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Theoretical and Computational Aspects of 2-D
Inverse Profiling
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Abstract—We discuss two techniques for solving two-dimen- been applied to a range of problems by several authors. A re-
sional (2-D) inverse scattering problems by parameterizing the view of this work can be found in [14]. The second important
scattering configuration, and determining the optimum value ,oh1em s the issue afonvergenceFor linearized methods,
of the parameters by minimizing a cost function involving the .
known scattered-field data. The computation of the fields in each qoqvergence IS not alwa)_/s ggaranteed. Methods baseq o_n the op-
estimated configuration is considered as an auxiliary problem. To timization of a cost function inherently converge to a minimum,
improve the efficiency of these computations, the CGFFT iterative but this may be a local one. One approach that may be effective
scheme is combined with a special extrapolation procedure that jn avoiding such minima is the quadratic approach suggested in
is valid for problems with a varying physical parameter such as [15], [16].

frequency, angle of incidence, or contrast. Further, we analyze . . . N
the dynamic range and the resolution of linearized schemes. To The work described in the present paper continues the “clas-

obtain an acceptable resolution for an object with a large contrast Sical” approach, where the field computation is treated as an
with respect to the surrounding medium, multiple-frequency auxiliary problem that can be solved efficiently. Results were
information is used. Finally, the availability of a fast-forward  reported earlier at a number of scientific meetings [17]-[20],
solver was an incentive to consider nonlinear optimization. In 1, 5 combination of circumstances has thus far prevented us
particular, we use a quasi-Newton algorithm at only twice the f iting i | M hile. th hh
computational cost of the distorted-wave Born iterative scheme. rom writing journal papers. vieanwniie, . e resear_c as pro-
_ o ~ ceeded, so that we are now able to describe a consistent theoret-
Index Terms—Electromagnetic scattering inverse problems, di- je4| analysis and numerical implementation of 2-D inverse pro-
electric bodies, imaging, integral equations, iterative methods, per- fil bl Theth tical vsis i t lete but
mittivity measurement. iling problems. The theoretical analysis is not complete but pro-
vides enough understanding to devise a systematic and efficient
numerical implementation. In our opinion, the understanding
. INTRODUCTION that follows from this analysis distinguishes our approach from

LGORITHMS for solving inverse-profiling problems arethef “trial and errpr” on which the development of inverse-scat-
A traditionally expressed as optimization problems in whici¢"ing schemes is often based.
the unknown configuration is parameterized and the value ofVVe first analyze the dynamic range and the resolution of lin-
the configuration parameters is determined by minimizing sor@fized schemes from a theoretical point of view. For the dy-
cost function involving the scattered field. This is realized by if@mMic range, a parameter study is carried out for the special
erative procedures based on a linearization around a given @&s€ of homogeneous circular cylinders. For the resolution, we
timate as well as by nonlinear optimization. Applications tgSSume that the linearized data equation is exact. Using the lin-
one-dimensional (1-D) inverse-scattering problems have be@&{ity, we specialize in the reconstruction of a localized “pixel”
around for almost three decades. Literature reviews can be fodiat may be considered as a small contrast with respect to a
in [1] and [2]. Since 1990, several authors have described géﬁnooth reference medium. The results lead to the conclusion
eralizations of the 1-D approach to two-dimensional (2-D) coiat configurations with a large contrast with respect to the sur-
figurations [4]-[11]. rounding medium can be reconstructed with an acceptable res-
The main bottleneck solving multidimensional inverse-sca@lution by using multiple-frequency information. This conclu-
tering problems is thaepeated “exact” field computations- Sion was also reached by other authors [22], [23]. A second re-
quire an excessive amount of computation time. This has |ggit from the theoretical analysis is the parameterization of the
to the emergence of modified-gradient methods [12], [13], #Pknown susceptibility profile. We approximate this profile by
which successive approximations of the configuration and tRécewise-linear interpolation and remove ambiguities due to

excited fields are obtained simultaneously. These methods hiffe@! oversampling by adding a regularization term to the cost
function. This term restricts the linear variation over adjacent
cells and is thus consistent with the parameterization.
Manuscript received July 4, 2000; revised March 8, 2001. This work was sup-A second fe_ature of our |mplemente_1t|0_n IS th_e fast solution
ported in part by a postdoctoral fund from the Eindhoven University of Tec! e unaerlying rorwar roblem, whnich Is acnieve com-
di b d | fund f he Eindh iversity of Tectof th derlying f d probl hich h d by
nology, Eindhoven, The Netherlands. _ _bining the CGFFT method with a special extrapolation pro-
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pared with gradient-type methods. The update step in linearizec
inversion now typically takes at least as much time as the field
computation. This suggests that it should be possible to replace
that step by a line search in a nonlinear optimization proce-
dure based entirely on repeated field computations. A discus-
sion of an implementation based on the quasi-Newton method
concludes this paper.

We illustrate our approach by a few representative numerical R
results. For tutorial purposes, we restrict ourselves in these ex-
amples to a lossless dielectric object. This allows us to avoid the ! Do
discussion of the frequency dependence of a complex permit-
tivity. However, all algorithms presented in this paper have been
tested successfully for lossy objects and/or lossy surrounding
media as well.

E1p

Il. FORMULATION OF THE PROBLEM

In this section, we describe the configuration. Subsequently,
some basic relations are given that are needed throughout the

text. Finally, we formulate the inverse-scattering problem as an . o . .
o . . . ig. 1. The dielectric cylinder, part of the observation contour and the various
optimization problem for a parameterized configuration. domains mentioned in the text. The regiby is the region outsidéD.

