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Abstract
In the present paper, we consider a two-dimensional inverse scattering problem
involving two semi-infinite media separated by an interface. The targets under
test are assumed to be buried in one of the two media while the sources and the
receivers are located in the other medium (limited-aspect data configuration).
We present an iterative scheme to reconstruct the permittivity distribution of
the unknown object. This method consists in building up a sequence of the
parameter of interest by minimizing, at each iteration step, a cost functional
representing the discrepancy between the data and those that would be obtained
with the best available estimation of the parameter. In addition, when clutter
is present, the decomposition of the time reversal operator method is used to
improve the signal-to-clutter ratio, since it allows us to synthesize a wave that
focuses on the scatterer. The data associated with this incident field are included
in the iterative minimization procedure.

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

The use of probing waves for the characterization of buried objects covers a wide range of
potential applications, in medical imaging, civil engineering, subsoil probing, etc. In many
cases, non-invasive techniques are required and an interface prevents the transmitters and
the receivers to surround the area of interest. In this paper, we focus on such an ‘aspect-
limited’ configuration, where a flat interface separates the homogeneous medium containing
the antennas, namely air, from another semi-infinite medium surrounding the object under test.
To determine the position, shape and constitutive parameters of this object, an inverse scattering
algorithm based on iterative minimization of a cost function is used. This iterative method
is described in [1] for the homogeneous background medium configuration. In the present
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paper, the stratified configuration is taken into account via the related Green function. The
expression as well as the numerical computation of this Green function can be found in [2].
This kind of inversion algorithm is not very robust against clutter resulting from small-scale
random fluctuations of the permittivity, like those one may encounter when probing media like
subsoil or concrete. In such conditions, spurious bright scatterers appear in the reconstruction,
especially at the boundary of the imaged domain, to mimic the contributions of inhomogeneities
located away from this domain.

To improve the signal-to-clutter ratio and, consequently, the robustness and the accuracy of
the algorithm, it is suggested in this paper to use the DORT (decomposition of the time reversal
operator) method [3], which permits one to synthesize a wave focusing onto the scatterer. In
our previous work, the DORT method has been used to detect and localize scatterers embedded
in the probed area, as a preprocessing before inversion. The robustness of the technique has
been tested against both experimental data [4] and synthetic cluttered data [5]. The key point
here is now to benefit from the ability to focus energy onto the scatterers by including the
response to such an incident wave in the inversion process.

The ill-posed character of such inverse problems is now well known. For instance, it is
shown that, in the time-harmonic regime, a homogeneous object embedded in a semi-infinite
homogeneous background provides almost the same scattered field as a modulated medium.
Therefore, depending on the initial guess, the inverse scattering algorithm may lead to strongly
different solutions. To overcome this problem, one may use some a priori information or
specific regularization.

In this paper, it is shown that combining the DORT method with a priori knowledge of the
sign of the contrast of permittivity drastically improves the accuracy of the characterization of
an object buried in a highly cluttered environment.

2. Notation and statement of the problem

The geometry of the problem is shown in figure 1, where a cylindrical object of arbitrary
cross-section is confined in a bounded domain �. The embedding medium is assumed to
be semi-infinite and homogeneous, with permittivity ε2 = ε0ε2r and permeability µ = µ0

(ε0 and µ0 being the permittivity and permeability of vacuum, respectively), separated
from the upper medium (ε1, µ0) by a flat interface at y = 0. The scatterers are assumed
to be inhomogeneous dielectric cylinders with complex permittivity distribution ε(r) =
ε0εr(r); the entire configuration is non-magnetic (µ = µ0). The wavenumber in vacuum is
denoted by k0.

