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Abstract
This paper concerns the reconstruction of the complex relative permittivity of
an inhomogeneous object from the measured scattered field. The parameter of
interest is retrieved using iterative techniques. Four methods are considered, in
which the permittivity is updated along the standard Polak–Ribière conjugate
gradient directions of a cost functional. The difference lies in the update
direction for the field, and the determination of the expansion coefficients.
In the modified gradient method, the search direction is the conjugate gradient
direction for the field, and the expansion coefficients for field and profile are
determined simultaneously. In the Born method (BM) the field is considered
as the fixed solution of the forward problem with the available estimate of the
unknown permittivity, and only the profile coefficients are determined from the
cost function. In the modified Born method, we use the same field direction as
in the BM, but determine the coefficients for field and profile simultaneously.
In the modified2 gradient method, we use both field directions, and again update
all coefficients simultaneously. Examples of the reconstruction of either metal
or dielectric cylinders from experimental data are presented and the methods
are compared for a range of frequencies.

1. Introduction

The aim of the electromagnetic inverse scattering problem is to determine properties,
(e.g. position, shape and the constitutive material) of unknown objects, from their response
(scattered field) to a known electromagnetic excitation. We restrict our study to iterative
3 To whom correspondence should be addressed.
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techniques for solving such inverse scattering problems. In these methods, starting from an
initial guess, the parameter of interest is adjusted gradually by minimizing a cost function
involving the measured scattered field data. A brief review of the literature shows two
approaches, depending on whether the field in the scattering domain is considered as fixed
(solution of the direct problem for the best available estimation of the parameter) in each
iteration step [1, 2] or as an unknown that is obtained together with the parameter by the
minimization procedure [3, 4]. We present herein one method from each category, and two
‘hybrid’ ones, which combine ideas from the first two methods. Some details on the most
advanced ‘hybrid’ method, referred to from now on as modified2 gradient method (M2GM),
can be found in [5]. In that paper, a comparison between M2GM and a method that alternatively
retrieves the boundaries and the constitutive material of homogeneous objects [6] is presented.
We herein focus on M2GM and compare the method to the standard modified gradient
method (MGM) as well as to a new Born-type iterative method (BM) and the modified Born
method (MBM). We report and compare results of reconstruction of dielectric or conducting
objects from experimental data with the aid of the iterative techniques mentioned above. We
refer the reader to a similar work [7] comparing different methods including some which are
presented in this paper, particularly the MGM.

2. Notations and statement of the problem

The geometry of the problem studied in this paper is shown in figure 1 where a two-dimensional
object of arbitrary cross-section �o is confined in a bounded domain �. The embedding
medium �b is assumed to be infinite and homogeneous, with permittivity εb = ε0εbr , and of
permeability µ = µ0 (ε0 and µ0 being the permittivity and permeability of the vacuum,
respectively). The scatterers are assumed to be inhomogeneous dielectric cylinders with
complex permittivity distribution ε(r) = ε0εr (r); the entire configuration is non-magnetic
(µ = µ0).

A right-handed Cartesian coordinate frame (O, ux , uy, uz) is defined. The origin O can
be either inside or outside the scatterer and the z-axis is parallel to the invariance axis of the
scatterer. The position vector OM can then be written as

OM = x ux + y uy + z uz = r + z uz . (1)

The sources that generate the electromagnetic excitation are assumed to be lines parallel to the
z-axis, located at (rl)1�l�L . Taking into account a time factor exp(−iωt), in the TM case the
time-harmonic incident electric field created by the lth line source is given by

Einc
l (r) = E inc

l (r)uz = P
ωµ0

4
H (1)

0 (kb |r − rl |) uz, (2)

where P is the strength of the electric source, ω the angular frequency, H (1)
0 the Hankel function

of zero order and of the first kind and kb the wavenumber in the surrounding medium.
For the inverse scattering problem we assume that the unknown object is successively

illuminated by L electromagnetic excitations and for each incident field the scattered field is
available along a contour 	 at M positions. For each excitation, the direct scattering problem
may be reformulated as two coupled contrast-source integral relations: the state or observation
equation (3) and the field or coupling equation (4)

