplitude of
El

d(k) are measured for various collection angles u. We
introduce G as the discrete domain of directions of obser-
vation. Hereafter, k 5 k0 sin u belongs to G. This mea-
surement is performed for successive angles of incidence
u l with l 5 1,..., L.

3. INVERSION PROCEDURE
The inverse scattering problem consists now in finding
the function x(r P V) in the investigated area V (test do-
main) so that the diffracted field associated with x
matches the measured diffracted field fl(k P G). Many
iterative methods have been developed for solving such
inverse problems. In these methods, starting from an
initial guess, one adjusts the parameter of interest gradu-
ally by minimizing a cost functional involving the mea-
sured scattered-field data. A brief review of the litera-
ture shows two main approaches. In the first one,
namely the linearized methods, the field in the scattering
domain is considered fixed. This field is the solution of
the forward problem for the best available estimation of
the permittivity for each iteration step,13,15 or it is a ref-
erence field if a Born approximation is assumed. In the
second approach, typically the modified gradient method,
the field inside the scattering domain V is an unknown
that is obtained, together with the permittivity, by the
minimization procedure.16,17 We present herein a hybrid
method12,18 that combines ideas from the two approaches
mentioned.

A. Principles of the Algorithm
The direct-scattering problem may be formulated as two
contrast-source integral relations: (i) the state or obser-
vation equation and (ii) the field or coupling equation.
From Eqs. (8), (7), and (3), one gets the observation equa-
tion,

El
d~k P G! 5 E

V
k0

2x~r8!El~r8!K~k, r8!dr8, (9)

where K(k, r8) 5 (2p/k0)g (k)g(k, r8)exp(2ip/4). For
the sake of simplicity, we rewrite the field and observation
equations (9) and (3) using operator notation:

El
d 5 KxEl , (10)

El 5 El
ref 1 GxEl . (11)

The general principle of the modified gradient method
for solving this inverse scattering problem is to build up
two sequences related to contrast and total field inside
the test domain $xn% and $El,n%, respectively, according to
the following recursive relations:

El,n 5 El,n21 1 a l,ny l,n , (12)

xn 5 xn21 1 bndn , (13)

where y l,n and dn are search directions with respect to the
total field El,n and to the contrast, respectively. The
choice of these search directions will be discussed in Sub-
section 3.B. The coefficients a l,n and bn are weights that
are chosen at each iteration step n so as to minimize the
normalized cost functional Fn(xn , El,n) given by

Fn~xn , El,n! 5 WV(
l51

L

ihl,n
~1 !iV

2 1 WG(
l51

L

ihl,n
~2 !iG

2,

(14)

where the normalizing coefficients WV and WG are as fol-
lows:

WV 5
1

(
l51

L

iEl
refiV

2

, WG 5
1

(
l51

L

i fliG
2

. (15)

The subscripts G and V are included in the norm i•i and
later in the inner product ^•, •& to indicate the domain of
integration. The functions hl,n

(1) and hl,n
(2) are two residual

errors. The first is the residual error with respect to the
incident field in the test domain computed from the field
or coupling equation. The second is the error on the scat-
tered field computed from the state or observation equa-
tion:

hl,n
~1 ! 5 El

ref 2 El,n21 1 GxnEl,n , (16)

hl,n
~2 ! 5 fl 2 KxnEl,n . (17)

The use of a priori information may improve the inver-
sion algorithm. For instance, a binary constraint19 is
used to reconstruct the shape of a homogeneous object
with known constitutive parameters; nonnegative20 a pri-
ori information is applied to a pure imaginary, contrasted
object (conducting object); and nonnegative21 a priori in-
formation is used to retrieve the shape of a homogeneous
object. In the present work, we incorporated a priori in-
formation stating that the objects are dielectric with no
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losses. Instead of retrieving a complex function xn , only
one real auxiliary function jn is reconstructed such that

xn 5 jn
2. (18)

The recursive relation with respect to contrast xn [Eq.
(13)] is then given by

jn 5 jn21 1 bn;jdn;j . (19)

Once the updating directions dn;j and y l,n are found, Fn is
a nonlinear expression with L complex variables (a l,n;y)
and one real variable (bn;j). The minimization of Fn is
accomplished using the Polak–Ribière conjugate gradient
method.22

B. Search Directions
As updating direction dn;j , we take the standard Polak-
Ribière conjugate gradient directions20,21

dn;j 5 gn;j 1 gn;jdn21;j ,

with

gn;j 5
^ gn;j , gn;j 2 gn21;j&V

i gn21;jiV
2

, (20)

where gj is the gradient of the cost functional Fn(j, El)
with respect to j evaluated at the (n 2 1)th step assum-
ing that the total field inside the test domain does not
change. This gradient is given by:

gn;j 5 2jn21 ReFWV(
l51

L

Ēl,n21G†hl,n21
~1 !