A right-handed Cartesian coordinate frame (O, ux, uy, uz) is defined. The z-axis is parallel
to the invariance axis of the scatterer. The position vector OM can then be written as:

OM = xux + yuy + zuz = r + zuz. (1)

The sources that generate the electromagnetic excitation are assumed to be lines parallel to the
z-axis, located at (rl)1�l�Ns

in the upper medium.
For the inverse scattering problem, we assume that the unknown object is successively

illuminated by Ns electromagnetic excitations and, for each incident field, the scattered field is
available along a contour � at Nr positions. The direct scattering problem may be reformulated
as two coupled contrast-source integral relations: the state (or observation) equation given by

Ed
l (r ∈ �) = k2

0

∫
�

χ(r′)El(r
′)G�(r, r′) dr′, (2)
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Figure 1. Geometry of the problem. An interface separating two infinite half-spaces is considered.
The emitting and receiving antennas, regularly distributed along a segment �, are located in the
upper medium, while the target under test is buried in the lower medium.

and the field (or coupling) equation given by

El(r ∈ �) = Einc
l + k2

0

∫
�

χ(r′)El(r
′)G�(r, r′) dr′, (3)

where Ed and E represent the scattered field and the total field, respectively. χ(r) = εr(r)−ε2r

denotes the permittivity contrast which vanishes outside the target and G�,�(r, r′) is the two-
dimensional (2D) Green’s function for the configuration under consideration. Details of the
expression as well as the numerical computation of this Green function can be found in [2].
For the sake of simplicity, equations (2) and (3) are rewritten in operator notation as

Ed
l = G�χEl, (4)

El = Einc
l + G�χEl. (5)

3. Inversion procedure

The inverse scattering problem consists in finding the function χ(r ∈ �) in the investigated
domain � (test domain) so that the scattered field associated with χ matches the measured
scattered field fl(r ∈ �). Many iterative methods have been developed for solving such
inverse problems. In these methods, starting from an initial guess, the parameter of interest is
gradually adjusted by minimizing a cost functional involving the measured scattered field
data. A brief review of the literature mainly shows two approaches, linearized methods
and non-linearized ones. In the first approach, namely the Newton–Kantorovich method
[6, 7] or the distorted-wave Born method [8, 9]—an analytical equivalence between these two
methods is established in [10]—the field in the scattering domain is considered as fixed at each
iteration step. This field is the solution of the direct problem for the best available estimation
of the parameter. In the second approach, namely the modified gradient method [11] or the
contrast source inversion method [12], the field is considered as an unknown that is obtained
together with the parameter during the minimization procedure. When the linearized methods
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converge, they lead to a satisfactory result. However, they are sensitive to noise in the data
[13]. Hence, they are usually accompanied by a regularization procedure, in particular when
the objects under test are large and/or with high contrast or when noise is present. The non-
linearized methods are stable with respect to noise and therefore do not require a regularization.
However, convergence is slow and the quality of the reconstruction is less satisfactory than
the one obtained with the linearized method. It should be noted, however, that including a
regularizer in the non-linearized methods improves the quality of the reconstructions, see [14].
A hybrid method combining ideas from the aforementioned approaches was investigated in
[1], where a comparison between four non-regularized methods (linearized, non-linearized and
two hybrid methods) is reported. The reconstructions were carried out using experimental data
corresponding to several targets of different shapes and constitutive materials. In all cases, the
best result was obtained with one of the hybrid methods (modified2 gradient method [1], which
could be seen either as a variant of the modified gradient method or as a variant of a linearized
method). Therefore, in the present paper, the authors use this hybrid method to characterize
targets buried in a cluttered environment.

3.1. Principles of the algorithm

In this hybrid method, two sequences related to contrast and total field inside the test domain,
{χn} and {El,n}, respectively, are built up according to the following recursive relations:

El,n = El,n−1 + αl,n;vvl,n + αl,n;wwl,n, (6)

χn = χn−1 + βndn, (7)

where vl,n, wl,n and dn are updating directions with respect to the total field El,n and contrast,
respectively, and where αl,n, βl,n are scalar coefficients. The updating directions vl,n and dn are
chosen as the standard Polak–Ribière conjugate-gradient directions [15], while Wl,n is given by

wl,n = Ẽl,n−1 − El,n−1, Ẽl,n−1 = [1 − Gχn−1]−1Einc
l , (8)

where Ẽl,n−1 represents the total field inside the test domain �, calculated from the coupling
equation with contrast χn−1. Note that when αl,n;w = 0, the recursive relation (6) is the same
as the one used in the modified gradient method, in which the coupling equation (3) is not
solved at each iteration step. Conversely, when αl,n;v = 0 and αl,n = 1, the recursive relation
(6) reduces to El,n = Ẽl,n−1, thus leading to a linearized method such as the Newton type
method. Consideration of both directions wl,n and vl,n leads to a better solution than with only
one field direction. Indeed, the scalar weights αl,n and βn are chosen at each iteration step n

so as to minimize the normalized cost functional Fn(χn, El,n) given by

Fn(χn, El,n) = W�

Ns∑
l=1

||h(1)

l,n ||2� + W�

Ns∑
l=1

||h(2)

l,n ||2�, (9)

where the normalizing coefficients W� and W� are defined as:

