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Abstract—In this paper, we consider a two-dimensional inverse
scattering problem dealing with microwave tomography. To solve this
non-linear and ill-posed problem, an iterative scheme based on the
Modified Gradient Method (MGM) is used. A Bayesian estimation
framework was chosen to build up a regularization scheme based
on the weak membrane model. The object to be retrieved being
represented by a complex function, two energy terms acting separately
on the real and imaginary parts were considered. Consequently, some
modifications of the MGM were done. The resulting algorithm is tested
against microwave laboratory-controlled data.
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1. INTRODUCTION

Various applications are concerned with determining the location and
the spatial variation of some physical proprieties of an object from
measurements of the scattered response to a known electromagnetic
or acoustic excitation. For example, in microwave imaging, the
goal is to reconstruct the complex permittivity distribution of an
object. Several algorithms have been developed to solve this inverse
scattering problem.  First algorithms dealt with linear inverse
problems, and were based on diffraction tomography [8, 15], which is a
generalization of classical X-ray computer tomography by taking into
account diffraction effects. These algorithms provide an almost real-
time approximate reconstructions of the polarization current density
distribution, and, under the Born approximation, of the complex
permittivity distribution. The limitation of diffraction tomography
(essentially weak scatterers) stimulated the recent development of
iterative methods [7, 9, 10, 16] for complex permittivity reconstruction
of highly contrasted objects. These iterative methods deal with the
nonlinearity of the inverse scattering problem and are, therefore,
computationally more intensive. They are also more sensitive to
ill-posedness of the inverse problem, which demand some a priori
information.

In the present paper, the authors restrict the study to an
iterative scheme based on the modified gradient method (MGM)
introduced by Kleinman and van den Berg [10]. It consists in
updating simultaneously, for each iteration step, the unknown field
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in the scattering domain and the unknown constitutive material by
minimizing a cost functional. This cost functional is composed of
two normalized errors satisfying the field equation and matching
the measured data. Some modifications of the MGM formulation
have been done in order to take into account that the object to be
reconstructed is complex. Moreover, a regularization scheme is built
up, within the Bayesian estimation framework, to enhance the obtained
reconstruction. This leads to introducing a priori information on
the object by adding a regularizing functional. In [17], an additive
Total Variation (TV) regularization procedure was incorporated in the
MGM. The reported results clearly showed significant improvements
in the reconstruction. Here, the authors investigate the possibility
of a Markovian regularization scheme based on the weak membrane
model [5] to regularize the MGM. This regularization has already been
successfully used for solving inverse linear problems [12, 18], and for
a non-linear inverse scattering problem [2] using a particular scheme
based on the conjugate gradient approach.

Taking advantage of the proposed MGM formulation, two
regularization functionals acting respectively on the real and imaginary
parts of the object are considered. To test this regularized MGM and
to show the interest of this approach, some results using real data are
presented.

The paper is organized as follows. In Section 2, the statement of
the problem is presented. Section 3 presents the proposed new MGM
formulation and in Section 4, a Bayesian estimation framework of the
Jjoint estimation is considered in order to introduce a priori knowledge
and define a regularized solution. Section 5 describes the regularized
modified gradient method and the considered regularizing energy. In
Section 6, the proposed algorithm is tested against real data. Finally,
Section 7 gives some concluding remarks.

2. FORMULATION OF THE PROBLEM

The geometry of the problem studied in this paper is as depicted
in Figure 1 where a two-dimensional object of arbitrary cross-section
£, is confined in a bounded domain 2. The embedding medium €
is assumed to be infinite and homogeneous, with permittivity &, =
€0€br, and of permeability u = ug (g9 and po being the permittivity
and permeability of the vacuum, respectively). The scatterers are
assumed to be inhomogeneous dielectric and/or conductive cylinders
with complex permittivity distribution e(r) = ege.(r); the entire
configuration is non-magnetic (u = uo).