A. The Configuration Both theorems are derived in Appendix A. Combining these the-

We consider a 2-D inhomogeneous, isotropic dielectrarems leads to the conclusion that the scattering behavior of
cylinder in a homogeneous surrounding medium. As shovtime interior ofd D, is completely characterized by the scattered
in Fig. 1, the interior of the cylinder is represented’as the field atp = pp caused by a line source at= pg, with pp
boundary a®’D, and the exterior a®, . For the permittivity, we andpg being arbitrary points 08Ds. Hence, no new informa-
haves = £3(p) in D, and= = £, in Dy, while the permeability tion can be obtained by exciting the object with other sources in
w = po in Dy U Dy, Bothes(p) ande; may assume complex p > po and detecting the scattered field in the same domain.
values. In the direct-scattering problem, both the shape andrhe second choice f@D, is a straight line aty = yo > a.
the constitution of the cylinder are completely known. In thEor this contour, similar conclusions can be drawn with respect
inverse-scattering problem, we assume that the cylindertdsobservation iry > . The difference between both choices
enclosed in a square domain of width centered around the is observed by considering which plane waves are excited and
z-axis. The configuration is excited by an electrically polarizedietected. A single plane wave can be written as
time-harmonic line source that is located on an observation
contourdDe. The electric field is detected by receivers on the E(z, y) = A exp(—jksx — jkyy) 1)
same contour. The observation domédly is a region ofRR?2
bounded byiDy,. A time factor ofexp(st) with s = 3+ jwis Wwith k; = k1 cos(¢r) andky, = kqsin(¢y), With k1 = w/e1.
assumed implicitly in all fields and currents mentioned in thigor excitation and detection on a circle, we have < ¢ < =
paper. for both the incident and the scattered field. Since these plane

To avoid “inverse crimes,” the boundary information is onlyvaves allow a complete representation of any source-free field
used in generating the scattered-field data for the exact profile the surrounding medium, we refer to this choice as the case
In the inversion, we only use the information that the object &f complete dataWhendD,; is a straight line, the incident field
located inDg. SinceD» € Dy, we will therefore formulate all contains only “downgoing” waves with;, < 0. Therefore, we
integral equations for a contrast1,, so that these equationsrefer to this choice as the casepzrtial data
also describe the approximate direct-scattering problems thatn the description of the theoretical results and of the numer-
are solved in each iteration of the inversion. ical implementation, we concentrate on the case of complete

We consider two choices for the conto@D.. The first data. However, as demonstrated by the numerical results, most
choice is a circle witlp = po > a+/2 centered around the of the analysis can be generalized to the case of partial data.
z-axis. For this contour, we have the following equivalence
theorems. B. Basic Relations

1) Any incident .field in the regiorp < po can be repre-  Since the forward problem is linear, it suffices to consider
sented as being generated by a surface curredtZa®, Green'’s function, i.e., the solution of the second-order differen-
embedded in a homogeneous dielectric with the propeyal equation

ties of the surrounding medium.
2) Any scattered field in the regign> po can be expressed

2
2 8 _ _
in terms of the electric field 08D . {VT a2 57‘(/’)} Glp, pp) = —6(p = pp) )
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that satisfies the radiation condition in a parameterized configuration. In the actual implementation,
s which will be discussed in Section V, we augment the cost func-

lim /p |8p G(p, pp) + — Glp, pp)| =0. (3) tion (7) by a suitably chosen regularization term to compensate

pee “ for any possible oversampling in (6). Thus, we have written the

In (2) and (3),p and p> are 2-D position vectorsy; is the problem as an optimization problem for the paramefgis},

2-D gradient operation, is the speed of light in free spacg, While the determination of the fields in a parameterized con-

is the complex wave speed in tfiy, <, is a complex relative figuration may be envisaged as an auxiliary computation in an

permittivity andé(p) is a 2-D delta function. Equation (2) is"“inner loop.”

valid for all p € R?, with £,.(p) = e1,. for p € D;.

With the aid of the radiation condition (3) and Green’ssecond  Ill. L INEARIZED SCHEME: METHOD OF SOLUTION
identity, it can be shown directly théi satisfies the reciprocity The problem formulated in Section Il is inherently nonlinear,

relation: since the field inside the observation domain is determined
_ by the unknown permittivity profile. One way to handle this
G(pp: = G(pg- 4 . P ) L
(or- pq) (P pr) @) problem is to linearize the equation pertaining to the known
for any pair{pp, pg} in R*. scattered field data around the best available estimate. This is

Equation (2) can be reduced to an equival@iggral rela- known as the distorted-wave Born approximation. By using
tion. We introduce a reference medium with relative permithis approximation repeatedly in an iterative procedure, we are
tivity 2,.(p) and the corresponding Green’s functiGip, pp,). able to reconstruct objects with a larger contrast with respect
In principlez,.(p) may be chosen arbitrarily; in the present conto the surrounding medium than would be possible with the
text we will assume that this parameter only differs frejp  conventional Born approximation. Both ideas are described in
insideDo. Subtracting the differential equations f6randG,  this section.
writing the contrast source as a superposition of delta functions,
and using the reciprocity relation (4) fé¥ results in the con- A. Distorted-Wave Born Approximation

trast-type integral relation As a first step toward formulating our method of solution, we
— choose&,.(p) in (5) as an estimate ef.(p). For a field generated
Glp; pp) = Glp. (pr) by a source ap = p and detected by a receiverat= py, we
then have

G(p, (
= —Z—2 // [er(6) —&-(0")] G(p', p) G(P', pp) dA(P)
0 Do 5) G(pRv Ps) - a(/’Ra Ps)

which again holds for any paifp, p,} in R%. Equation (5) is
the cornerstone of our approach of reconstructis(@).