Ed
l (r ∈ 	) = k2

0

∫
�

χ(r′) El(r
′) G(r, r′) dr′, (3)

El(r ∈ �) = E inc
l + k2

0

∫
�

χ(r′) El(r
′) G(r, r′) dr′, (4)
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Figure 1. Geometry of the problem.

where χ(r) = εr (r) − εbr denotes the permittivity contrast which vanishes outside � ⊃ �o,
G(r, r′) is the two-dimensional homogeneous free space Green function and k0 represents the
wavenumber in the vacuum. For the sake of simplicity, equations (3) and (4) are rewritten in
operator notation as

Ed
l = G	 χ El , (5)

El = E inc
l + G� χ El . (6)

3. Principles of the inversion algorithms

The inverse scattering problem consists now in finding the functionχ(r ∈ �) in the investigated
area � (test domain) so that the diffracted field associated to χ matches the measured diffracted
field fl(r ∈ 	).

3.1. Modified gradient method

The basic idea underlying the MGM [3, 9] for solving this inverse scattering problem is to
build up two sequences related to contrast and total field {χn} and {El,n}, respectively, inside
the test domain according to the following recursive relations:

El,n = El,n−1 + αl,nvl,n, (7)

χn = χn−1 + βndn, (8)

where vl,n and dn are search directions with respect to the total field El,n and to the contrast,
respectively. The choice of these search directions will be discussed in the next section. The
scalar coefficients {αl,n} and {βn} are weights that are chosen at each iteration step n such that
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they minimize the normalized cost functional Fn(χn, El,n) given by

Fn(χn, El,n) = W�

L∑
l=1

‖ h(1)
l,n ‖2

� + W	

L∑
l=1

‖ h(2)
l,n ‖2

	, (9)

where the normalizing coefficients W� and W	 are defined as

W� = 1∑L
l=1 ‖ E inc

l ‖2
�

, W	 = 1∑L
l=1 ‖ fl ‖2

	

. (10)

The subscripts � and 	 are included in the norm ‖ · ‖ and later in the inner product 〈·, ·〉 to
indicate the domain of integration. The functions h(1)

l,n and h(2)
l,n are two residual errors defined

as

h(1)
l,n = E inc

l − El,n−1 + G�χn El,n, (11)

h(2)
l,n = fl − G	χn El,n. (12)

The use of a priori information may improve the effectiveness of the inversion algorithm.
For instance in [8] a binary constraint is used to reconstruct the shape of homogeneous objects
with known constitutive parameters and in [9] non-negative a priori information is applied
to a pure imaginary contrasted object (conducting object). In [10] non-negative a priori
information is used to retrieve the shape of homogeneous objects. Here we incorporated a
priori information stating that both real and imaginary parts of the susceptibility ζ are non-
negative (εr (r) = 1 + ζ(r)). Instead of retrieving a complex function χn , two real auxiliary
functions ξn and ηn are reconstructed such that

χn = 1 + ξ 2
n + iη2

n − εbr , (13)

wherein the real and imaginary parts of the relative complex permittivity distribution are forced
to be greater than unity and non-negative, respectively (Re [εr (r)] � 1; Im [εr (r)] � 0; ∀r ∈
�). The recursive relation with respect to the complex contrast function χn (equation (8)) is
refined as

ξn = ξn−1 + βn;ξ dn;ξ , (14)

ηn = ηn−1 + βn;ηdn;η, (15)

where all quantities are real. Once the updating directions dn;ξ , dn;η and vl,n are found,
Fn is a nonlinear expression with L complex variables {αl,n;v} and two real variables {βn;ξ ,
βn;η}. The minimization of Fn is accomplished using the Polak–Ribière conjugate gradient
procedure [11].