A right-handed Cartesian coordinate frame (O,ug,uy, u;) is
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Figure 1. Geometry of the studied problem.

defined. The origin O can be either inside or outside the scatterer
and the z-axis is parallel to the invariance axis of the scatterer. Then,
the position vector OM can be written as:

OM = zu, + yuy + zu, =r + zu,. (1)

The sources that generate the electromagnetic excitation are assumed
to be lines parallel to the z-axis, located at (r;)i<i<r. Taking into
account a time factor exp(—iwt), in the TM case (Transverse Magnetic
case) the time-harmonic incident electric field created by the I*! line
source is given by:

E{"(r) = E{"(t)u, = P2 HY (hylr — o)), 2)

where P is the strength of the electric source, w the angular frequency,
Hél) the Hankel function of zero order and of the first kind and k; the
wavenumber in the surrounding medium.

For the inverse scattering problem we assume that the unknown
object is successively illuminated by L electromagnetic excitations and
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for each incident field the scattered field is measured along a contour
I' at M positions. For each excitation, the direct scattering problem
may be reformulated as two coupled contrast-source integral relations:
the state or observation equation (3) and the field or coupling equation

(4):

Elrel) = K / (B (r)G(r, ¢)dr, 3)
9]
E(req) = E™ 4k / () Ey(r)G(r, r')dr, 4)
Q
where x(r) = &,(r) — e, denotes the permittivity contrast which

vanishes outside §2 D Q,, G(r,r’) is the two-dimensional homogeneous
space Green’s function and kg represent the wavenumber in the
vacuum. For the sake of simplicity, the equations (3) and (4) are
rewritten in operator notation as:

E} = GrxE, (5)
B = E"™+ Gaxk. (6)

3. MODIFIED GRADIENT METHOD

The inverse scattering problem consists in finding the function x in
the investigated area {2 from the measured scattered field. In order
to solve this problem, a modified gradient method [10] is considered.
This method consists to construct two sequences related to the contrast
{Xx~} and to the total field { £} ,} using the following recursive relations:

Xn = Xn-1+ Bndn, (7)
El,n = El,n—1+al,nvl,n7 (8)
where d,, and v, are search directions with respect to xn and Ej,,
respectively. The scalar coefficients (3, and «;, are chosen at each

iteration step n such that they minimize the normalized cost functional
Fo(Xn, Ei ) given by:

L L
1 2
Fo(xn, Ein) = Wa 3 IIBE1E + We S 1IAE 12, 9)
=1 =1

where W and Wr are the normalizing coefficients defined as:
1 1

SBT3 S IER
=1 =1

Wq =
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The functions hl(lrz and hl(%z are the residual errors in the field equation
and in the observation equation, respectively. They are defined as
follows:

p = Ef™ — Ep 1 + GaxnEin, (11)

In

hl(,zrz = Eld'_GFXnEl,n- ) (12)

Dealing with the reconstruction of complex objects, it appears wise to
consider separately the real and imaginary part in the MGM algorithm
scheme. Therefore, in order to obtain an efficient implementation of
the MGM, the complex contrast function is redefined as follows:

Xn = &n + Mn — €br, (13)

where &, and 7, are two real auxiliary functions. The recursive relation
with respect to the complex function y,, reads:

fn - fn—l‘*‘ﬁridgn (14)
M = N1+ Gld0, (15)

where all quantities are real. The minimization of F;, is accomplished
using the Polak-Ribiere conjugate gradient method [14]. The updating
directions d and d7 are the standard Polak-Ribiére conjugate gradient
directions:

R
95195 = 9,1
di, = g5 +7idi,_, with 75=<n foe >Q (16)
1gn-11la
7 1
Q= gl 4 yIdly with ol = MR ZInala gy
Hgn—IHQ

where (.|.) , represent the inner product defined on L?(D) and g§ and
. are the gradients of the cost functional F;,(&,, 1, By ) With respect

to &, and 7, respectively, evaluated at the (n— 1)th step assuming that
the total field inside the scattering domain does not change. These
gradients are given by:

L L
g5 = Re {WQ > i1 GHY W Y Ez,n_lG}hﬁf_l} , (18)
=1 1=1

L L
gi = Im {WQ 3 By GhAY_ —wr Y El,nmlc:}hl(ii_l} , (19)
I=1 =1
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where E denotes the complex conjugate of the field E; while GB and
GJ{q are the adjoint operators of Gg and Gr, respectively.