- _‘Z_g / / [e-(p) — &-(0)] G(p, PR)G(p; ps) dA(p).
’ (8)

) ) _ Thedata equatior(8) is a nonlinear equation for the unknown
Any computational reconstruction procedure can only yieldermittivity profile ,.(p), sinceG also depends on this profile.

ex(p) with limited resolution. In Section IV, it will be argued 1o facilitate its solution, we introducelmearizationby taking
that, for iterative procedures, this resolution depends on the @Re counterpart of (8) fop € Do andpg € 9Do

erating frequencyw and the local average value ef. This
means that we have to introduce a parameterization for the ug— e s
known profile. For now, it suffices to write the relative permit- (P Ps) =G(p.ps) = =
tivity as

C. Parameterization and Cost Function

2

| 0 — 2 (D) G, p)GLP , ps)dA(D ).
Ep) =€ +X(0) =c1r + Y Xatalp) ©6) ZO/[ () &P G, p)G(P, ps)dA(p')

9
where{#.(p)} is a finite set of known, real-valued expansion ©
functions with support inside the observation domBin. The Equation (9) is one possible form ofiald equationand is still
symboly was chosen since, for an object in free spage~= 1 exact. Substituting this expression in (8) results in
and the sum in the right-hand side of (6) is a dielectric suscepti-

bility. The parametergy., } are obtained by minimizing a cost G(Pr: £s) — G(pg; ps)
function of the form 52 . o
. o =5 [0 -5 0Bl pGle. p5) dale)
J ({xa}) = / dpr / dos ‘G(P}b ps) — G(pg, Ps) 0 Do
(7 + AG(pg; ps)- (10)

whereG(pg, ps) is the known field at receiver positign= p,  The first term on the right-hand side is the so-calldid-
forasource gb = p5, andG(pg, ps)isthe corresponding field torted-wave Born approximatioof the left-hand side. The
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second term is the error in the approximation, also referredliothis equation the “profile update,” represented by the coef-

as theBorn error. This error can be written as ficients {Xff) — gt }, is determined by minimizing a cost
gt B function of the form (7). This results in a subsequent estimate

AG(pr, ps) = //[s,,(p) —&(p)|Glp, pr) of the unknown profil&,(,")(p), which allows us to carry out
“ bays the next iteration step. Formulated in this manner, the distorted-

wave-Born iterative procedure is also identical to the so-called

. Newton—Kantorovitch method. For the discrete form of the al-
//[Er(/’ ) —&r(p)] gorithm, this was first shown in [9]. An analysis in operator form
Do can be found in [10].

-G, p)Gp. ps) dA(p) » dA(p). IV. LINEARIZED SCHEME: FUNDAMENTAL ASPECTS

The formulation of the iterative procedure in Section 1lI-B
(11) leaves us with two fundamental questions. Will the scheme con-
verge and what resolution can we expect upon convergence?
From the expression in (11), it is immediately observed thgbr the dielectric slab, these questions were addressed in [1],
AG(pg, ps) = O([e, — &]?) asle, — &| — 0. Therefore, [2] with the aid of WKB theory. For the present configuration,
neglecting the term\G(pg, ps) in (10) is indeed a lineariza- we have only partial answers. Nevertheless, these answers are
tion of the data equation. The quality of this linearization wilheeded to justify the numerical implementation discussed in
be discussed in Section IV-A. Section V. In the present section, we discuss both these ques-
tions.
B. Iterative Procedure

With the theory given above, we are now in a position to foA. Dynamic Range

mulate our version of the distorted-wave-Born iterative proce- The question of convergence depends critically on the quality
dure. In each iteration step, we start from a previously estimatefi the distorted-wave Born approximation in the first iteration
parameterized permittivity profik&" " (p) of the form (6). For  step. To be more specific, the “profile update” in each iteration
sources app € 9Do, we determine the field§ "~ (p, pp)  stepis determined by matching the linear terrfjtip) — . (p)]
that would be present i, in this configuration. in (10) to the difference&¥(pg, ps) — G(pg, ps). Therefore,

To this end, we return to the integral relation (5). In this relahe issue is how well that difference is actually approximated.

tion, we choose,.(p) = £ (p), £.(p) = 1 andp € Do.  To quantify this in a single number, we introduce the root mean

This results in the integral equation square error (RMSE)
G (p, pp) ERR
= Gi(p, pp) —% // X" () Gilp, o) /W dr /W dps |G(pr, ps) — GPog, ps)I*
Do = |~ & —
GOV, pp) dAG). (12) /_7T dor /_7T dps |Glpr. ps) — Glpr, Ps)|2
In (12), X~V (p) is the susceptibility as introduced in (6), and x 100% (15)

(1 is Green'’s function of the surrounding medium _ _ o
whereG®(pp, ps) is the distorted-wave-Born approximation
1 s that is obtained by neglectinyG( ) in (10). This choice
Gi(p, o)== Ko —I(o—¢ 13 Or: 05 ;
. £) or 0 <c1 lo—p |> (13) of error has the advantage that it indicates the relative accuracy
. . even whers = jw and/ore,.(p) — ,.(p) are small.
where i, denotes the modified Bessel function of the SeconaIAs mentioned above, a general estimate of the behavior of the

kind of order zero. The advantage of choosing this integral ©0%or defined in (15) is hard to give. Therefore, we restrict our-

tion is that b.Oth th_e incident field and the Green's function 'Belves to a parameter study for a canonical problem where this
(12) are available in closed form.

Next the intearal relation (12) for dp. — ©rorcan be evaluated in closed form. In Figs. 2-5, we present
ext, we use Ine Integral retation ( ) PI= pp ANAPPE = yagts for the case where the actual and the estimated configu-
ps to obtain the field ordD4. For this field, we use the dis-

torted-wave Born approximation (10) to derive the linear e\réltions are concentric, homogeneous, lossless circular cylinders
wayv pproxi : v : 12&fith relative permittivityes,. andgs,. and radiusz anda, re-

equation spectively. In both configurations, the surrounding medium is
G(pg, — GV (p,, free space. The relevant theory is summarized in Appendix B.
(Pr pSQ) (or: ps) Here, we concentrate on the results.
__5 -(n) _ w(nfl)} In Figs. 2-5, we consider the influence of three properties of
of // 2{; [Xa X' | Yalo) our setup.
Do

