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1. Abstract

The present paper considers the application of the Newton-
Kantorovich and modified-gradient methods to the Ipswich data.
The object is assumed to be an inhomogeneous lossy dielectric cyl-
inder of arbitrary cross section. Both inverse-scattering methods are
based on electric-field integral representations. The Newton-
Kantorovich technique builds up the solution by solving succes-
sively the forward problem and a linear inverse problem. This
method needs regularization, and we use either the identity operator
or a gradient operator for regularization. The modified-gradient
method is iterative, as is the Newton algorithm, but does not
involve a linearization at each step of the nonlinear inverse problem.
Results of inversions with both methods, on two known impene-
trable targets, are discussed.

2. Introduction

In this paper, the object was supposed to be an infinite cylinder of
unknown cross section. The complex permittivity profile of the
object was determined, using a Newton-Kantorovich (NK) method
[1], and a Tikhonov regularization, with standard identity operator
or gradient operator, was applied. As applications will concern
impenetrable objects, a priori information was used with the
modified-gradient (MG) method [2, 3], and one tried to determine
the shape and the location of the object by means of a non-negative
characteristic function. The Polak-Ribiére conjugate-gradient
direction was used in the MG method. No additional regularization

procedure was used in the MG method, although recent work
indicates that the addition of the total variation as a regularizer is
very beneficial [4]. For both methods, the initial guesses were
determined with a back-propagation scheme [5, 6] using the adjoint
operator, which provided an estimate of the induced current.
Reconstructions on two impenetrable objects (a circular cylinder
and a strip), with MG and NK methods, were examined, from
experimental data.

3. Problem statement

The cylindrical object, characterized by a relative complex
permittivity &,(r), is contained in a bounded region, D, and illumi-

nated successively by different incident TM plane waves
e;, I=1,....L. The receivers are located in the domain, S, in the

far-field region. For each excitation /, the forward-scattering prob-
lem may be formulated as the following domain integral equation

e =e+GPye. m
The integral representation for the scattered field is
sca _ S
e =G” xe, )

with complex contrast function #(r)=£,(r)-1. G” and G5 are
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Figure 1a. The circular metallic cylinder: reconstruction of the
real (left) and imaginary (right) part of the complex contrast,
¥ using the NK method. The initial guess, computed using

back propagation, is shown.
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Figure 1b. The circular metallic cylinder: reconstruction of the
real (left) and imaginary (right) part of the complex contrast,
¥, using the NK method. The reconstruction with identify
regularization (iteration 100) is shown.
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Figure 1c. The circular metallic cylinder: reconstruction of the
real (left) and imaginary (right) part of the complex contrast,
¥, using the NK method. The reconstruction with gradient
regularization (iteration 7) is shown.

two integral operators mapping I (D) (square integrable functions

in D) into itself, and [*(D) into I2(S), respectively, involving the

. two-dimensional free-space Green’s function, G(r)= %'Hg])(ko\rbv

The direct problem is solved using the moment method (MoM),
with pulse basis functions and point matching, which transforms the
integral equations into matrix equations. The rectangular image (or
test domain) containing the region D is discretized into N elemen-
tary square cells.

4. Newton-Kantorovich method

The Newton-Kantorovich method builds up an iterative solu-
tion of the inverse problem by solving successively the direct prob-
lem and a local linear inverse problem [1]. At each iteration, an
estimate of the complex contrast function, y, is given by

An = Xn-1 +5Z > (3)

where &y is an update correction. This is obtained by solving, in
the least-squares sense, the linearized forward problem

ASy = [ —e*. C))

The matrix A4 is a linearized version of the nonlinear operator relat-
ing the scattered field to the contrast function, y, and f represents

the measured data vector [1]. The scattered-field vector, e*“, is
calculated through the forward-problem solver with a previous
estimate of y . Unfortunately, the problem of finding the solution of
Equation (6) is ill-posed, and needs regularization. For this, we use
a Tikhonov regularization, and minimize the functional
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Figure 2a. The metallic strip: reconstruction of the imaginary
part of the complex contrast, y, using the NK method. The
initial guess, computed using back propagation, is shown.
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Figure 2b. The metallic strip: reconstruction of the imaginary
part of the complex contrast, y, using the NK method. The
reconstruction (iteration 19) is shown.
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R is the regularization matrix, and « is a regularization parameter
chosen according to the general cross-validation method [7]. Two
regularization operators have been used: an identity operator and a
gradient operator. The gradient operator is based first on the
assumption that the object is composed of homogeneous zones of
arbitrary geometry, separated by border-like discontinuities, and
second on the definition of neighborhood for each elementary cell
of the image.