The search direction for the total field is also taken as the Polak-
Ribiére conjugate gradient direction:
<g;],n|gzj,n - gzj,n—l>Q

192118

Uin = gz),n + fﬁjnvl,n~l with 7Zn = ) (20)

where 9l is the gradient of the cost functional Fy,(&n,7n, Ein) with

respect to Fj,, evaluated at the (n— 1) step assuming that the object
functions &, and 7, do not change. This gradient is given by:

Gl = Wa [Xn-1GhA{L s — Ay | = WekenGRRG . (21)

4. BAYESIAN INTERPRETATION OF THE JOINT
ESTIMATION

In this contribution, in order to solve the inverse problem, the joint
estimation of the contrast x and the total field E was considered
through an extended modified gradient method. To improve the
solution, a priori knowledge is added. @A Bayesian estimation
framework [6] can be taken into account in order to define a regularized
solution,

In what follows, an additive zero mean white Gaussian and
centered circular noise is assumed to model the errors on the
measurement.  Moreover, in the attempt to reconstruct images
constituted by homogeneous area, the a priori knowledge of the object
can be modelled by the following probability law:

p(x) oc exp(=U(x)), (22)

where U(x) is the energy function.

Taking into account the previous consideration, the solution of the
coupled equations can be defined as the joint maximum a posteriori of
x and E:

(X, E)map = argmaz(y gyp(x, E|E?), (23)
where, from the Bayes’ rule, p(x, E|E?) is given by:

P(EYx, B)p(ElX)p(x) (24)
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In this equation, the denominator p(E%) is a normalization constant.
From (5) and taking into account the considered error model, the first
numerator term can be written as:

p(E4)x, E) « exp (—(—%IIE" - prE]F) - (25)

where o7 is the noise variance. The second term p(E|x) representing
the probability density of F for a known x is defined from (6):

p(Elx) = 6 (E - E™ — GaxE), (26)

where ¢ is the Dirac distribution
The joint a posteriori law on x and FE is then given by:

p(x, E|E%) o exp (—-—% B¢~ erll2—U(x)) 5 (E - E™°—GaxE) .
T

(27)
Finally, the estimate of (x, £) in the sense of the maximum a posteriori
comes down to minimizing the following criterion:

F(x, E) = ||E* = GrxE||* + U(x), (28)
within the constraint: ‘
E — E™ — GoxE =0. (29)

One can note that taking into account the Bayes’ rule, it seems to be
unnecessary to introduce an a priori model on F since the information
on E is given by p(E|x). Therefore, the criterion requires only a
regularization term on x, which corresponds to the a priori law p(x).
Moreover, one can note that criterion (28) is not a convex function.

5. REGULARIZED MODIFIED GRADIENT METHOD

5.1. Formulation of the Regularized MGM

As previously noted, dealing with complex object, it seems wise to
consider the real and the imaginary parts separately. In this way,
the general cost functional under consideration F,(&,,nn, Ei ) can be
defined as:

F‘n(‘gm Tn, El,n) = Fn(€n, M, El,n) + Ug(gn) + U:Z(nn)v (30)
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where U§(¢,) and U7(n,) are regularizing energies acting on the real
and imaginary parts of the object, respectively, and Fy,(én, 1in, E1n) is
the previous cost functional presented in Section 3. One can note that
different energies for the real and imaginary parts can be taken into
account; in our case, the same energies, corresponding to the weak
membrane model, have been considered.

From this formulation, the modification of the MGM algorithm
appears essentially on the contrast search directions. The recursive
relations for the regularized MGM are then given by:

En - én—l + IBSJ$L7 (31)
T = nn—JA+’ﬁgdZ7 (32)
El,n - El,n—l + X nVin, (33)

where d§ and d7 are the updating directions with respect to &, and
7, respectively. They are defined as follows:

(9615 - 351,

dy = g5+ 9edi_, with 5 =-"—p—R (34)
191115
g1l — g’
S am s em L 97— Gn_
d = gl+ndy_y with 7] = i T 1>”, (35)
“gn—IHQ

where §¢ and gy are the gradients of the cost functional E, (&ny My B )
with respect to &, and 7, respectively. In fact, it can be easily shown

that the search directions df and d correspond to:

d, = df+dS, (36)
dl = dl+d, (37)

where d¢ and d" are the regularizing search directions which depend
on the choice of U(t).