R R ¢ Operating frequencyn Fig. 2, we consider the Born error
-GV (p, pr) GV (p, ps) dA(p).  (14) as a function of the normalized frequeney./co (with
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andf = 100, 200, and 300 MHz. Fig. 5 indicates that we
should not choose the observation contour too close to the
scattering obstacle. A possible explanation is that, in that
region, the evanescent field plays an important role. For
observation further away from the cylinder, the quality of

s = jw) for two cylinders witha = @ = 1 m and

po = 1.5 m. The exact configuration has a relative per-
mittivity of 5, = 5.0, and the estimated permittivities
areg,,. = 2.0, 5.5, and 6.0, respectively. All three curves
show a linear increase until the approximation becomes o e X
meaningless. Further, the slope increases with increasing 1€ Born approximation is almostindependent of the value

|€2, — £2.|. The oscillations may be associated with reso- of PO- _ _ .
nances of the exact and the estimated configuration. Summarizing, the dynamic range of the Born-type iterative pro-

. ) . . 0 .
Contrast.In Fig. 3, we consider the influence of the relacedure appears to be determined.bie, — |, where]|-| is

tive permittivity of the estimated configuration. The cylinthe Ly norm.
ders have: = @ = 1 m, the actual permittivity i85, = )
2, the observation is at, = 3 m, and the lines are for B- Resolution

w = 27 f with f = 30, 100, 200, and 300 MHz. Similarly, The second question is how much information can be re-
Fig. 4 shows results of varyingfor 5, = 2.0 and other trieved from the linearized equation. To keep the discussion
parameters as in Fig. 4. From these figures, we concluttactable, we again restrict ourselves to lossless media. We as-
that the Born error increases linearly with increasing cosume that the reference profiég(p) is a smooth estimate of the
trast, with a slope determined by the operating frequen@ctual profiles,.(p), and that the difference between both pro-
Observationln Fig. 5, we consider the influence of thefiles is so small that the distorted-wave-Born approximation is
choice ofpp fora = @ = 1 m, ey, = 6,2, = 5.5, almost exact. Further, we take= jw.
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In that case, we can invoke the following argument, which hap to k.,... = 2w+/2.(po)/co. Since the field7(py, ps) con-
been inspired by [27] and by the back-propagation algorithm &sns this information, a minimization of the cost function (7)
applied in geophysical imaging. The data equation (10) is nawmill attempt to generate a reconstructed profile with the cor-
linearine,.(p)—2,(p). Therefore, we may consider the situatiomect FT up to this limit. This leads to the usual concept of a
where point-spread functionbut this function now depends on the

local valueg,.(p;).

e:-(p) = &:(p) + p(p) (16) As anillustration, we consider in Fig. 6 the reconstruction of a
circularly symmetric configuration with a small contrast with re-
specttoahomogeneouscylinderwithradius1 minfree space.
We consider the reconstruction of a radially inhomogeneous per-

wherep(p) is a “pixel” centered around a poipt = pg, in
Do. We assume that(p) has a finite suppori, that is small
enough to treat,.(p) as a constant, i.ez,.(p) = .(p,) when

h ! mittivity
p € Ap. Inthat case, the unit-amplitude plane wave
. 0.003 0<p<a/4
E(p, ¢i) = €exp <—JC—L: gr(po) (p- u1)> 17) B 0.002 a/4<p<al2,
=20 0001 ap<p<iay D
is a valid solution of the second-order differential equation (2) 0 3a/d<p<a

for the reference medium in,. The angle)’ may be viewed
upon as an angle of incidence in the equivalent problem with the ) )
pixel in a homogeneous environment. from the scattered field at 64 equally spaced source and receiver

Now the solutionE(p, ¢') has a unique continuation in anyP0Sitions alpo = 1.1 m. The direct problem was solved by
source-free region enclosinyo, and in particular ifDo [28]. numerically integrating two coupled first-order differential
It may not be easy to compute this continuation for a gener%quations for the coefficients in a Fourier representation of the

configuration, but it does exist. As argued in Appendix A, thifaorm (B.3) [29,]' The images were gengrated by “Si”Q (8:14)
means that fornv/2 < p < po this solution can be written in and (B.15) to identify the Fourier coefficients of the weighting

the form of a Fourier representation _function w(p, ¢, interpolating in cylindrical coordinates
in wavenumber space to obtain sampled values of (20) on a
_ i Cartesian grid, and applying a 2-D FFT to obtain the permittivity
E(p, ¢") contrast.
s s Fig. 6(a) shows the reconstruction fof. = 1, i.e., a suscepti-
= > [Amlm <C— p) +BnKm <— p)} exp(jme).  bility profile in free space fof =200 MHz. In Fig. 6(b) and (d),
1 C1 : . B
m=—00 we improve the resolution by raising the frequency to 500 MHz
(18) and1 GHz, respectively. In Fig. 6(c) and (e), we keep the fre-
quency fixed and raise the permittivity of the reference medium
Using the equivalence principle formulated in (A.5), we cammside the cylinder t@,,. = 6.25 ands,,. = 25, respectively. The
then expres®(p, ¢') as a linear combination of Green’s func+esults confirm that the parametey/z.,. /¢, determines the re-
tions construction. Finally, it should be remarked that reconstructions
i of this quality could only be obtained for this special configura-

ra i N7 tion because an exact theory was available.
Blo. ) = [ ulos. 6)Glp p)dos.  (19) " use an ex y was avai