W� = 1∑Ns

l=1 ||Einc
l ||2�

, W� = 1∑Ns

l=1 ||fl||2�
. (10)

Subscripts � and � are included in the norm || · || and later in the inner product 〈·, ·〉 to
indicate the domain of integration. The functions h

(1)

l,n and h
(2)

l,n are two residual errors. The
first one is the residual error with respect to the incident field in the test domain computed from
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the coupling equation. The second residual error is the error on the scattered field computed
from the observation equation

h
(1)

l,n = Einc
l − El,n + G�χnEl,n, (11)

h
(2)

l,n = fl − G�χnEl,n. (12)

The use of a priori information may improve the results of the inversion algorithm. For
instance, a binary constraint [16] or positivity constraint [13, 15] is used to retrieve the shape of
a homogeneous object with known constitutive parameters. In the present work, we incorporate
a priori information stating that both real and imaginary parts of the susceptibility ζ of the
target are non-negative (εr(r) = 1 + ζ(r)). Instead of retrieving a complex function χn, two
real auxiliary functions ξn and ηn are reconstructed such that

χn = 1 + ξ2
n + iη2

n − ε2r. (13)

The recursive relation with respect to contrast χn (equation (7)) becomes

ξn = ξn−1 + βn;ξdn;ξ , (14)

ηn = ηn−1 + βn;ηdn;η. (15)

Once the updating directions dn;ξ , dn;η, vn,l and wl,n are found, Fn is a non-linear expression
with 2Ns complex variables (αl,n;v, αl,n;w) and two real variables (βn;ξ , βn;η). The minimization
of Fn is accomplished using the Polak–Ribière conjugate gradient method [17].

3.2. Search directions

As the updating directions dn;ξ and dn;η the authors take the standard Polak–Ribière conjugate
gradient directions [1, 15]. These directions read

dn;ξ = gn;ξ + γn;ξdn−1;ξ , with γn;ξ = 〈gn;ξ , gn;ξ − gn−1;ξ〉�
||gn−1;ξ||2�

, (16)

dn;η = gn;η + γn;ηdn−1;η, with γn;η = 〈gn;η, gn;η − gn−1;η〉�
||gn−1;η||2�

, (17)

where gξ (respectively gη) is the gradient of the cost functional Fn(ξ, η, El) with respect to ξ

(respectively η), evaluated at the (n − 1)th step, assuming that the total field inside the test
domain does not change. These gradients are given by

gn;ξ = 2ξn−1Re

[
W�

Ns∑
l=1

Ēl,n−1G†
�h

(1)

l,n−1 − W�

Ns∑
l=1

Ēl,n−1G†
�h

(2)

l,n−1

]
, (18)

gn;η = 2ηn−1Im

[
W�

Ns∑
l=1

Ēl,n−1G†
�h

(1)

l,n−1 − W�

Ns∑
l=1

Ēl,n−1G†
�h

(2)

l,n−1

]
, (19)

where the overbar denotes the complex conjugate, and G†
� and G†

� are the adjoint operators of
G� and G�, respectively.
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The first search direction vl,n for the total field inside the test domain is similar to those
chosen for the object functions ξ and η:

vl,n = gl,n;E + γl,n;El
vl,n−1, with γl,n;El

= 〈gl,n;El
, gl,n;El

− gl,n−1;El
〉�

||gl,n−1;El
||2�

, (20)

where gl,n;El
is the gradient of the cost functional Fn(ξ, η, El) with respect to the field El,

evaluated at the (n − 1)th step and assuming that ξ and η do not change. We obtain

gl,n;El
= W�[χ̄n−1G†

�h
(1)

l,n−1 − h
(1)

l,n−1] − W�χ̄n−1G†
�h

(2)

l,n−1. (21)

3.3. Initial estimates: back-propagation technique

Given the a priori information stating that the object function is positive, the initial guess
(ξ0 = 0; η0 = 0) must be rejected since the gradients vanish (g1;ξ = 0; g1;η = 0). This
is caused by the local maximum of the cost function introduced by the transformation (13).
Thus, we need another initial guess. This can be provided by the back-propagation method
[4, 15, 16].