5.2. Weak Membrane Model

In this contribution, a Markovian energy corresponding to the weak
membrane model [5] is proposed as regularizing term. This energy
permits to take into account a local correlation between adjacent
pixels and corresponds to a locally gaussian, non-stationary first-order
Markovian chain with boolean line process [13]. It acts locally to
smooth the signal while preserving abrupt transitions.
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The weak membrane model is defined as a sum of truncated
quadratic potential functions parameterized by (o, u):

N
Ue) =p) haulci — ci-1) (38)
=1

where p is the weighting parameter (experimentally chosen) and the
functional kg ,(.) defined by:
22
ottt if |t Vi
b)) ={ &0 r- Y2 (39)

involves an implicit contour process. In (38) and (39), ¢ corresponds to
either £ or 1, and « is a scale parameter which defines the dispersion of
the homogeneous zone while y fixes the a priori discontinuity detection
threshold T'. Since this functional is not differentiable at |t| = T, a
relaxation scheme based on the graduated non convexity principle [5]
was considered. The functional A is then modified as follows:

a?t? if Jt<gq
t| — 2
Pagec® = 4 = U= e, (40)
p if J¢]=r

where o is a scale parameter which defines the dispersion of the

homogeneous zone while p fixes the threshold of discontinuities
ho = —a@ ¢(€ [{o,00[) is the relaxation parameter such as
lim¢ oo hau¢(t) = hay(t) (in practice, only some relaxations are
used). Moreover, the threshold expression of r and ¢ are r2
w(2/¢ + 1/a?) and ¢ = p/a®r. Figure 2 shows the weak membrane

function and the relaxed scheme. The final criterion ﬁn,c is defined as:

Fro¢ (6o s Bun) = Falnytny Bun) + Ug o (60) + Ul e(n)  (41)

which is then minimized thanks to the extended MGM algorithm for a
fixed ¢. The inversion is processed by relaxations of ¢ (see Figure 2) —
followed by a local MGM minimization. Moreover, taking into account
[11], the total field is fully computed using (6) at each relaxation of ¢.

One can note that without defining the contrast function as (13)
and considering a regularization scheme which acts separately on
the real and imaginary parts of the object, the real and imaginary
weighting parameters would finally affect both object parts, making
their choice difficult and finally impossible.
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Figure 2. Relaxed weak membrane energy for u = 1.10, o = 3 and
¢ =0.0125 (), 0.05 (- ), 0.5 () and o0 ().

6. REAL DATA

6.1. Experimental Setup

The considered experimental setup (Figure 3), from Institut Fresnel
(Marseille, France), is described in [3, 4]. A dielectric or metallic
homogeneous object is successively irradiated by L = 36 different
sources evenly distributed around the object. The TM polarized
incident fields, E{™ (I = 1,..., L), are modelled in the investigating
domain by a linearly polarized isotropic cylindrical wave as defined in
(2). The scattered field for each irradiation E{ is measured for M = 72
different locations evenly distributed around the object. However, due
to physical limitations, there is a blind zone of 120° (in dashed line on
Figure 3) such that the scattered field is measured for 49 out of the 72
receiver angles.

In the following, some reconstructions using the proposed
algorithm and the experimental data are presented. An initial guess
based on a back propagation method, as described in [3], has been
considered to initialize the reconstructions. Moreover, on each figure,
the results are presented using gray level maps with values greater than
the unity for the dielectric objects and with non negative normalized
values for the metallic target, because for such impenetrable objects
only the contour is of interest — the conductivity estimated level being
less important.
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Figure 3. The experimental setup geometry used for validating the
inverse algorithm. 6 denotes the angle of receiving antenna while 61
represents the angle of the emitting antenna.