-7

oo

C. Multiple Frequencies

In (19),¢* may assume any value in the intervat < ¢" < 7. The results presented in the previous two subsections lead
Introducing an observation angi¢, we can therefore invoke {5 the following conclusions. Ideally, any reconstruction pro-
(10) to obtain cedure should be started from a homogeneous space, i.e., from
. - s,(,o)(p) = 1. Thus, the onlya priori knowledge is the fact
/ dr dpsw(dr, —¢°) w(ds, ¢i) that the scat?er_er is Iocatedﬂb_. However, espe<_:|ally for large
—x —x contrasts, this imposes a restriction on the maximum value of
o w2 This restriction, in turn, limits the resolution with whieh,.(p)
- [Gpr: ps) — Glpr, ps)] = = // p(p) is reconstructed upon convergence.
“ Ao Therefore, we use multiple frequencies. The first approxi-

mation of the unknown permittivity profile is indeed obtained
. exp <g = (00) (p- [’ — ui])) dAlp)  (20) startingfrorTE,(,O) (p) = 1. Whenthe restrigtionsonimpoged
co by this choice are too severe, we use this approximation as a
starting value for a reconstruction at a larger valuesoBy
where the right-hand side may be recognized as a spatial Fougeadually increasing the operating frequency, we are then able
transform (FT) ofp(p). Following the same lines as in the clasto determine the required detail of the configuration, even for
sical Ewald theory for ahomogeneous background medium tHange contrasts in permittivity between the cylinder and the sur-
leads to the conclusion that this spatial FT can be determineadinding free space. Of course, increasing the frequency requires
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Fig. 6. Reconstruction of a small permittivity contrast as specified in (21) ferl m,po = 1.1 m and other parameters as indicated.

scaling the imaginary part @f.(p). In practice, the assumption V. LINEARIZED SCHEMES NUMERICAL |MPLEMENTATION
of aMaxwellian model generally leads to acceptable results.

. ) : Now that we have gained some insight into the capabilities of
The use of multiple-frequency information as proposed aboye . : .
L . : : e distorted-wave iterative Born procedure, we need to address
implicitly relies on the assumption that the spatial £{k) of

(p) decreases in magnitude with increasingThis assump- its numerical implementation. We follow the same order as in
X\P gnt ) g . P~ the actual computation. In Section V-A, we discuss the determi-
tion holds for most practical profiles, but may be violated in _.. ) ) . . .
; . ! nation of the fields in the actual and estimated configurations.
pathological cases. Finally, the multiple-frequency Iorocedulrrﬁ'\Section V-B, we discuss the translation of the theoretical re-
also supplies the answer to the one remaining question fr%u ts into the n'umerical determination of the profile update. In
the resolution analysis of Section IV-B, i.e., the choice of th§ . . . T
. P ection V-C, our approach is validated for a representative con-
smooth estimatg(p). At each new frequency, the final result for

the previous frequency may be considered as that estimate. ﬂ%ratmn.
result is then used to choose the smallest spacing with which

we expect to reconstruct the unknown permittivity somewheft Forward Problem

in Do. Applying the reconstruction algorithm will then gradu- The feasibility of iterative schemes for the solution of in-

ally produce more detailed knowledge of the unknown profileverse-scattering problems based on optimizing a parameterized
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configuration depends strongly on the availability of a fast praterative procedure. Subsequently, we use the fields for the exact
cedure for determining the fields in the estimated geometry source position in the previous two estimated configurations to
successive iteration steps. For the present configuration, sgemerate the initial estimate for the field in the configuration at
a scheme is available from [25]. Starting point is the contragtand. This is referred to as “marching on in source position” and

source integral equation “marching on in profile,” respectively.
As mentioned in Section II-A, the boundary information is
G(p, pp) = G1(p, pp) only used in generating the scattered-field data for the exact
profile. Further, scattered fields were used for a homogeneous
- // ) Gile, PGP, pp)dA(P)  (Appendix B) or radially inhomogeneous [29] circular cylinder,

which is positioned eccentrically inside the observation contour.
(22) In both cases “inverse crimes” are avoided inherently.

whereG1(p, p’) is given by (13) and(p) = €,-(p) — 1. The B. Update Step

region—a < x < a, —a <y < a, inwhichD; is embedded, is  The second part of each step in the distorted-wave Born ap-
subdivided intaV x IV square subregions with mesh sfze= ,5ximation is the determination of the “profile update.” In our

2a/N. The grid points of the square mesh are locatggal, = implementation, the parameterization of the contrast function
Tn Uz + YWy, With 2 = —a +nhforn = 0,1,.... N, 55y in (6) is chosen such that this function is approximated by
andy,, = —a+mhform =0,1,..., N.Solving (22) NoW g piecewise bilinear expansioniu < = < aand—a < y < a

amounts to determining an approximation@fp, p,) at the
grid pointsp = p,, ,,,.
The space discretization of the integral in the right-hand sidgr(P) = 1 + Z Z Xk, e M — zpar) My — yenr)  (25)
of (22) has two special aspects. First, the logarithmically sin- k=0 £=0
gular behavior of<o(sR/c;) asR = |p—p'| | 0is substracted with x,, andy,, being the same discrete coordinates as in the
by breaking up the integral ovér, into space discretization of the forward problem add= N/M,
Thus, the mesh size in the field computatioddstimes smaller

// {Ko <ﬁ> +In <§> } x(0) G, pp) dA(p) than the one in the profile updat®(¢) is a triangular expansion
C1 a

K K

function
1—|€|/Mh, for|¢| < Mh,
/ [u(5) )66 omaaw). @ M) = {0, otherwise. (20)
The approximation (25) is substltuted |n the Born-approximated

Second, the discretization of the integrals in (23) is based on &guation (14), and the coeﬁicien{s(k ) ;(;"é 1>} are deter-

proximating suitable parts of the integrands by piecewise-lineained by minimizing the squared error (7).
interpolation, and integrating analytically over polygons deter- The final issue is the choice of the number of subintervals
mined by the boundary dP, and the grid. This results in a dis- K in the representation of the contrast function in (25). This

cretized integral equation of the form choice follows from the resolution analysis of Section 1V-B.
This analysis has revealed that the resolution depends on the
Gln, m] =Gi(p, > Ps) local average of the refractive indgxz,.(p). Therefore, if we
22 NN want to obtain maximum resolution where this index is large,
s Z Z K[n—n|, |m—nm|] the representation (25) will be oversampled where this index
- 2ndd : : P :
0 /=0 m/'=0 is smaller. This ambiguity is removed by augmenting the cost