3.4. The DORT method

In the presence of clutter, an efficient way to improve the signal-to-clutter ratio consists in
focusing an incident wave onto the scatterer. This can be achieved using the DORT method
[3], which provides the set of complex amplitudes needed to synthesize such a wave with
the transmitters. In [18], with the same configuration as in the present paper, a comparison
between this focusing wave and the field radiated by a single electric dipole has clearly shown
an improvement in terms of the signal-to-clutter ratio.

The DORT method is based on the properties of a so-called time-reversal operator. Let K
denote the Ns × Ns matrix such that Kij represents the scattered field recorded by the receiver
j when the transmitter i is emitting. Assuming that the embedding medium is lossless, the
time reversal experiment is described by the adjoint matrix K†, and the time reversal operator
is defined by L = KK†. The relevant information about the scatterers (number, brightness,
localization) is contained in the eigenvalues and eigenvectors of L. One can note that the
DORT method requires the same multi-static data as standard inversion techniques.

Expanding the incident and scattered fields as Fourier–Bessel series, one can define the
scattering matrix as the linear operator linking the scattering coefficients to the incident ones.
It has been shown that the eigenvalues of L are closely linked to the elements of the scattering
matrix [18, 19], and that the relationship depends on the geometry of the set-up. When the
antennas are located along a line parallel to the x axis, even and odd functions of x form two
stable orthogonal subspaces of L. If the angle θ in the Fourier–Bessel expansion is defined as
tan θ = y/x, writing exp(inθ) as cos(nθ) + i sin(nθ) provides a decomposition into even and
odd basis functions of the scattered field, and permits one to write K as the superposition of a
symmetric matrix and an antisymmetric matrix. When L is diagonalized, from low frequency
up to the resonance domain, for both TM and TE polarizations, it appears that [18]:

• in each subspace, for each scatterer, one eigenvalue is strongly dominant;
• the even eigenvector attached to the highest eigenvalue can be used to synthesize a wave

focusing onto the associated scatterer.
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At low frequencies, in TM polarization, the highest ‘even’ eigenvalue is larger than the
highest ‘odd’ eigenvalue, since the scatterer behaves almost like a single electric dipole in this
case, thus radiating Green’s function (even function of x). In this paper, the DORT method is
generally used under such conditions. Therefore, to roughly sum up, the DORT method allows
us to extract the dipolar contribution from each scatterer and provides a means of illuminating
each one in a selective fashion by backpropagation of this sole contribution.

3.5. Modification of the inversion algorithm

Let E
inc;DORT
l denote the synthesized incident field focusing onto the scattered number

l = 1, . . . , N and by f DORT
l the corresponding scattered field. The scattered field f DORT

l can
be derived from the measured data fl through a linear combination of lines of K in accordance
with the components of the associated eigenvector. Our suggestion here is to include, in the
iterative scheme, as described in subsection 3.1, N extra incident fields and N extra scattered
fields such that the contrast and the total fields in the test domain � are determined iteratively
by minimizing a cost functional of the form

F̃n(χn, En, EDORT
n ) = Fn(χn, En) + ν2FDORT

n (χn, EDORT
n ). (22)

The field quantity EDORT represents the total field in the scattering domain � related to the
incident field Einc;DORT. In practice, the positive weight ν2 is determined, such that F and
FDORT are of the same order of magnitude. One way to circumvent the intuitive choice of the
weight ν2 is to introduce the information derived from the DORT method as a multiplicative
contribution. In this case, the minimized cost functional is of the form

F̃n(χn, En, EDORT
n ) = Fn(χn, En) × FDORT

n (χn, EDORT
n ). (23)

The cost functional Fn is unchanged from the one defined in subsection 3.1, while the new
cost functional FDORT reads