6.2. Dielectric Targets
6.2.1. Single Dielectric Object

A single non-centered dielectric cylinder with circular cross-section of
radius 1.5cm is considered. The relative permittivity of this target
was estimated at €, = 3 &+ 0.3 by an experimental method [3]. In this
contribution, the data associated with the so called dielTM_dec_8f.exp
file are considered, and the operating frequency corresponding to 4 GHz
is used. For this frequency, a search domain of 6.5c¢m (along the z-
axis) x 6.5cm (along the y-axis), discretized into 32 x 32 cells and
centered at (z = —0.28cm; y = —3 cm) has been considered. Figure 4
presents the simulated object under consideration for the previous
search domain, the reconstruction obtained after 150 iterations without
regularization and the reconstruction obtained using the regularized
MGM after 150 iterations (5 sequences composed of 25 iterations for
the local minimization). The permittivity level at 4 GHz is ¢, = 5.47 in
the non regularized case and €, = 4.17 in the regularized case. Figure
5 show a cross-section, along the z-axis, at y = —3cm, of the results
which permits to compare the actual relative permittivity with the
reconstructed one.
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Figure 4. Reconstruction of the dielectric object at 4 GHz after 150
iterations. (a) Simulated 6.5c¢cm x 6.5c¢m search domain centered
at (z = —0.28cm, y = —3cm) and discretized into 32 x 32 cells.
The solid line represents the shape of the non discretized object. (b)
Reconstruction obtained without regularization. (c) Reconstruction
obtained with regularization.

61

6 -4 2 0

Figure 5. Cross-sectional of the simulated object (solid line) and the
reconstructions obtained at 4 GHz without regularization (dotted line)
and with regularization (stared line).

6.2.2. Two Dielectric Objects

Here, a dielectric target made up of twin cylinders with circular cross-
section of radius 1.5cm is considered. The relative permittivity of
this target was estimated at & = 3 4+ 0.3. The data associated
with the so called twodielTM_8f.exp file for 4GHz and 7GHz are
considered. For both frequencies, a rectangular search domain of
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Figure 6. Reconstruction obtained after 175 iterations of the two
dielectric objects at 4 GHz. (a) Simulated 8 cm x 16 cm search domain
centered at (x = Ocm, y = Ocm) and discretized into 20 x 40 cells.
The solid line represents the shape of the non discretized object. (b)
Reconstruction obtained without regularization. (c) Reconstruction
obtained with regularization.

8cm (along the z-axis) x 16cm (along the y-axis) was discretized
into 20 x 40 cells and centered at (z = Ocm, y = Ocm). Figures 6
and 7 show the simulated object for the previous search domain, the
reconstruction obtained after 175 iterations without regularization and
the reconstruction obtained after 175 iterations (5 sequences composed
of 35 iterations for the local minimization) using the regularized MGM
at 4GHz and 7 GHz, respectively. The permittivity level at 4 GHz
is &, = 3.49 and &, = 3.56 at 7GHz in the nonregularized case and
er = 2.54 at 4GHz and &, = 2.46 at 7GHz in the regularized one.
Moreover, on can note on the obtained reconstruction a slight shift
of the center of each cylinders. This shift is within the experimental
margin.

6.3. Metallic Targets
6.3.1. Rectangular Metallic Object

The metallic target is a centered filled cylinder with rectangular cross-
section of (1.27 x 2.54)cm?. The experimental data correspond to
the so-called rectTM_cent.exp file for 8 GHZ and 16 GHz. The search
domain is a 3.6cm X 5.4cm area discretized into 20 x 30 cells and
centered at (zx = —0.5cm, y = —0.75cm). Figures 8 and 9 show
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Figure 7. Reconstruction obtained after 175 iterations o the two
dielectric objects at 7 GHz. (a) Simulated 8 cm x 16 cm search domain
centered at (z = Ocm, y = Ocm) and discretized into 20 x 40 cells.
The solid line represents the shape of the non discretized object. (b)
Reconstruction obtained without regularization. (c) Reconstruction
obtained with regularization.

the simulated search domain, the reconstructions obtained after 100
iterations without regularization and the results obtained after 100
iterations (5 sequences composed of 20 iterations corresponding to
the local minimization) using the regularized MGM. The maximum
conductivity at 8 GHz is ¢ = 3.45S/m and ¢ = 3.315/m at 16 GHz
in the non regularized case. In the regularized case, the maximum
conductivity at 8 GHz is 0 = 0.855/m and o = 0.31S/m at 16 GHz.