3.1.1. Search directions. As updating directions dn;ξ and dn;η, the authors took the standard
Polak–Ribière conjugate gradient directions [9, 10]

dn;ξ = gn;ξ + γn;ξ dn−1;ξ γn;ξ = 〈gn;ξ , gn;ξ − gn−1;ξ 〉�
‖gn−1;ξ‖2

�

, (16)

dn;η = gn;η + γn;ηdn−1;η γn;η = 〈gn;η, gn;η − gn−1;η〉�
‖gn−1;η‖2

�

, (17)

where gξ and gη are the gradients of the cost functional Fn(ξ, η, El) with respect to ξ and η

respectively, evaluated at the (n − 1)th step assuming that the total field inside the test domain
does not change. These gradients are given by

gn;ξ = 2ξn−1Re

[
W�

L∑
l=1

Ēl,n−1G
†
�h(1)

l,n−1 − W	

L∑
l=1

Ēl,n−1G
†
	h(2)

l,n−1

]
, (18)

gn;η = 2ηn−1Im

[
W�

L∑
l=1

Ēl,n−1G
†
�h(1)

l,n−1 − W	

L∑
l=1

Ēl,n−1G
†
	h(2)

l,n−1

]
, (19)
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Figure 2. Reconstructed conductivity distribution of the rectangular metallic target at f =
4 GHz. (a) M2GM; (b) MGM; (c) MBM; (d) BM; (e) evolution of the cost function Fn as a
function of iteration (——, M2GM; – – –, MGM; — · —, MBM; · · · · · ·, BM). Black in the images
represents σ [S m−1] � 1. The maximum value of the reconstructed conductivity is σ = 6.8, 1.3,
1.9 and 2.2 S m−1 for M2GM, MGM, MBM and MB, respectively. Other parameters are specified
in the text.

where the overbar denotes the complex conjugate, and G†
� and G†

	 are the adjoint operators
of G� and G	 , respectively.

The search direction vl,n for the total field inside the test domain is similar to those chosen
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Figure 3. Reconstructed conductivity distribution of the rectangular metallic target at f =
16 GHz. (a) M2GM; (b) MGM; (c) MBM; (d) BM; (e) evolution of the cost function Fn as a
function of iteration (——, M2GM; – – –, MGM; — · —, MBM; · · · · · ·, BM). Black in the images
represents σ [S m−1] � 1. The maximum value of the reconstructed conductivity is σ = 5.8,
0.6, 9.7 and 15.9 S m−1 for M2GM, MGM, MBM and MB, respectively. Other parameters are
specified in the text.

for the object functions ξ and η:

vl,n = gl,n;E + γl,n;El vl,n−1 γl,n;El = 〈gl,n;El , gl,n;El − gl,n−1;El 〉�
‖gl,n−1;El ‖2

�

(20)
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Figure 4. Reconstructed conductivity distribution of the ‘U-shaped’ metallic cylinder at
f = 4 GHz. (a) M2GM; (b) MGM; (c) MBM; (d) BM; (e) cost function Fn as a function of
iteration (——, M2GM; – – –, MGM; — · —, MBM; · · · · · ·, BM). Black in the images represents
σ [S m−1] � 1. The maximum value of the reconstructed conductivity is σ = 2, 0.8, 4.3 and
1.4 S m−1 for M2GM, MGM, MBM and BM, respectively. Other parameters are specified in the
text.

where gl,n;El is the gradient of the cost functional Fn(ξ, η, El) with respect to the field El ,
evaluated at the (n − 1)th step and assuming that ξ and η do not change:

gl,n;El = W�[χ̄n−1G
†
�h(1)

l,n−1 − h(1)
l,n−1] − W	χ̄lG

†
	h(2)

l,n−1. (21)
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Figure 5. Reconstructed conductivity distribution of the ‘U-shaped’ metallic cylinder at
f = 16 GHz. (a) M2GM; (b) MGM; (c) MBM; (d) BM; (e) cost function Fn as a function of
iteration (——, M2GM; – – –, MGM; — · —, MBM; · · · · · ·, BM). Black in the images represents
σ [S m−1] � 1. The maximum value of the reconstructed conductivity is σ = 2.2, 0.3, 1.3 and
2.5 S m−1 for M2GM, MGM, MBM and BM, respectively. Other parameters are specified in the
text.