FDORT
n (χn, EDORT

l,n ) = WDORT
�

N∑
l=1

||h(1;DORT)

l ||2� + WDORT
�

N∑
l=1

||h(2;DORT)

l ||2�, (24)

where the residual errorsh(1;DORT) andh(2;DORT) are defined similar toh(1) andh(2), respectively.

h
(1;DORT)

l = E
inc;DORT
l − EDORT

l,n + G�χnE
DORT
l,n , (25)

h
(2;DORT)

l = f DORT
l − G�χnE

DORT
l,n . (26)

The normalizing coefficients WDORT
� and WDORT

� are as follows:

WDORT
� = 1∑N

l=1 ||Einc;DORT
l ||2�

, WDORT
� = 1∑N

l=1 ||f DORT
l ||2�

. (27)

The updating directions are taken to be of the same type as the ones described previously, in
which the gradients involved now pertain to the total cost functional F̃ instead of F . Derivation
of these gradients is straightforward in both additive and multiplicative schemes and therefore
the expressions of these gradients are not written herein. Note that the cost function F̃n that
is minimized at each iteration step is now a polynomial of 2(Ns + N) complex variables and
still two real variables (βn;ξ , βη;η).
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4. Numerical experiments

In this section, we discuss reconstruction results using synthetic data. These data have been
generated using a forward solver based on the conjugate-gradient method with the aid of fast
Fourier transforms in two different configurations. The first one involves a dielectric object is
buried in a homogeneous half-space. The second one corresponds to the same object but buried
in a cluttered environment. The unknown object is a homogeneous dielectric circular cylinder
of relative permittivity εr = 7 and radius a = 0.1 m buried in a medium of relative permittivity
ε2r = 4. The upper medium is of permittivity ε1 = ε0. The centre of the cylinder is at 0.75 m
depth and shifted from the centre of the segment of line � by a distance of 0.1 m. Along the line
�, Ns = Nr = 31 antennas are regularly distributed. Each antenna plays the role of emitter
and receiver. The length of the measurement line � is 6 m and three operating frequencies are
considered: f = 100, 200 and 300 MHz. The cluttered data were obtained with the cylinder
embedded in a large (3 × 3) m2 box, discretized into 128 × 128 cells, where the permittivity
in cells situated outside the cylinder randomly fluctuates, with uniform distribution, between
(1 − b)ε2 and (1 + b)ε2, with b = 20% being the amplitude of the fluctuations. Clutter is
quantified via a single number, err, defined as

err =
√∑L

l=1 ||f s
l − fl||2�∑L

l=1 ||fl||2�
, (28)

where f s and f denote the scattered field with and without clutter, respectively. For the reported
results, the value of err is 33, 49 and 129% at f = 100, 200 and 300 MHz, respectively.

All reported reconstruction results correspond to the 32nd iteration with the test domain
� of size (1 × 1) m2 discretized into 31 × 31 cells, which leads to a different discretization
than the one used to generate the data. Note that the size of � is nine times smaller than
the box used to generate the cluttered data. We did not observe any change by continuing
the iterative process further. In all examples, only the real part of the complex permittivity
is displayed. In fact, the reconstructed conductivity distribution was, in almost all cases, null
and therefore results of the reconstruction of the conductivity are not given. We did not use
the a priori information that the target under test is dielectric, although using this information
may have slightly improved the results of the reconstruction but would not have changed our
conclusions.

4.1. Results at fixed frequency

In order to provide an efficient strategy for the inversion, we herein examine the ideal case
of noiseless data. Figure 2 presents the reconstruction results at fixed frequency without
taking information derived from DORT into account. In these results, the initial guess was
deduced from the back-propagation procedure. Note the improvement in the quality of the
reconstruction when switching the operating frequency from f = 100 MHz to 200 MHz but
deterioration of the resolution at f = 300 MHz. This shows the sensitivity of the choice
of the initial estimate. The dynamic range as well as the resolution aspects of iterative
inverse scattering schemes were analysed in [20], leading to the idea of the multiple-frequency
approach, or the frequency-hopping approach [21].

