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Abstract
The present paper deals with the inversion from experimental data provided by
Institut Fresnel, France. The distorted-wave Born iterative approach is applied
to the reconstruction of two lossless configurations involving dielectric circular
cylinders. The dynamic range and the resolution of this scheme are governed by
the operating frequency. For a low frequency, the dynamic range is large and the
resolution is limited; raising the frequency improves the resolution at the cost of
dynamic range. To obtain a high resolution for a large contrast, scattered-field
information at multiple frequencies can be used. This is demonstrated for two
cases where a direct inversion does not lead to convergence.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Inverse-profiling problems are traditionally expressed as optimization problems, in which
the unknown configuration is parametrized and the value of the configuration parameters is
determined by minimizing some cost function involving the scattered field. This is realized
by iterative procedures based on a linearization around a given estimate, or by nonlinear
optimization. The main bottleneck in solving multi-dimensional inverse-scattering problems
in this manner is that repeated ‘exact’ field computations require an excessive amount
of computation time. Combining the CGFFT (conjugate gradient fast Fourier transform)
method with a special extrapolation procedure as described in [1, 2] can provide the required
acceleration of these computations. Thus, field problems can be solved for a varying physical
parameter by ‘marching on’ in that parameter.
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Figure 1. The dielectric cylinder, part of the observation contour and the various domains
mentioned in the text. The region D1 is the region outside ∂D.

The second issue is convergence. For linearized methods, convergence is not always
guaranteed. Methods based on the optimization of a cost function inherently converge to
a minimum, but this may be a local one. In the present paper, we demonstrate one way of
avoiding this problem. We use the distorted-wave Born iterative procedure, which is one of the
simplest linearized schemes. Results obtained by linearized techniques have been available
in the open literature for some time [3–6]. However, most of the early work amounts to
computational ‘trial and error’. A theoretical analysis was summarized in [7–10], but was only
recently described in detail in [11]. In that paper, the distorted-wave Born iterative procedure
is analysed from a theoretical and computational point of view. Based on an investigation
of resolution and dynamic range, it is argued that configurations with a large contrast with
respect to the surrounding medium can be reconstructed with an acceptable resolution by
using multiple-frequency information. This is illustrated by representative numerical results
for synthetic data. A similar conclusion was also reached in [12] and [13]. A second result
from the theoretical analysis is the parametrization of the unknown susceptibility profile.

In [11], the approach was illustrated with the aid of representative numerical results. In
the present paper, we describe its validation from real data. As in [11], we restrict ourselves in
the examples to lossless dielectric objects. This allows us to avoid discussion of the frequency
dependence of a complex permittivity. However, the algorithm is applicable to lossy objects
as well.

2. Distorted-wave Born method

In this section, we specify the configuration and summarize the method of solution.

2.1. Formulation of the problem

We consider a two-dimensionally inhomogeneous, isotropic dielectric cylinder in a
homogeneous surrounding medium. As shown in figure 1, the interior of the cylinder is
represented as D2, the boundary as ∂D and the exterior as D1. For the permittivity, we have
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ε = ε2(ρ) in D2 and ε = ε1 in D1, while the permeability µ = µ0 in D1 ∪ D2. We assume
that the cylinder is enclosed in a square domain DO of width 2a centred around the z axis.
The configuration is excited by an electrically polarized, time-harmonic line source which is
located on a circular observation contour CO , with ρ = ρO . The electric field is detected by
receivers on the same contour. A time factor of exp(st)with s = β+jω is assumed implicitly.