[, w1 G, m] (24) function in (7) with theregularizationterm

K-1 K
wherex[n’, m’] is a sampled, filtered version gf(p). In (24), s < ) Z Z Kkt 6 — 2%kt + Xha1, )’
the convolution-type structure of the continuous (22) has been \ 2apo 1 =0

preserved. This makes this equation suitable for the application

K K-1
of the conjugate-gradient-FFT method. In addition, it is second- - _ o - 2
order accurate in the mesh size + kzzo ;:; (X o1 = 2Kk 0+ X, e42)” ¢ -
The initial estimate for this procedure is obtained by taking 27)

a linear combination of previous “final” solutions and deter-

mining the coefficients by minimizing the squared error for thin (27),6 is a small parameter. The terms in (27) restrict the vari-
problem at hand. This idea was first suggested as “marchingation in derivative in the:- andy-directions between adjacent
in frequency” for the computation of transient fields in [24] andells. The factor of K /2a p)? ensures that the relative impor-
[25]. In [26], a more detailed explanation is given, as well as setance of the regularization term becomes independeht afid

eral examples of other physical parameters for which the effegs. The factor of;* can be envisaged as changing the integrals
tiveness of this extrapolation has been demonstrated. In therit{7) into path integrals over the observation contour and com-
erative procedure formulated in Section I1I-B, we extrapolate jpensates for the decreas&¥fpr, ps) with increasing. The
source position for the first two steps of the distorted-wave-Bofactor of (K /2a)? makes (27) approximately proportional to a
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double integral oveD,, of the squares afZx(p) andd; x(p). 14
Thus, the smoothing effect of (27) remains invariant in a multi- 12
grid reconstruction. The regularization term (27) pertains to the
total susceptibility and not to the profile update. Particularly, in
the presence of noise, this choice avoids a possible dependen Z
of the final result on the initial estimate.

Including (27) with a large value of is an alternative to
using multiple-frequency information for obtaining the “trend” -
of x(p), which can then be used as an initial estimate for re-
constructing the available “detail.” Finally, it should be men-
tioned that the minimum of the combined cost function is again
searched with the aid of the conjugate-gradient method.

C. Examples

A large number of numerical experiments were carried out tc
validate the theory and the algorithms presented in the previou
sections. As an illustration, we present in Fig. 7 results for the 1.4
Osterreich profile, which was first discussed at a PIERS meeting 2
in Austria [20] and has since been studied by a number of group
inEurope (seee.g.,[21]). The configuration consists of alarge cir *
cular cylinder of radius 0.6 m with a hole of radius 0.3 m, flanked
by two small circular cylinders of radius 0.2 m. The surrounding .
mediumwas free space and the relative permittivity inside theob o NS
jectwass,,. =2,i.e.,x =1.Asmentionedintheintroduction,we -o2
consideralossless configurationto avoid the discussion of dispe
sion effects. The scattered field was computed \With= 64 for
64 source and receiver positions on an observation contour wit
radiuspo = 3 m. Fig. 7a shows the discretized susceptibility for i
the forward field computations. Fig. 7(b) shows the reconstruc-
tion for f = 300 MHz with§ = 108 for the first five iterations, (b): f =300MHz
ands = 10~? for subsequent steps, starting frorfp) = 0.
Fig. 7(c) shows the reconstruction fér= 500 MHz withé =
1072, starting from the reconstruction fgr= 300 MHz. An at-
tempttoreconstructthis profiledirectly ffr—500 MHz, starting 12
from x(p) = 0, was unsuccessful. 14

Similar results were also obtained for larger contrasts. Re os
constructing such configurations does require smaller frequenc °*
steps. Space limitations prevent us from including the results
Instead, we show in Fig. 8 results for reconstructing the sam °’z\
configuration as in Fig. 7 from data on a line. To include the ef- 02
fect that the smaller cylinders may be shaded by the larger one +~
the configuration has been turned upside down. The field com
putations were carried out fd¥ = 64, and we had 64 receivers
on a line of width 32 m ayy = 3 m for an object in a square
with ¢ = 1 m. In both cases, the regularization parameter wa:

§ = 1073 in the first five iteration steps, anfl= 10-S in the (c): f =500MHz
remaining ones. Although in particular the lateral resolution is )

. 7. Reconstructions of the Osterreich profile as specified in the text. (a)
poorer than for the case of complete data, the features of retized susceptibility for forward problem withi = 64; (b) result after
scattering object can still be recognized very well. The resulight iterations forf = 300 MHz andK = 32 of the distorted-wave Born
in Fig. 8 give an indication of how well an object in a half Spacgcheme starting from(p) = 0, and (c) result after two iterations for 500 MHz,
can be reconstructed from measurements above that half spiggnd from the estimate shown in (b).

//
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methods depends on the occurrence of local minima, which in
turn seems to be determined by the size of the region in param-
The forward field computation as outlined in Section V-A igter space for which the cost function behaves as a quadratic
so efficient that, on average, updating the profile as describedimction. This is exactly the region where the linearization intro-
Section V-B in each iteration step takes at least as much compluced in Section IlI-A is a good approximation. Further, upon
tation time as computing the fields. The dynamic range of sucbnvergence, any nonlinear optimization scheme reduces to a

VI. NONLINEAR OPTIMIZATION
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Fig. 8. Reconstructions of the inverted Osterreich profile from data on a line. (Top) Result after 20 iteratjpbrs 3090 MHz starting fromx(p) = 0. (Bottom)
Result after 13 iterations for 500 MHz, starting from the resulf at 300 MHz.

linearized scheme, since higher-order terms in the Taylor section for a given estimate of the configuratieg(p) of the
ries expansion of the cost function become negligible. Thengarameterized form specified in (6). Singdp) is also of the
fore, the stability and resolution of nonlinear schemes can sfitirm given in (6), we may rewrite the distorted-wave Born ap-
be assessed from the validity and the resolution of the linearizeximation ofG aboutz,. as
equation. This gives us all the elements for replacing the update

step by a line search in a nonlinear optimization procedure. In

th_e pre_sent cont_ext, we can only give a general description. De- Glpr, ps) =Glpg, ps)
tails will be published elsewhere.

|0:>
ow

?