4.2. Reconstruction using the multiple-frequency approach

From what precedes, we conclude that reconstructing at fixed frequencies starting from a
back-propagation initial is not an efficient strategy. We examine now the multiple-frequency
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Figure 2. Reconstructed permittivity distribution from noiseless data at fixed frequencies: f =
100 MHz (a), 200 MHz (d) and 300 MHz (g). The circles plotted in (a), (d) and (g) represent the
boundary of the actual cylinder. Comparison between the reconstructed (�) and actual profiles
(——) along vertical and horizontal lines crossing the centre of the cylinder are plotted in the
middle and right columns, respectively.

approach, i.e., using as the initial guess the final result obtained at the immediately lower
frequency. Figure 3 shows the results of the reconstruction using this approach and exhibits
significant improvement, as compared to figure 2.

4.3. Reconstruction of a target buried in a highly cluttered environment

Consider now the case of the cylinder with clutter. Figures 4(a) and (b) present results of
reconstruction of the cylinder when the clutter is present, to be compared to the results from
noiseless data in figures 4(c) and (d), all being obtained using the frequency-hopping approach.
From these results, we conclude that the strategy based on the multiple-frequency approach
is not sufficiently efficient to reconstruct the target buried in a highly cluttered environment.
Other ways must be explored.
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Figure 3. Reconstructed permittivity distributions from noiseless data using the multiple frequency
approach (frequency hopping approach). (a) Result at f = 200 MHz with the final result at
f = 100 MHz as initial guess; (d) result at f = 300 MHz with (a) as initial estimate. Comparison
between the reconstructed profile (�) and the actual one (——) along vertical and horizontal lines
crossing the centre of the target are plotted in the middle and right columns, respectively.

4.4. Use of the DORT method in the inverse algorithm

To enhance the target contribution, one might use the focusing incident field derived from
the DORT method, as described in subsection 3.5. Figure 5 shows a map of the field of the
focusing wave, derived from the eigenvector associated with the highest eigenvalue, which
concentrates energy around x = 0.1 and permits us to define the area of interest for inversion.
Figure 6 presents results of the reconstruction using the information derived from DORT with
the frequency-hopping approach. We report both additive, with weight parameter ν2 = 6,
and multiplicative ways of taking into account the synthesized fields plotted in figure 5.
Comparison with results obtained without the DORT method (figures 4(a) and (b)) shows
some improvement, especially at f = 300 MHz when clutter generates err as high as 129%.
However, some oscillations remain and prevent the target from being extracted from the clutter.
In our opinion, such oscillations are linked to the stratified geometry, which, combined with the
aspect-limited configuration, provides many solutions to the inverse problem. This is discussed
in the next subsection.

4.5. Non-uniqueness of the solution

Let us consider an incident beam, described as a superposition of plane waves impinging from
the upper medium onto the interface, with a(α) denoting the complex amplitude of the plane
wave with horizontal wavenumber α at y = 0+. If td(α) is the complex transmission coefficient
when this plane wave is propagating downwards (tu for upgoing waves), the field transmitted
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Figure 4. Reconstructed permittivity using the multiple frequency approach with ((a), (b)) and
without ((c), (d)) clutter. Results at f = 200 MHz with final reconstruction obtained at f =
100 MHz as initial guess plotted in (a) and (c). Results at f = 300 MHz with (a) and (c) as initial
estimates are plotted in (b) and (d), respectively.

−0.5 −0.3 −0.1 0.1 0.3 0.5

−0.5

−0.3

−0.1

0.1

0.3

0.5

−0.5 −0.3 −0.1 0.1 0.3 0.5
0.1

0.3

0.5

−0.5 −0.3 −0.1 0.1 0.3 0.5
0.1

0.3

0.5

0.0

120.0

240.0

360.0

480.0

600.0

(a) (b) (c)
−0.5

−0.3

−0.1

−0.5

−0.3

−0.1
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DORT method and utilized as extra incident field in the inversion algorithm. (a) f = 100 MHz;
(b) f = 200 MHz and (c) f = 300 MHz.
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Figure 6. Reconstructed permittivity distributions, using the multiple frequency approach, from
cluttered data. Inversion is carried out by including information derived from the DORT method
in the iterative process. ((a), (c)) Results at f = 200 and 300 MHz, respectively, using the
multiplicative framework to incorporate the information derived from the DORT method. ((b), (d))
Results at f = 200 and 300 MHz, respectively, using the additive framework to incorporate the
information derived from the DORT method.