2.2. Basic relations

Since the forward problem is linear, it suffices to consider the Green’s function, i.e. the solution
of the second-order differential equation[

∇2
T − s2

c2
0

εr (ρ)

]
G(ρ,ρP) = −δ(ρ − ρP) (1)

that satisfies the radiation condition

lim
ρ→∞

√
ρ

[
∂ρ G(ρ,ρP) +

s

c1
G(ρ,ρP)

]
= 0. (2)

In (1) and (2), ρ and ρP are two-dimensional position vectors, ∇T is the two-dimensional
gradient operation, c0 is the speed of light in free space, c1 is the complex wave speed in D1, εr

is a complex relative permittivity and δ(ρ) is a two-dimensional delta function. Equation (1)
is valid for all ρ ∈ R

2, with εr (ρ) = ε1r for ρ ∈ D1. With the aid of the radiation condition (2)
and Green’s second identity, it can be shown directly that G satisfies the reciprocity relation
G(ρP ,ρQ) = G(ρQ,ρP) for any pair {ρP ,ρQ} in R

2.
Equation (1) can be reduced to an equivalent integral relation. We introduce a reference

medium with relative permittivity ε̄r (ρ) and the corresponding Green’s function Ḡ(ρ,ρP).
In principle ε̄r (ρ) may be chosen arbitrarily; in the present context we will assume that this
parameter only differs from ε1r inside DO . Subtracting the differential equations for G and
Ḡ, writing the contrast source as a superposition of delta functions, and using reciprocity for
Ḡ results in the contrast-type integral relation

G(ρ,ρP)− Ḡ(ρ,ρP) = − s2

c2
0

∫
DO

∫
[εr (ρ

′)− ε̄r (ρ
′)] Ḡ(ρ′,ρ)G(ρ′,ρP) dA(ρ′) (3)

which again holds for any pair {ρ,ρP} in R
2.

2.3. Distorted-wave Born iterative procedure

In the inversion, we introduce a parametrization for the unknown profile by writing the relative
permittivity as

ε̃r (ρ) = ε1r + χ̃(ρ) = ε1r +
∑
α

χ̃αψα(ρ) (4)

where {ψα(ρ)} is a finite set of known, real-valued expansion functions with support inside
the observation domain DO . The expansion parameters {χ̃α} are the fundamental unknowns
in our numerical procedure.

The integral relation (3) is used in two ways in the reconstruction of εr (ρ). In each iteration
step, we start from a previously estimated permittivity profile ε̃(n−1)

r (ρ) of the form (4). For
sources at ρP ∈ CO , we determine the fields G̃(n−1)(ρ,ρP) that would be present in DO in this
configuration. In (3), we choose εr (ρ) = ε̃(n−1)

r (ρ), ε̄r (ρ) = ε1r and ρ ∈ DO . This results in
the integral equation

G̃(n−1)(ρ,ρP) = G1(ρ,ρP)− s2

c2
0

∫
DO

∫
χ̃ (n−1)(ρ′)G1(ρ,ρ

′)G̃(n−1)(ρ′,ρP) dA(ρ′). (5)
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In (5), G1(ρ,ρ
′) = 1

2π K0(
s
c1

|ρ − ρ′|), with K0 the modified Bessel function of the second
kind of order zero, is the Green’s function of the surrounding medium.

In the numerical solution of (5), we use the space discretization described in [2]. This
discretization preserves the convolution-type structure of (5), and is second-order accurate in
the mesh size h = 2a/N , with N the number of cells in the x and y directions. The equation is
solved by the CGFFT method. The initial estimate is obtained by taking a linear combination
of previous ‘final’ solutions and determining the coefficients by minimizing the squared error
in the equality from (5) for the problem at hand. For n = 1, 2, we march on in angle, i.e.
we generate the initial estimates for the CGFFT method from the fields for the same profile
estimate for previous source positions. For n � 3, we march in contrast, i.e. we use the field
for the correct source position for previous profile estimates.