6.3.2. “U-shaped” Object

In this part, a “U-shaped” metallic cylinder defined within a 8 x 5 cm?
rectangle is considered. The corresponding experimental data are the
so called uTM _shaped.exp file for 4 GHz and 16 GHz. The considered
centered search domain is a 15 cm x 12 cm centered area discretized into
50 x 40 cells. Figures 10 and 11 show the simulated discretized search
domain, the reconstructions obtained without regularization and the
results obtained considering the regularized MGM for 150 iterations (5
sequences composed by 30 iterations for the local minimization). The
maximum conductivity at 4GHz is ¢ = 4.59S/m and ¢ = 1.84S/m
at 16 GHz in the non regularized case. In the regularized case, the
maximum conductivity at 4 GHz is 0 = 1.73S/m and o = 0.16 S/m at
16 GHz.
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Figure 8. Reconstruction of the metallic target at 8 GHz after 100
iterations. Gray scale level of the (a) Simulated 3.6 x5.4cm? search
domain centered at (z = —05cm, y = —0.75cm) and discretized into
20 x 30 cells, (b) reconstructed target without regularization and (c)
reconstruction obtained using the regularized MGM.
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Figure 9. Reconstruction of the metallic target at 16 GHz after 100
iterations. Gray scale level of the (a) Simulated 3.6 x5.4cm? search
domain centered at (z = —05cm, y = —0.75cm) and discretized into
20 x 30 cells, (b) reconstructed target without regularization and (c)
reconstruction obtained using the regularized MGM.
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(a)

Figure 10. Reconstruction of the “U-shaped” metallic target at 4 GHz
after 150 iterations. Gray scale level of the (a) simulated 15 cm x 12 cm
centered search domain discretized into 50 x 40 cells, (b) reconstructed
target without regularization and (c) reconstruction obtained using the
regularized MGM.

(a)

Figure 11. Reconstruction of the “U-shaped” metallic target at
16 GHz after 150 iterations. Gray scale level of the (a) simulated
15cm x 12 cm centered search domain discretized into 50 x 40 cells,
(b) reconstructed target without regularization and (c) reconstruction
obtained using the regularized MGM.

7. CONCLUSION

In this contribution, a modification of the modified gradient algorithm
was proposed in order to take into account separately the real and
imaginary part of the contrast function. This algorithm has been
developed in order to efficiently implement a Markovian regularization
based on the weak membrane model. The proposed algorithm was
tested against experimental data and the results show the improvement
when considering the proposed regularized MGM. As the real data have
been processed at different frequencies, future work could extend the
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proposed algorithm to a multi-frequency approach. Moreover, taking
into account recent works on a multiplicative TV regularization [1], a
multiplicative approach of the proposed regularization method could
leads to suppress the experimentally chosen weighting parameter.

REFERENCES

1. Abubakar, A. and P. M. van den Berg, “Total variation as
a multiplicative constraint for solving inverse problems,” IEEE
Transactions on Image Processing, Vol. 10, No. 9, 1384-1392,
2001.

2. Baussard, A., D. Prémel, and O. Venard, “A Bayesian
approach for solving inverse scattering from microwave laboratory-
controlled data,” Inverse Problems, Vol. 17, No. 6, 16591669,
2001.

3. Belkebir, K., S. Bonnard, F. Pezin, P. Sabouroux, and M. Saillard,
“Validation of 2D inverse scattering algorithms from multi-
frequency experimental data,” Journal of Electromagnetic Waves
and Applications, Vol. 14, 1637-1667, 2000.

4. Belkebir, K. and M. Saillard, “Special section: Testing inversion
algorithms against experimental data,” Inverse Problems, Vol. 17,
No. 6, 1565-1571, 2001. ‘

5. Blake, A. and A. Zisserman, Visual Reconstruction, MIT Press,
Cambridge, 1987.

6. Carfantan, H. and A. Mohammad-Djafari, Lectures Notes
in Physics, Chapter: An overview of nonlinear diffraction
tomography within the Bayesian estimation framework, Springer
Verlag, 1997.