in the lower medium is given by

Et(x, y) =
∫

dα a(α)td(α) exp(iαx − iβ2y). (29)

βj = (k2
j − α2)1/2, Re(βj) + Im(βj) � 0, j = 1, 2. In the frame of the Born approximation,

the field scattered in the upper medium by a buried object whose support is included in domain
� becomes

Es(x, y) � iπk2
0

∫∫
dα dα′ a(α)

β′
2

td(α)tu(α
′)χ̂(α′ − α, β2 + β′

2) exp(iα′x + iβ′
1y), (30)
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where the Fourier transform of f(x, y) is defined as

f̂ (α, β) =
∫∫

dx

2π

dy

2π
f(x, y) exp(−iαx − iβy).

When both transmitter and receiver are not located very close to the interface, evanescent waves
are not involved in the scattering process, thus a(α) and exp(iβ′

1y) rapidly tend to zero when
|α| and |α′| become greater than k1, respectively. In addition, if k2 � k1, β

(′)
2 remains close to

k2 for |α(′)| < k1, and the scattered field can be approximated by

Es(x, y) � iπk2
0

∫∫
dα dα′ a(α)

β′
2

td(α)tu(α
′)χ̂(α′ − α, 2k2) exp(iα′x + iβ′

1y).

In the present paper, k2 = 2k1 and β2 decreases from k2 to (
√

3/2)k2 when α increases from
0 to k1. Therefore, two contrast functions χ with the same y-Fourier component χ̂(., 2k2)

provide almost the same scattered field, leading to the same kind of ambiguity as in 1D
problems. This is obvious in the simple case of a point-like scatterer at depth d, described
by χ(x, y) = σχδ(x, y + d), where σ is the actual area of the cross-section of the scatterer;
equation (30) becomes

Es(x, y) � k2
0σχ exp(2ik2d)

∫∫
dα dα′ a(α)

4iπβ′
2

td(α)tu(α
′) exp(iα′x + iβ′

1y)

and clearly shows that changing χ into −χ and d into d ± λ2/2 does not modify Es. It is
easily proven that the same transformation as applied to a homogeneous layer, illuminated
under normal incidence, also leaves the reflected field invariant. Indeed, in this case,
χ(x, y) = χ�(y + d/h), where � is the window function, a(α) = δ(α) and the scattered
field does not depend on x, as a result of invariance of the scattering problem with respect to
translations along the x direction. Consequently, Es in equation (30) reduces to a reflected
plane wave propagating along the vertical axis

Es(y) = iπ
k2

0

k2
td tuχ̂(2k2) exp(ik1y) (31)

= i

2

k2
0

k2
2

td tuχ exp(2ik2d) sin(k2h) exp(ik1y). QED (32)

In figure 2, the shape of the vertical fluctuations of the reconstructed permittivity is
well approximated by the Bessel function J0(2k2(y

′ + d)), which provides almost the
same scattered field as the localized homogeneous object. Analytical calculations in the
1D case, which are much easier to perform, show that a modulated medium with contrast
χ′�((y′ + d)/H ) cos(2k2(y

′ + d)), k2H � 1, may have the same echo as the previous single
homogeneous layer. Indeed, equation (31) becomes

Es(x, y) � i

2

k2
0

k2
2

td tu
k2H

2
χ′ exp(2ik2d) exp(ik1y) (33)

and coincides with equation (32) ifχ′k2H = 2χ sin(k2h). This is quite similar to the 2D problem
under study. Surprisingly, the use of multi-static data in such ‘aspect-limited’ configurations
does not drastically reduce the number of solutions, even though the line of measurement � is
several wavelengths long.