Next, we determine the ‘profile update’. The integral relation (5) for ρ = ρR and ρP = ρS

is used to obtain the distorted-wave Born approximation for the field on CO . This results in

G(ρR,ρS)− G̃(n−1)(ρR,ρS)

= − s2

c2
0

∫
DO

∫ ∑
α

[χ̃ (n)α − χ̃ (n−1)
α ]ψα(ρ) G̃(n−1)(ρ,ρR) G̃(n−1)(ρ,ρS) dA(ρ). (6)

In this equation the ‘profile update’, represented by the coefficients {χ̃ (n)α − χ̃ (n−1)
α }, is

determined by minimizing the integrated squared error in the equality sign in (6).
In our implementation, the parametrization of the contrast function χ̃(ρ) in (4) is chosen

such that this function is approximated by a piecewise bilinear expansion in −a < x < a
and −a < y < a on K 2 squares of width Mh. This means that the fields are computed on
an M times finer mesh than the corresponding profile estimates. Thus we may compute the
Green’s functions G̃(n−1)(ρ,ρP) with ρ ∈ DO and ρP ∈ CO with sufficient accuracy, without
increasing the number of unknown profile parameters.

2.4. Multiple frequencies

The formulation of the iterative procedure in section 2.3 leaves us with two fundamental
questions: will the scheme converge and what resolution can we expect upon convergence?
Both questions are discussed in detail in [11]. Whether convergence is achieved depends
critically on the quality of the distorted-wave Born approximation in the first iteration step.
A parameter study for a canonical problem indicates that the dynamic range of the Born-type
iterative procedure is determined by ω ‖εr − ε(0)r ‖, where ‖ · ‖ is the L1 norm.

The second question is: how much information can be retrieved from the linearized
equation? To obtain a feeling for this, we assume that the reference profile ε̄r (ρ) is a smooth
estimate of the actual profile εr (ρ), and that the difference between both profiles is so small
that the distorted-wave Born approximation is almost exact. Because of the linearity of (6),
it then suffices to consider the reconstruction of a ‘pixel’, i.e. a deviation localized around a
point ρ = ρO . An argument inspired by [14] and by the back-propagation algorithm from
geophysical imaging then leads to the usual concept of a point-spread function, but this function
now depends on ω and the local value ε̄r (ρO).

These results give rise to the following conclusions. Ideally, any reconstruction procedure
should be started from a homogeneous space, i.e. from ε(0)r (ρ) = ε1r . In that case, the only a
priori knowledge is the fact that the scatterer is located in DO . However, especially for large
contrasts, this imposes a restriction on the maximum value of ω. This restriction, in turn,
limits the resolution with which ε2r (ρ) is reconstructed upon convergence. To circumvent this
problem, we use multiple frequencies. The first approximation of the unknown permittivity
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profile is indeed obtained starting from ε(0)r (ρ) = ε1r . This approximation is used as a starting
value for a reconstruction at a larger value of ω. By gradually increasing the operating
frequency, we are then able to determine the required detail of the configuration, even for
large contrasts in permittivity between the cylinder and the surrounding free space.

For a complex permittivity, increasing the frequency implies a scaling of at least the
imaginary part of ε2r (ρ) for a small enough frequency ω. Usually, the assumption of a
Maxwellian model suffices. In the results presented in [11] and the present paper, our main
intention was to demonstrate ‘proof of concept’. Therefore, we avoid this discussion and
restrict ourselves to a lossless configuration. However, all programs are capable of handling
lossy media.

2.5. Regularization

Finally, the resolution analysis described above leads to the conclusion that the amount of
information that can be obtained may depend on the position ρO . In the piecewise bilinear
representation (4), we use a uniform sampling of χ̃ (ρ). This leaves us with two options for
the choice of number of subintervals K . Either we can choose K so small that the problem
is resolved for all ρ, or we can choose K so large that the available information can always
be handled. In the first case, the unknown profile is locally undersampled where the local
refractive index is large; in the second case, the profile is locally oversampled where this index
is small. In our implementation, we have chosen the latter option. The resulting ambiguity
is removed by augmenting the integrated squared error in the equality sign in (6) with the
regularization term

δ

(
K

2a ρO

)2 { K−1∑
k=1

K∑
�=0

|χ̃k−1,� − 2χ̃k,� + χ̃k+1,�|2 +
K∑

k=0

K−1∑
�=1

|χ̃k,�−1 − 2χ̃k,� + χ̃k,�+1|2
}

(7)

where χ̃k,� is the sampled susceptibility, and δ is a small parameter. The terms in (7) restrict
the variation in derivative in the x and y directions between adjacent cells. Our version of
regularization does not add new information, but merely results in an ‘adaptive’ sampling.
The normalization of the constant in (7) is chosen such that the smoothing effect remains
invariant in a multi-grid reconstruction. Finally, the regularization term in (7) involves the
total susceptibility, and not the profile update. Particularly in the presence of noise, this choice
avoids a possible dependence of the final result on the initial estimate.