A. Gradient of Cost Function / Ya(p)G(p, pr)G(p, ps) dA(p)

The first issue to be resolved in almost any nonlinear opti-
mization scheme is the evaluation of the steepest-descent di- + O ([5( — 7]2) . (28)
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Substituting this result in (7) and interchanging the order of the improve convergence. When both schemes converge, the

integration then results in results are comparable. Nonlinear optimization is more stable
with respect to noise and regularization only seems to be
J{xa}) =J{x. ) necessary in limiting cases. A possible explanation is that the

guasi-Newton method repeatedly searches for the direction

+ Z Re | (Xa — Ya)/ Ve (p)T(p) dA(p) in {x. }-space, for which the cost function locally shows the
, strongest variation, while the distorted-wave-Born iterative

Po procedure attempts to computes a fully detailed update of the
+O(x = xI°) (29) vector{y,} in each iteration step.
Fig. 9 shows an illustration of these effects. In this figure, we
where the functio’(p) is theprofile gradient again attempt to reconstruct the Osterreich profile, starting from
- N the results at 300 MHz for the same algorithms, but with an op-
I'(p) = _2_*3 / dér / dbs erating frequency of = 700 MHz. Compared with Fig. 7, the
% J-= —x vertical scale was adjusted to display also the profile in Fig. 9(a),
_ . — — which shows the diverging result of five iteration steps with
{[G(ps’ pr) = Glps; pr)] Glp: pR)G(p, ”5)} 10~® and five steps witl§ = 10-°. In Fig. 9(b), the Born-type

(30) scheme was carried out fér= 10~¢, andé = 10~". In both
cases, the results are unstable. Fig. 9(c) and (d) show results for
wherex means complex conjugation. Since our forward alg@ight iterations with the quasi-Newton scheme without regular-
rithm is capable of computing(p, p,) for p € 9D at the ization, and for two iterations with = 1011,
cost of solving a few forward-scattering problems, the evalua-
tion of I'(p) is very efficient.
Breaking up the parametefs, into their real and imaginary VII. CONCLUSIONS
parts according t&, = X, — 7X and using the limit defini-

tion of derivative then gives the following expressions for the !N this paper, we have analyzed linear and nonlinear iterative
gradient ofJ () procedures for determining 2-D permittivity profiles in a ho-

mogeneous environment. Compared with related research, our
K] B work has two main points of attraction. First, the entire numer-
o J({xa}) = Re// balp)L(p) dA(P),  (B1) jcalimplementation is based on a theoretical description, albeit

Do an incomplete one. The theoretical analysis has led to ideas like

and 5 using multiple-frequency data and making a consistent choice
Sy for the parameterization of the unknown profile and the regu-
IxX Txad) = Im/ Valp)L(p) dA(P). (32) larization term in the cost function. Second, the combination of

a second-order accurate space discretization that preserves the

Expressions similar to (31) and (32) can also be found in [8]. Agpnvolution struc_ture of the conti_nuous integr_al equation with
independent verification of these expressions was obtainedB§ CGFFT algorithm and a special extrapolation procedure al-
differentiating./({¥«}), and using the field equation (22) andoWs an extremely efficient computation of the fields in the suc-
the reciprocity relation (4) to derive an expression(@fdx..) cessively estimated configurations. After the first few field com-
G(p, ps). For completeness, it should be mentioned that tfpitations, each new forward problem is solved in a few itera-

gradient of the regularization term (27) is obtained directly ifions of the classical CGFFT procedure. Itis this efficiency that
terms of the same real and imaginary parts. makes reconstruction schemes based on “exact” field computa-

tions feasible again, even compared with schemes of the modi-
B. Numerical Implementation fied-gradient type. In view of space limitations, we have not ad-
. S . dressed the reconstruction of objects in more complex environ-
In our no_nlmear optimization, we used the quas"NeWtORnents. However, an embedding scheme has already been imple-
method, - with _the Broyden—l_:Ietcher—GoIdfarb—Shanno flented that translates the scattering operator for a homogeneous
BFGS formulauon of the I-_|essmn [30]_' The_llne—search alg nvironment to a counterpart for a more practical environment.
rithm consist of a bracketing phase, in which an acceptable
search interval is supposed to be found, and a sectioning phase,
in which this interval is divid_ed into small_e_r brr_:lckets._ln the APPENDIX A
forwgrd scheme, we march in source position in the first two EQUIVALENCE THEOREMS
iterations of each line search. Subsequently, we use the feature
that the parameter vectdx,, } is modified in a single direction  In the text, we have twice used the feature that the total field
to “march on in search direction.” The resulting computatioim D and the scattered field i may be regarded as being
times are typically about twice as long as those of the linearizgdnerated by an equivalent surface source distributiopiag.
scheme. In this appendix, we discuss this property in more detail. We re-
Compared with linearized schemes, the quasi-Newtatrict ourselves to the case of complete data. For partial data, the
method has a slightly larger dynamic range. Multiple-freanalysis can be generalized by using a spatial FT with respect

guency information or overregularization can still be use thez-coordinate.
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Reconstructions gt = 700 MHz of the Osterreich profile starting from the result displayed in Fig. 7(b).