5. Modified-gradient method

With the modified-gradient method, we use a priori informa-
tion about the nature of the object to be reconstructed, i.e. a high
conductivity object ( ¥ = xnax ). We are interested in finding the
location and the shape of the object, using the object characteristic
function, ¢ (a function taken to be equal to 1 inside the object, and

zero outside) [6, 8]. Instead of reconstructing ¢, we propose to
reconstruct an auxiliary function, &, such that ¢ = £2 . The defini-
tion of the function & is relaxed to take any real value. Using the
operator notation, the inverse problem is that of finding ¢ for given
J; measurements of the scattered field, or solving the equations

Ji= GSZma\ézelv I=1..,L, (6)
with domain integral equation
i, D 2
e =e+G" yoaée, =1, L. O]
The modified-gradient method is iterative, as is the Newton-
Kantorovich algorithm, but the approach is very different. The

iterative procedure minimizes two residual errors at each iteration,
with the cost functional [5, 6]

L 2 L 2
ZHeI - GDlmaxézelHD Z Hfl - Gslmaxézelus
F= =1 =1 )

+ ®
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Figure 3a. The circular metallic cylinder: reconstruction of the
characteristic function, ¢, using the MG method. The initial

guess, computed using back propagation, is shown.
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Figure 3b. The circular metallic cylinder: reconstruction of the
characteristic function, ¢, using the MG method. The recon-
struction (iteration 32) is shown.
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Figure 4a. The metallic strip: reconstruction of the character-
istic function ¢ using the MG method. The initial guess, com-

puted using back propagation, is shown.

Figure 4. The metallic strip: reconstruction of the characteris-
tic function ¢ using the MG method. The reconstruction

(iteration 32) is shown.
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 are the norms associated with the inner product on

2
I and

Lz(D) and Lz(S)‘ respectively. Sequences are constructed with
the recurrence relations

€in=Cu 1T Vg, %)

én = gn—l +i8ndn > ¢! O)

where the two functions v;,, and d, are the update directions for
functions {e,’,,} and {£,}, respectively. The complex numbers
@, and the real parameter f3, are weights that are chosen at each
step so as to minimize the cost functional, F,. Once the v;, and

d, update directions are found, F;, is but a nonlinear expression in

L complex variables, «;,, and one real variable, £, . The minimi-

FRIM
zation of F, is accomplished using a Polak-Ribi¢re conjugate-gra-
dient algorithm. The v;,, and d,, update directions are chosen as in

[6].

6. Reconstructions and numerical results

In this section, we present the results on two cylindrical
impenetrable objects: a circular cylinder, of 1.59 cm diameter, and a
strip, 12 cm x 4 cm. The data were collected for eight incident
angles, of {0, 5, 10, 15, 20, 45, 60, 90} degrees, over the observa-
tion sector 0< @ <360°, with a sample spacing of A6=10° (36
measurement stations). Taking into account the symmetry, the
scattered field was composed of a set of 28 illuminations. For both
iterative methods, we did not start from a zero estimate for the
object or contrast function. The initial guesses were computed
using a back-propagation method [5, 6]. With the NK method, the
process was stopped when Im(s,)>20, which corresponds to a

conductivity of 11.1 $/m, and an attenuation of -56 dB/cm at 10
GHz. With the MG method, y . =27, which corresponds to a

conductivity of 1.1 S/m, and an attenuation of -14 dB/cm. For the

circular object, we used a test domain of 5.5 x 55 cm?
(~ 181 x184¢), divided into 11 x 11 subsquares. For the strip

object, the test domain was divided into 63 x 7 subsquares of 2 x 2
mm2. For the circular object, and with the NK reconstruction
method, we compare the results using either the identity operator or
the gradient operator. For the strip, the reconstruction was effected
with the NK method, using only the gradient operator.

7. Conclusion

Good results were obtained on the two impenetrable objects
with both methods. With the NK method, the convergence was
faster with the gradient operator than with the identity operator.
The NK method with gradient regularization reconstructed larger
contrast (¥ yax =20) than the MG method, but the MG method

gave a good shape description with y .. =2i. The number of

iterations used for the NK method was less than for the MG
method. For the circular cylinder, 17 iterations were used with the
NK method, and 32 iterations were used with the MG method. For
the strip, 19 iterations and 350 iterations were used, respectively.
Nevertheless, one can note that the MG method is faster: for the
circular cylinder, 30 sec with the MG method instead of 2 min with
NK, and for the strip, 4 min 30 sec instead of 20 sec, on a DEC
Station 5000/240.
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