It should also be emphasized that prior knowledge of the sign of χ can do away with
these oscillating solutions. An example is given in the paper by Lambert et al [22], where
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Figure 7. Same as in figure 6, but with the use of the a priori information that the reconstructed
contrast is positive.

the reconstruction of the conductivity of a scatterer buried in a lossless background is very
accurate, in contrast to the real part of the permittivity, because positivity is reinforced in the
former case, not in the latter. In order to do away with the ambiguity mentioned above, we have
included the a priori information stating that the contrast is positive in the inversion scheme.
This is done by retrieving the functions ξ and η such that (13) is changed to

χn = ξ2
n + iη2

n, (34)

which leads to a reconstructed relative permittivity profile of the form εr(r) = ε2r + ξ(r)2 +
iη(r)2. Figure 7 shows the reconstruction results from cluttered data using the DORT method
and the frequency hopping approach, to be compared to the ideal case of noiseless data (figures
4(c) and (d)). Note that satisfactory reconstructions are obtained with both additive and
multiplicative approaches.

4.6. Multiple scatterers

Prior knowledge of the number of disconnected scatterers is not necessary, since a domain
formalism is used for inversion. It may happen that the DORT method provides ambiguous
information, such that the number of scatterers is underestimated, either because they are too
close to each other to be separated at the operating frequency or because their signature is
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Figure 8. Frequency increases from left to right: 100, 200 and 300 MHz, respectively. Top: phase
of the components of the eigenvectors associated with the highest eigenvalues (four at 100 MHz,
then two). Middle: map of the modulus of the field radiated by a set of fictitious transmitters fed
by the components of the eigenvector associated with the highest eigenvalue. Bottom: same as
above for the second highest eigenvalue. The circles represent the boundaries of targets under test
while the dashed box represents the investigating domain � that is used later in the inversion.

‘buried’ in clutter. The procedure remains the same however, even if the number of additional
incident fields is smaller than the number of targets.

To illustrate the potential of the method, let us consider two scatterers with circular cross-
sections (r1 = 0.15 m and r2 = 0.1 m), at depth 0.75 and 0.95 m, shifted from the centre of the
line of measurements � by a distance of −0.2 and 0.2 m, with relative permittivities εr = 7
and 6, respectively. The amplitude of the fluctuations of the permittivity of the lower medium
is b = 0.15, leading in this case to err = 12, 28 and 69% at f = 100, 200 and 300 MHz,
respectively.

The phase of the components of the eigenvectors associated with the four highest
eigenvalues at 100 MHz is plotted in figure 8(a). Two of them have an axis of symmetry and
the other two present a jump, as a signature of anti-symmetric behaviour. Therefore one can
conclude that they are associated with two scatterers located below the central part of �. The
fifth eigenvalue is 3000 and 200 times smaller than the first and second ones, respectively, and
the corresponding eigenvector does not behave as expected (neither even nor odd). Moreover,
the behaviour of the two ‘highest’ eigenvectors remains stable at higher frequencies, with
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Figure 9. Reconstructed permittivity distribution using the frequency-hopping approach.
Frequency increases from left to right: 100, 200 and 300 MHz, respectively. Top: reconstruction
without using DORT, nor positivity of the contrast. Middle: reconstruction using both DORT,
through an additional term (ν2 = 2.5) of the cost function, and positivity. Bottom: same as above
using DORT through weighting factors in the cost function.

backpropagating waves focusing onto the same areas (figure 8), even though err reaches
values as high as 69% at 300 MHz. Two additional incident fields are thus considered in this
case, and the reconstructed area is restricted to the ‘bright’ zones of the focusing fields, namely
[ − 0.5 m, 0.5 m] × [ − 0.3 m, 0.7 m]. In this case, the best reconstruction results are obtained
in the multiplicative approach case, as shown in figure 9.

5. Conclusion

We have investigated the reconstruction of targets buried in a highly cluttered environment.
The inversion was achieved iteratively, using information derived from DORT in order to
improve the signal-to-clutter ratio. However, to circumvent ambiguities on the reconstructed
profile, inherent to the stratified configuration, a priori information is necessary. When the
reconstructed contrast was assumed to be positive, the results were satisfactory. In particular,
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the numerical examples clearly show that clutter rejection resulting from this inversion
procedure provides more accurate estimates of both shape and contrast, since, for a given
configuration, higher frequencies can be reached. This study also suggests introducing less
restrictive a priori information than that used in the paper. This may be achieved by using
regularization procedures, for instance.
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