3.2. Born and modified Born methods

In the Born method, for each iteration step n, the field Ẽl−1,n inside the test domain � is given
by

Ẽl,n−1 = [1 − G� χn−1]−1 E inc
l , (22)
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Figure 6. Reconstructed real part of the complex permittivity distribution of the circular dielectric
cylinders at f = 4 GHz. (a) M2GM; (b) MGM; (c) MBM; (d) BM; (e) cost function Fn as a
function of iteration (——, M2GM; – – –, MGM; — · —, MBM; · · · · · ·, BM). Black in the images
represents εr [·] � 3.5. Other parameters are specified in the text.

i.e. the field that would be present in domain � for contrast χn−1. This field is computed from
the field equation (4) by generalizing the fast solution described in [12] to marching in angle
and/or contrast. χn is improved along the conjugate gradient directions as specified in (16)
and (17). The value of the coefficients {γn;ξ } and {γn;η} is obtained by minimizing the cost
function Fn(χn) defined in equation (9). In this computation, the field is fixed at Ẽl,n−1.
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Figure 7. Comparison between the reconstructed profile and
the actual one along the diameter plotted in dashed curve in
the images of figure 6: ——, actual profile; — · —, M2GM;
· · · · · ·, MGM; – – –, MBM; — — —, MB.

In the MBM, we update the field according to

El,n = El,n−1 + αl,n;wwl,n; wl,n = Ẽl,n−1 − El,n−1, (23)

where the scalar coefficients {αl,n;w} are determined jointly with the coefficients {γn;ξ } and
{γn;η} by minimizing the cost function Fn(χn, αl,n;w). In this manner, we preserve the search
direction from the BM, but with a guaranteed improvement of the value of the cost function.

3.3. Modified 2 gradient method

Since a fast forward solver is available for the present configuration [12], we modified the
MGM by adding a second updating direction wl,n (defined in equation (23)) for the field El,n

such that the recursive relation (7) takes the following form:

El,n = El,n−1 + αl,n;vvl,n + αl,n;wwl,n. (24)

The cost function Fn is now a nonlinear expression with 2L complex variables (αl,n;v , αl,n;w)
and two real variables (βn;ξ , βn;η). The minimization of Fn is again accomplished using the
Polak–Ribière conjugate gradient method [11].

Note that if αl,n;v = 0 and αl,n;w = 1 then El,n = Ẽl,n−1. In this case the scheme is
equivalent to the BM. If αl,n;v = 0 and αl,n;w is arbitrary, then El,n = El,n−1 +αl,n;vwl,n , which
amounts to the MBM. Choosing (αl,n;v �= 0 and αl,n;w = 0) results in El,n = El,n−1 +αl,n;vvl,n ,
which provides us with the standard MGM. Therefore, the algorithm presented above can be
considered as a hybrid one combining MGM and BM. This identification also makes it easy
to switch between methods.

3.4. Initial estimates

Given the a priori information stating that the object functions ξ and η are positive, the initial
guess (ξ0 = η0 = 0) must be rejected since it involves vanishing gradients (g1;ξ = g1;η = 0).
This is caused by the circumstance that the transformation (13) introduces a local maximum
of the cost function. We therefore need another initial guess. This can be provided by the
backpropagation method. Details and additional references on the backpropagation method
can be found in [5].
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Figure 8. Reconstructed real part of the complex permittivity distribution of the circular dielectric
cylinders at f = 8 GHz. (a) M2GM; (b) MGM; (c) MBM; (d) BM; (e) cost function Fn as a
function of iteration (——, M2GM; – – –, MGM; — · —, MBM; · · · · · ·, BM). Black in the images
represents εr [·] � 3.5. Other parameters are specified in the text.

4. Results of inversion from experimental data

All the data were provided courtesy of Institut Fresnel, Marseille, France. The parameters
of the experimental setup needed for inversion as well as the database are described in detail
in the introduction to the special section. To sum it up briefly, the multiple-frequency data
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Figure 9. Comparison between the reconstructed profile and
the actual one along the diameter plotted in dashed curve in
the images of figure 8: ——, actual profile; — · —, M2GM;
· · · · · ·, MGM; – – –, MBM; — — —, MB.

correspond to L = 36 different source positions evenly distributed along a circle with radius
∼76 cm. The M = 49 receivers were also evenly distributed along a circle with radius ∼72 cm
with, however, an exclusion area of 120◦ angular sector. This exclusion area is inherent to the
mechanical encumbrance of the experimental setup.