For p € Do, any incident field generated by sourcesip

tivity of the configuration is equal tey,.. In that region, we can assumes the form

write the counterpart of (2) for a surface currentdi, as

92 + %ap o —% 8(p—po) (A1)

wherew(¢) is an arbitrary weighting function, anig, ¢} are

cylindrical coordinates. Expandinki(p) andw(¢) in terms of

an angular Fourier series of the form

E(p)= > em(p)exp(jime),
Z Wy, exp(jme) (A.2)
then results in
em(p) = 52 I <%> Km <Sp>> UKo <%>
27 c1 c1 C1
(A.3)

wherel,,, and K,,, are modified Bessel functions of ordet,

and where. = min{p, po} andp~ = max{p, po}.In (A.3),

(A.4)

Z AmIm< )eXp(JW/))

m=—0occ

Comparing (A.3) and (A.4) directly leads to the identification
Wy, = 27 A/ K (spo/c1). For thetotal fieldin Do, we then

have

with G(p, ps) defined by (2) and (3). For thecattered fieldn
Do, we may write

E(p) = w(ps) G(p, ps) dos (A.5)

oo

Y exp(ime)

m=—0ocG

Cfn(po)
K, <8&)
C1
where the Fourier coefficients:?, (o)} are directly available

from the scattered field o8D,. With these results, we have
arrived at the desired equivalence theorems.

E*(p) = Knm (—p) (A6)
C1

APPENDIX B
HOMOGENEOUS LOSSLESSCIRCULAR CYLINDER

For parameter studies in the investigation of theamic

the coefficients{v,, } represent the scattered field, which conrange and for numerical confirmation of theesolution anal-

tains the information on the geometry insithg.

ysis we used analytical expressions for a homogeneous,
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circular cylinder, embedded in a homogeneous dielectric. With radiusa and relative permittivityg,,. for 0 < p < @. We

this appendix, the relevant theory is summarized. are interested in evaluating the approximate field
. _ 82 '3 T
A. Direct Problem GB(pg, ps) =G(pr, ps) — = / pdp / de
. . . . 0 —7
As a first step, we choose the line-source excitation of a ho- 0 - o
mogeneous, dielectric cylinder with radiusand relative per- -ler(p) —&-(p)] G(p, pr) G(p, ps) (B.7)

mittivity «»,., embedded in a homogeneous dielectric with rel@\?herecb = max{a, @}. The integral ovet on the right-hand
tive permittivity e1,.. For this equation, the second-order differgjge can he evaluated by using the orthogonality of the functions

ential equation (2) simplifies to {exp(jme)}:
, 1 1 ., s2 T _
B+ o0t 2% o en(p)| Glos pr) G(p. pr)G(p, ps) d¢
1 oo
=——2968(p— 6(p— B.1 1 _ .
po 20— po) (¢ = or) B = > Bl po)eplimpn — ds)  (B9)
where meTee
‘ whereg,,,(p, po) is the angular Fourier coefficient introduced
en(p) = {52” oro<p<a, (8.2) in(B.3), generalized to the reference configuration. This means
g1, fora < p< . that we can write
- . . - 1 oo .
Using separau;)n ofo\:arlables, we obtain GBlpp, ps) = o m;m exp(jmlor — ds]) 62 (po, po)
Glp, pp) = 5 > exp(imlp— ¢r)) gm(p, po) (B3) (B.9)
(AR — with
. 32 as
with 9m(Po; PO) =Tm(po; pO) = = / pdp
0 YO
gm(p, PO)
< >
Im <?> Kom <c—1> e-(p) — 2-(p) is a piecewise constant function. Therefore, the
integral overp can be evaluated in closed form by breaking up
= +pm I <$p—o> K, <ﬁ> fora < p < oo the integration interval and using
C1 C1
2F2(v2)dz = L [22F2(v2) + Frne1(72) Frnga (72
am K. <S’£> I <%> for0<p<a / Az de = 3 [#Fn(2) + 102) Frny1(07)
( o (B.11)

(B.4) which holds for any linear combinatidf,,(vz) = A L,,(vz)+
B (-1)"K,,(vz). With the aid of Parseval's theorem, we then

wherep. = min{p, po} andp~. = max{p, po}. The con- arrive at

stants{p,., ¢..} follow by applying the boundary conditions

at the edge of the cylinder, i.e., enforcing the continuity of / dér / dops |G(pR’ ps) — GPpg, ps)
gm(p, po) andd,g..(p, po) acrosp = a. We arrive at —n —n

sa sa sa sa sa sa — B 2
(D) En(Z)n(2) - 5 s sl i
_ C1 C1 (&1 Co Me— o0
> mﬂ<ﬂ>lm<ﬂ>+ﬂ Km<ﬂ>]m+l<ﬂ> With this result and a similar expression f6(pg, ps) —
“a “a €2 €2 “a C2 G(pr, ps), we are able to compute the normalized Born error

(B.5) as specified in Section IV-A.

| 2

3

and .
1 C. Plane Wave Synthesis
= sa\, (s sa . (sa), sa\’ Third, we consider the possibility of synthesizing a local
m+l m T, Aml o ) Am plane wave inside a scattering object. Inside the cylinder, a
unit-amplitude plane wave propagating in the directidircan

(B.6) be written as
i s i
B. Born Approximation E(p, ¢") = exp <_g p-u )
Second, we consider the distorted-wave-Born approximation 00 <
as formulated in Section llI-A. For thectualconfiguration, we = Z exp (jm[p — ¢']) (-1)™ I, <_ p) )
consider the homogeneous cylinder specified in Appendix B-A. m=—00 €2

For theestimatectonfiguration, we consider a similar cylinder (B.13)
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The idea is to represent this plane wave ok p < a as a
weighted combination of Green’s functions of the form

(12]

o ‘ [13]
[ wtés =)o ps) s, )
Zm;OmeQme <cil po>Im <c$_2 p) exp(jm[¢p — (/)Z]) [15]
(B.14) 16

where an angular Fourier series representation of the form (A.2)7]
and the separation-of-variables solution (B.4) were used. The
convolution form can be chosen because of the circular sym-
metry of the problem. Comparing (B.13) and (B.14) directly[18]
leads to the identification

[19]

(~)m

B .
dm Krn <_ PO)
1

A similar result was also used in [27].

Wy =

(B.15)
[20]

[21]
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