7. Chew, W. C. and Y. M. Wang, “Reconstruction of two-
dimensional permittivity distribution using distorted Born
iterative method,” IFEE Trans. Med. Imaging, Vol. 9, 218-225,
1990.

8. Devaney, A. J., “Geophysical diffraction tomography,” IEEE
Trans. Geosci. Remote Sensing, Vol. 22, 3-13, 1984.

9. Joachimowicz, N., C. Pichot, and J. P. Hugonin, “Inverse
scattering: An iterative numerical method for electromagnetic
imaging,” IEEE Trans. Antennas Propagat., Vol. 39, 1742-1751,
December 1991.

10. Kleinman, R. E. and P. M. van den Berg, “A modified gradient
method for two-dimensional problems in tomography,” Journal of
Computational and Applied Mathematics, Vol. 42, 17-35, 1992.



Two-dimensional inverse scattering problem 1007

11. Lambert, M., D. Lesselier, and B. J. Kooij, “The retrieval of
a buried cylindrical obstacle by a constrained modified gradient
method in the h-polarization case and for maxwellian materials,”
Inverse Problems, Vol. 14, 1265-1283, 1998.

12. Nikolova, M. and A. Mohammad-Djafari, “Discontinuity recon-
struction from linear attenuating operators using the weak-string
model,” Proceedings of FEuropean Signal Processing Conference,
Vol. 2, 1062-1065, 1994.

13. Nikolova, M., J. Idier, and A. Mohammad-Djafari, “Inversion of
large-support ill-posed linear operators using a piecewise Gaussian
MRF,” IEEE Trans. on Image Processing, Vol. 7, No. 4, 571-585,
1998.

14. Press, W. H., B. P. Flannery, S. A. Teukolski, and W. T. Vet-
terling, Numerical Recipes. The art of scientific computing, Cam-
bridge University Press, 1986.

15. Tabbara, W., B. Duchene, C. Pichot, L. Chommeloux, and
N. Joachimowicz, “Diffraction tomography: Contribution to the
analysis of some applications in microwave and ultrasonics,”
Inverse Problems, Vol. 4, 305-331, April 1988.

16. van den Berg, P. M. and R. E. Kleinman, “A contrast source
inversion method,” Inverse Problems, Vol. 13, 1607-1620, 1997.

17. van den Berg, P. M. and R. E. Kleinman, “A total variation
enhanced modified gradient algorithm for profile reconstruction,”
Inverse Problems, Vol. 11, L5-L10, 1995,

18. Venard, O., D. Premel, and A. Mohammad-Djafari, “Eddy
current tomography: A Bayesian api)roach with a compound weak
membrane-Beta prior model,” III*" International Workshop —
Advances in Signal Processing for Non Destructive Evaluation of
Materials, Vol. 3, 155-161, Quebec, Canada, 1997.

Alexandre Baussard is currently a Ph.D. student at SATIE
(Systémes et Applications des Technologies de I'Information et de
I’Energie) laboratory, Ecole Normale Supérieure de Cachan, France.
His research deals with forward and inverse problems.

Kamal Belkebir was born in Algeria in 1966. He received the Ph.D.
degree in Physics from the University of Paris XI (Orsay), France in
1994. He worked from 1995 to 1997 at the University of Eindhoven,
the Netherlands on Post-doctoral position. He joined the Laboratoire
d’Optique Electromagnétique in 1997 and he is currently “Maitre de
Conférences” at the University of Provence in Marseille. His research
deals with both forward and inverse scattering techniques.



1008 Baussard, Belkebir, and Prémel

Denis Prémel was born in France in 1960. He received the
“Agrégation de Génie Electrique” in 1986 and the Ph.D. degree
in 1992 from the University of Paris XI (Orsay). He worked
from 1994 to 2002 at the Ecole Normale Supérieure de Cachan
on a “Maitre de Conférences” position. He is currently at the
DRT/DECS/SISC/LCME CEA Saclay. His research interests include
inverse scattering methods applied to eddy current non destructive
evaluation.