The incident field in � used in the inversion (electrically polarized field generated by a
line source) was calibrated for each frequency by looking at the measured incident field when
the receiving antenna is in front of the emitting one. All the initial guesses are obtained by
backpropagation technique and all the reported final results correspond to the 16th iteration.
This stopping criterion was motivated firstly by our wish to compare the different methods at
the same stage of iteration, and secondly by the need to carry out enough iterations to obtain
a significant result. Furthermore, we did not notice any marked changes in the results when
continuing iterating. The test domain used in the reconstruction for intermediate and high
frequencies was deduced from the result of the inversion at the lowest available frequency,
i.e. a large square domain of size (20 × 20) cm2 centred at the origin and discretized for
numerical purposes into 25 × 25 square cells. For dielectric targets only the real part of
relative permittivity is plotted, while for metallic objects only the conductivity is presented.
However, we did not use this a priori information in the computation. Yet, in all cases we
were able to determine from the low-frequency result if the target under test was dielectric or
a highly conducting cylinder.

4.1. Metallic cylinders

Two sets from the database were used to validate our inversion algorithms on metallic targets
and we compare the four methods (M2GM, MGM, MBM and BM) at three frequencies: lowest
and highest available frequencies plus one intermediate. The first (file name: rectTM dece.exp)
and second (file name: uTM shaped.exp) set correspond to the off-centred rectangular cylinder
and the ‘U-shaped’ cylinder, respectively.

4.1.1. Rectangular off-centred cylinder. For all methods, from the result at the low frequency
f = 2 GHz we found that the object falls entirely in a square domain sized (5 × 5) cm2 and
centred at y = 4.3 cm. The maximum value of the reconstructed conductivity is σ = 8.5,
0.5, 4.6 and 22 S m−1 for M2GM, MGM, MBM and BM, respectively. This led to refining
the investigating domain � for the inversion at higher frequencies, i.e. f = 4 and 16 GHz,
respectively. Figures 2 and 3 present the results for M2GM, MGM, MBM and BM as well as
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Figure 10. Reconstructed real part of the complex permittivity distribution of two identical
circular dielectric cylinders at f = 1 GHz. (a) M2GM; (b) MGM; (c) MBM; (d) BM; (e) cost
function Fn as a function of iteration (——, M2GM; – – –, MGM; — · —, MBM; · · · · · ·, BM).
The dashed box in the images represents the new test domain � used in the inversion at higher
frequencies (figures 11 and 13). Other parameters are specified in the text.

the behaviour of the cost functions as a function of the iteration number. Notice that the best
result was obtained with M2GM and that for f = 4 GHz the cost function does not decrease
monotonically for BM, while it does for MBM.



1684 K Belkebir and A G Tijhuis

-8.5 -5.7 -2.8 -0.0 2.8 5.7 8.5

-8.5

-5.7

-2.8

-0.0

2.8

5.7

8.5

0.9

1.3

1.8

2.2

2.6

3.1

3.5

-8.5 -5.7 -2.8 -0.0 2.8 5.7 8.5

-8.5

-5.7

-2.8

-0.0

2.8

5.7

8.5

0.9

1.3

1.8

2.2

2.6

3.1

3.5

-8.5 -5.7 -2.8 -0.0 2.8 5.7 8.5

-8.5

-5.7

-2.8

-0.0

2.8

5.7

8.5

0.9

1.3

1.8

2.2

2.6

3.1

3.5

-8.5 -5.7 -2.8 -0.0 2.8 5.7 8.5

-8.5

-5.7

-2.8

-0.0

2.8

5.7

8.5

0.9

1.3

1.8

2.2

2.6

3.1

3.5

1 4 6 9 11 14 16
Iteration step

0.04

0.14

0.25

0.35

0.46

0.56

0.67

Fn

(a) (b)

(c)

(e)

(d)

Figure 11. Reconstructed real part of the relative complex permittivity distribution of two identical
circular dielectric cylinders at f = 4 GHz. (a) M2GM; (b) MGM; (c) MBM; (d) MB; (e) cost
function Fn as a function of iteration (——, M2GM; – – –, MGM; — · —, MBM; · · · · · ·, BM).
Other parameters are specified in the text.