2 WG(
l51

L

Ēl,n21K†hl,n21
~2 ! G , (21)

where the overbar denotes the complex conjugate, and G†

and K† are the adjoint operators of G and K, respectively.
The search direction y l,n for the total field inside the

test domain is similar to that chosen for the object func-
tions j:

y l,n 5 gl,n;E 1 g l,n;El
y l,n21 ,

with

g l,n;El
5

^ gl,n;El
, gl,n;El

2 gl,n21;El
&V

i gl,n21;El
iV

2
, (22)

where gl,n;El
is the gradient of the cost functional

Fn(j, El) with respect to the field El evaluated at the
(n 2 1)th step, assuming that j does not change, and is
given by

gl,n;El
5 WV@x̄n21G†hl,n21

~1 ! 2 hl,n21
~1 ! # 2 WGx̄n21K†hl,n21

~2 ! .
(23)

To speed the convergence of the scheme,12 we modify the
inversion procedure by adding a second search direction
wl,n for the total field inside the test domain. The recur-
sive relation (12) with respect to the field El then becomes

El,n 5 El,n21 1 a l,n;yy l,n 1 a l,n;wwl,n . (24)

The cost function Fn is now a nonlinear expression with
2L complex variables (a l,n;y , a l,n;w) and one real variable
(bn;j). The minimization of Fn is again accomplished by
using the Polak–Ribière conjugate gradient method.22

The second updating direction for the total field wj,n is
given by

wl,n 5 Ẽl,n21 2 El,n21 ,

(25)
Ẽl,n21 5 @1 2 Gxn21#21El

inc ,

where Ẽl,n21 represents the total field inside the test do-
main V computed from the coupling equation with con-
trast xn21 . Adding this search direction provides an ac-
celeration of the algorithm’s convergence, at least in
terms of number of iterations.12 On the other hand, it re-
quires solution of the direct problem for a given estimate
of the permittivity.

C. Initial Estimates
Given the a priori information that the object function is
positive, the initial guess (j0 5 0) must be rejected since
the gradients vanish ( g1;j 5 0). This is due to the
transformation (18) which introduces a local maximum of
the cost function at j50. We therefore use another ini-
tial guess provided by the backpropagation method.18–20

4. NUMERICAL RESULTS
In this section, we present reconstructions of the map of
index of refraction for different simulated tomography ex-
periments. The scattered far field used as input data for
the inversion procedure is calculated by a rigorous vol-
ume integral method.14 The spacing of the mesh is l/40.
The data fl of the simulated scattered far field El

d can be
artificially corrupted by a Gaussian additive noise as fol-
lows:

fl 5 El
d@1 1 uA exp~if !#, (26)

where A 5 maxl(uEl
du), f is a random number with uni-

form probability density between [0,2p], and u is a real
number smaller than unity that monitors the noise level.
In Fig. 2 we plot the amplitude and phase of typical simu-
lated far-field data with and without 10% noise
(u 5 0.1).

For the reconstruction procedure, the investigation do-
main V is a rectangle of width 2l and height l/2 which is
meshed with l/20 spacing. This support constraint is a

Fig. 2. Scattered far-field modulus (a) and phase (b) versus
angles of detection for normal incidence. Noiseless data, bold
curve; 10% noise, dashed curve.
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strong a priori piece of information which yields an ame-
lioration of the resolution.11 Moreover, inversion proce-
dures are more efficient when the number of unknowns,
i.e., the permittivity and field at the knots of the mesh,
are related to the number of data. With our technique,
the number of unknowns should not exceed four times
that of the data. Yet in an optical tomography experi-
ment, the illumination spot is much larger than the object
(typically several tens of wavelengths if one uses a
roughly focalized beam). Hence, we first considered a
large domain of width 30l and height l/2 poorly dis-
cretized with l/2 spacing to localize the objects with the
backpropagating algorithm. Then we reduced the do-
main of investigation and introduced a more accurate
mesh, as described above.

In all experiments, the far field is detected along 19
regularly spaced angles of observation in [260°, 60°]. In
contrast, the number and angles of the incident directions
are different depending on the examples. All reported fi-
nal results correspond to the 16th iteration of the inverse
iterative scheme; this is sufficient, in all cases, for the cost
function to reach a plateau.

A. Mono Incidence
In the first example, the sample is illuminated under nor-
mal incidence and L 5 1. The reconstruction is thus per-
formed from 19 complex data. In Fig. 3 we plot the map
of the index of refractivity of the investigated domain V
after convergence of the algorithm. It is clear that the
two objects cannot be distinguished. This calculation

Fig. 3. Reconstruction from a single illumination: L 5 1,
u1 5 0°, and 19 angles of detection ranging from 260° to 60°.
Reconstructed refractive index map in the investigated domain V
with 2l width and l/2 height, represented with gray level.