3. Numerical results

3.1. General considerations

Results of the reconstruction of two-dimensional dielectric objects from experimental data are
reported in the present section. As mentioned above, we restrict ourselves to the reconstruction
of lossless dielectric cylinders. The data were provided courtesy of Institut Fresnel, Marseille,
France. The experimental setup as well as the database are described in the introduction to the
special section. Two sets are used: the first one (filename: dielTM dec8f.exp) concerns
an off-centred circular dielectric of permittivity ε2r = 3, and the second set (filename:
twodielTM 8f.exp) deals with two identical circular dielectric cylinders, both with ε2r = 3.
For the circle along which the sources and the receivers are located, we took the radius
ρO = ρS = ρR ≈ 74 cm in both cases. In the inversion algorithm we modelled the incident
field in the scattering domain G inc as an electrically polarized field generated by a line source
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Figure 2. Reconstructed relative permittivity profile of the single dielectric cylinder at f = 8 GHz
with two different values of the regularization parameter and comparison between the reconstructed
profiles and the actual one. N = 64 and K = 32. (a) δ = 10−9 for n = 1, 2 and δ = 10−10

for n � 3; (b) δ = 10−7 for n = 1, 2 and δ = 10−8 for n � 3; (c) cross section along the line
y = 2.5 cm; —— actual profile, - - - - reconstructed permittivity in (a), — · — reconstructed
permittivity in (b).

weighted by a complex number γ . The frequency-dependent weight is determined by looking
at the measured incident field when the receiving antenna lies opposite the emitting one:

G inc(ρR,ρS) = γG1(ρR,ρS), γ = 2π G inc
mes(θS = 0, θR = π)

K0(2 s
c1
ρO)

(8)

where G inc
mes is the measured incident field. The observation domain DO used for the inversion

is a large square of side size 2a = 20 cm. In terms of wavelength in the material this means that
2a ≈ 9λ at the highest frequency f = 8 GHz. All results presented in this section correspond
to the tenth iteration.

3.2. Single-frequency inversion

To illustrate the need for the multiple-frequency approach we first try to invert directly for
the single frequency f = 8 GHz. Figures 2 and 3 show the results of the inversion for the
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Figure 3. Reconstructed relative permittivity profile of two circular dielectric cylinders at f =
8 GHz with two different values of the regularization parameter. N = 64 and K = 32. (a) δ = 10−9

for n = 1, 2 and δ = 10−10 for n � 3; (b) δ = 10−7 for n = 1, 2 and δ = 10−8 for n � 3; (c) cross
section along the line y = −4.4 cm (lower cylinder): —— actual profile, - - - - reconstructed
permittivity in (a), — · — reconstructed permittivity in (b); (d) as in (c) for the upper cylinder, i.e.
cross section along the line y = 5 cm.

single and the twin cylinders, respectively. It is observed that the scheme fails to retrieve the
profiles, even when the value of the regularization parameter is increased. The regularization
has a smoothing effect on the solution and leads to an acceptable reconstruction of the shape.
However, the reconstructed permittivity does not have a physical meaning. From these results
we conclude that for f = 8 GHz the distorted-wave Born scheme does not converge to the
actual profiles if we start from ε2r (ρ) = ε1r = 1.