4.1.2. ‘U-shaped’ cylinder. We proceeded the same way as for the rectangular cylinder,
i.e. the test domain used in the inversion at higher frequencies ( f = 4 and 16 GHz) was
deduced from the result at the lowest available frequency f = 2 GHz. The maximum value
of the reconstructed conductivity at f = 2 GHz is σ = 2, 0.6, 0.9 and 1.7 S m−1 for M2GM,
MGM, MBM and BM, respectively. This new investigating domain � consists now in a centred
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Figure 12. Comparison between the reconstructed profile and the actual one along the diameter
plotted in dashed curve in the images of figure 11. (a) Lower cylinder (——, actual profile; — ·
—, M2GM; · · · · · ·, MGM; – – –, MBM; — — —, MB); (b) as in (a) but for the upper cylinder.

rectangle sized (14 × 7) cm2 discretized into 40 × 20 square cells. Figures 4 and 5 present the
final results for all methods at f = 4 and 16 GHz, respectively. The results obtained by MGM
are deceiving, especially at high frequencies. The artifacts in figures 5 (a), (c) and (d) may
be associated with an interior mode of the cavity, since they are separated with respect to the
y-axis by approximately m λ/2 with λ being the wavelength in the vacuum and m an integer
number.

4.2. Dielectric cylinders

In order to validate our inversion algorithms on dielectric-type targets we used two sets from
the database and similarly to metal-type targets we compared the four methods at three
frequencies: lowest and highest available frequencies plus one intermediate. The first (file
name: dielTM dec8f.exp) and second (file name: twodielTM 8f.exp) sets correspond to the
single off-centred circular dielectric and the two identical circular dielectrics, respectively.

4.2.1. Single off-centred dielectric cylinder. Figures 6–9 present the results of the inversion
at f = 4 and 8 GHz, respectively. The test domain � was deduced from the result at the
lowest frequency f = 1 GHz. It consists in a square of length 5 cm centred at y = 2.8 cm
and discretized into 25 × 25 cells. From figure 6 one can observe that all methods succeeded
in localizing the object, but the BM poorly reconstructed both shape and profile (see figure 7)
with a chaotic behaviour of the cost function. This is even worse at the highest frequency (see
figures 8 and 9).

5. Conclusion

In this paper, we have compared and tested on real data for a wide range of frequencies
linearized (BM and MBM), nonlinearized (MGM) and ‘hybrid’ (M2GM) methods for solving
a two-dimensional inverse scattering problem. The results show that M2GM combines the
robustness of the MGM with the accuracy (when it converges) of the Born-type methods.
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Figure 13. Reconstructed real part of the relative complex permittivity distribution of two identical
circular dielectric cylinders at f = 8 GHz. (a) M2GM; (b) MGM; (c) MBM; (d) MB; (e) cost
function Fn as a function of iteration (——, M2GM; – – –, MGM; — · —, MBM; · · · · · ·, BM).
Other parameters are specified in the text.

Further, it is remarkable that the MBM converges faster than the MGM for all examples. None
of the four presented algorithms uses a regularization procedure.
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Figure 14. Comparison between the reconstructed profile and the actual one along the diameter
plotted in dashed curve in the images of figure 13. (a) Lower cylinder (——, actual profile; — ·
—, M2GM; · · · · · ·, MGM; – – –, MBM; — — —, MB); (b) as in (a) but for the upper cylinder.

5.1. Two identical dielectric cylinders

Figures 10–14 present the results of the inversion at f = 1, 4 and 8 GHz, respectively. The
test domain � used in the reconstruction presented in figures 11 and 13 consists in a centred
rectangle of size (8.5×17) cm2 and discretized into 20×40 square cells. From figure 10 none
of the methods succeeded in detecting the two cylinders and all methods led to more or less
the same result. Tuning the frequency from 1 to 4 GHz improved the resolution as one would
expect (see figures 11 and 12). For the highest frequency (figure 13), all methods failed with
a relative success for M2GM in detecting the two cylinders and retrieving their boundaries
(figure 13).
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