Fig. 4. Same as in Fig. 3 with 19 angles of incidence ranging
from 235° to 35°.
gives a hint of what a classic microscope using only one
illumination type can detect. To improve the reconstruc-
tion, several incident angles should be used.

B. Multi-Incidence
In the second example, 19 incident angles regularly
spaced in [235°, 35°] are used. The incident angular do-
main has been chosen so that there is no total internal re-
flection at the glass–air boundary. In Fig. 4 we now vi-
sualize correctly the higher cylinder and localize the
smaller one. Outside the small domain surrounding the
cylinders, the reconstructed permittivity is equal to 1.
There is no oscillation phenomenon. Moreover, it is
shown in Fig. 4(b) that imposing 10% noise on the data
has a small effect on the reconstruction.

We test in Fig. 5(a) the total-internal-reflection-
microscopy configuration. In this case, the incident
angles are chosen so that the field is totally reflected at
the glass–air boundary. We use 9 incident angles regu-
larly spaced in [270°, 243°] and 9 others in [43°, 70°].
The reconstructed map of permittivity shown in Fig. 5(b)
is clearly better than that of the previous example. Both
cylinders are now accurately distinguished and their
height difference is also detected. This was to be ex-
pected since illumination with evanescent waves permits
one to explore a larger domain in the Fourier space of the
induced currents.6 The lack of information concerning
the low frequencies of the permittivity does not hinder the
reconstruction. Yet this configuration seems more sensi-
tive to noise than the previous one. When 10% noise is
added to the far-field values, the reconstructed map of
permittivity, while remaining correct, is degraded com-
pared with the noiseless estimation.

In Fig. 6 we consider the general configuration when
both propagative and evanescent waves illuminate the
sample. Nineteen incident angles are taken in
[270°, 70°]. The advantages of using the complete spec-
trum of incident waves are patent. Not only is the map
reconstructed from noiseless data clearly more accurate
than in the second and third examples, but, most impor-
tant, the sensitivity to noise is strongly reduced. In Fig.

Fig. 5. Same as in Fig. 3 with 18 angles of incidence, 9 of them
ranging from 270° to 243° and the others ranging from 43° to
70°. All the incident plane waves are totally reflected at the
glass–air interface.
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6(c) we plot the reconstructed index of refractivity as a
function of x for two given elevations, z 5 l/10 (dotted
curve) when the two objects are present, and z 5 l/4
(dashed line) when only the higher cylinder is present.
Ten percent noise has been added to the data. We see
that, in spite of the noise, both cylinders are correctly
separated and an accurate value of the index of refraction
is obtained. Judging by this example, one can expect a
power of resolution better than l/5 in both the lateral and
axial directions.

It is worth noting that even though the objects are
small and the contrast of refraction index is 0.5, recon-
struction procedures using the Born approximation lead
to very poor results. In the following example, we con-
sider the general configuration described in the last ex-
ample (Fig. 6). Assuming the Born approximation is
valid, we optimize solely the permittivity through a con-
jugate gradient scheme. This can be done by calculating
directly the inverse operator through singular value de-
composition as presented in Ref. 6 or by applying our hy-
brid technique while keeping El 5 El

ref . The recon-
structed map of permittivity obtained with this procedure

Fig. 6. (a), (b) same as in Fig. 5 with 19 angles of incidence
ranging from 270° to 70°; (c) cross-sectional cut of the recon-
structed refractive index obtained in (b) for two given elevations,
z 5 l/10 (dotted curve) and z 5 l/4 (dashed curve).

Fig. 7. Same as in Fig. 6(a) but the inversion procedure applies
the Born approximation.
is shown in Fig. 7. It shows clearly the advantages of
taking into account multiple scattering phenomena.

5. CONCLUSION
We have simulated an optical diffraction tomography ex-
periment in which the scattered field of small objects de-
posited on a substrate is measured along various direc-
tions of observation for several successive illuminations.
In some configurations, the incident beam from the sub-
strate is totally reflected at the air–glass interface so that
the objects are illuminated by an evanescent wave. We
propose a reconstruction procedure for retrieval of the
map of permittivity of the objects from the data of the
scattered field. The objects are two small cylinders
(width l/6, one l/6 high, the other l/3, and separated by
l/6) made of glass of « 5 2.25. We show that an inverse
method assuming the Born approximation leads to poor
results in this case. But by using an iterative scheme in
which both the permittivity and the electromagnetic field
in the objects are modified at each step, it is possible to
reconstruct accurately the two cylinders in both the lat-
eral and axial directions. It appears that illumination
with evanescent waves ameliorates the accuracy of the re-
construction while illumination with propagative waves
disminishes sensitivity to noise. With such a technique,
optical diffraction tomography is no longer restricted to
weak scatterers and can provide images with subwave-
length resolution (below l/4 in air).

Anne Sentenac may be reached by e-mail at
anne.sentenac@fresnel.fr.
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