3.3. Using the multiple-frequency approach

We now apply the multiple-frequency approach for reconstructing the cylinders. We start with
f = 1 GHz, use the final result as the initial guess for f = 2 GHz, and repeat this procedure for
f = 4 and 8 GHz. Figures 4 and 5 present the results. In the multiple-frequency approach, the
resolution improves gradually as predicted by theory and the converged results for f = 8 GHz
are good approximations of the actual profiles.
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Figure 4. Reconstructed relative permittivity profile of the single dielectric cylinder at f = 1,
2, 4 and 8 GHz, respectively, using the multiple-frequency approach. (a) f = 1 GHz with N = 8
and K = 8; (b) f = 2 GHz with N = 16 and K = 16; (c) f = 4 GHz with N = 32 and
K = 32; (d) f = 8 GHz with N = 64 and K = 32; (e) cross section along the line y = 2.5 cm
plotted in (d): —— actual profile, — · — reconstructed profile at f = 8 GHz. In all cases the
regularization parameter is set to δ = 10−9 for n = 1, 2 and δ = 10−10 for n � 3.

-10.0 -6.7 -3.3 -0.0 3.3 6.7 10.0

-10.0

-6.7

-3.3

-0.0

3.3

6.7

10.0

0.2

0.7

1.3

1.8

2.4

2.9

3.5

-10.0 -6.7 -3.3 -0.0 3.3 6.7 10.0

-10.0

-6.7

-3.3

-0.0

3.3

6.7

10.0

0.2

0.7

1.3

1.8

2.4

2.9

3.5

-10.0 -6.7 -3.3 -0.0 3.3 6.7 10.0

-10.0

-6.7

-3.3

-0.0

3.3

6.7

10.0

0.2

0.8

1.3

1.9

2.4

3.0

3.5

-10.0 -6.7 -3.3 -0.0 3.3 6.7 10.0

-10.0

-6.7

-3.3

-0.0

3.3

6.7

10.0

0.2

0.7

1.3

1.8

2.4

2.9

3.5

-10.0 -6.7 -3.3 -0.0 3.3 6.7 10.0
Abscissa [cm]

-0.4

0.2

0.9

1.5

2.2

2.8

3.5

R
el

at
iv

e
pe

rm
itt

iv
ity

[.
]

(a) (b)

(c)

(e)

(d)



Multiple-frequency distorted-wave Born approach to 2D inverse profiling 1643

Figure 5. Reconstructed relative permittivity profile of the two identical circular dielectric
cylinders at f = 1, 2, 4 and 8 GHz, respectively, using the multiple-frequency approach. (a)
f = 1 GHz with N = 8 and K = 8; (b) f = 2 GHz with N = 16 and K = 16; (c) f = 4 GHz
with N = 32 and K = 32; (d) f = 8 GHz with N = 64 and K = 32; (e) cross section along the line
y = −4.4 cm plotted in (d): —— actual profile, — · — reconstructed profile at f = 8 GHz; (f ) as
in (e) but for the upper cylinder (y = 5 cm). In all cases the regularization parameter is set to
δ = 10−9 for n = 1, 2 and δ = 10−10 for n � 3.
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4. Conclusion

When the successive approximate forward problems can be solved by a combination of the
CGFFT method and ‘marching on in angle and/or contrast’, linearized schemes for profile
inversion like the distorted-wave Born iterative procedure are capable of reconstructing 2D
permittivity profiles from scattered-field data at a reasonable computational cost. However,
the dynamic range of such schemes is limited by the operating frequency and the quality of
the initial estimate. On the other hand, the resolution improves with increasing frequency.
This suggests the use of multiple frequencies to obtain the required resolution in a number of
steps. The theoretical justification of this idea has recently been described in detail in [11].
In the present paper, the ‘proof of the pudding’ for this idea was given by ‘eating’ real data.
The configurations at hand could not be reconstructed directly from the data for f = 8 GHz.
However, a very good reconstruction was obtained by ‘frequency hopping’ from f = 1 to 2,
4 and 8 GHz. Apart from a straightforward calibration procedure, no special care was needed
in the algorithms described in [11]. With this result, linearized schemes are, in our opinion,
a realistic alternative to the more involved, and therefore computationally more intensive,
schemes.
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