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Theoretical and Computational Aspects of 2-D
Inverse Profiling

Anton G. Tijhuis, Member, IEEE, Kamal Belkebir, Amélie C. S. Litman, and Bastiaan P. de Hon

Abstract—We discuss two techniques for solving two-dimen-
sional (2-D) inverse scattering problems by parameterizing the
scattering configuration, and determining the optimum value
of the parameters by minimizing a cost function involving the
known scattered-field data. The computation of the fields in each
estimated configuration is considered as an auxiliary problem. To
improve the efficiency of these computations, the CGFFT iterative
scheme is combined with a special extrapolation procedure that
is valid for problems with a varying physical parameter such as
frequency, angle of incidence, or contrast. Further, we analyze
the dynamic range and the resolution of linearized schemes. To
obtain an acceptable resolution for an object with a large contrast
with respect to the surrounding medium, multiple-frequency
information is used. Finally, the availability of a fast-forward
solver was an incentive to consider nonlinear optimization. In
particular, we use a quasi-Newton algorithm at only twice the
computational cost of the distorted-wave Born iterative scheme.

Index Terms—Electromagnetic scattering inverse problems, di-
electric bodies, imaging, integral equations, iterative methods, per-
mittivity measurement.

I. INTRODUCTION

A LGORITHMS for solving inverse-profiling problems are
traditionally expressed as optimization problems in which

the unknown configuration is parameterized and the value of
the configuration parameters is determined by minimizing some
cost function involving the scattered field. This is realized by it-
erative procedures based on a linearization around a given es-
timate as well as by nonlinear optimization. Applications to
one-dimensional (1-D) inverse-scattering problems have been
around for almost three decades. Literature reviews can be found
in [1] and [2]. Since 1990, several authors have described gen-
eralizations of the 1-D approach to two-dimensional (2-D) con-
figurations [4]–[11].

The main bottleneck solving multidimensional inverse-scat-
tering problems is thatrepeated “exact” field computationsre-
quire an excessive amount of computation time. This has led
to the emergence of modified-gradient methods [12], [13], in
which successive approximations of the configuration and the
excited fields are obtained simultaneously. These methods have
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been applied to a range of problems by several authors. A re-
view of this work can be found in [14]. The second important
problem is the issue ofconvergence. For linearized methods,
convergence is not always guaranteed. Methods based on the op-
timization of a cost function inherently converge to a minimum,
but this may be a local one. One approach that may be effective
in avoiding such minima is the quadratic approach suggested in
[15], [16].

The work described in the present paper continues the “clas-
sical” approach, where the field computation is treated as an
auxiliary problem that can be solved efficiently. Results were
reported earlier at a number of scientific meetings [17]–[20],
but a combination of circumstances has thus far prevented us
from writing journal papers. Meanwhile, the research has pro-
ceeded, so that we are now able to describe a consistent theoret-
ical analysis and numerical implementation of 2-D inverse pro-
filing problems. The theoretical analysis is not complete but pro-
vides enough understanding to devise a systematic and efficient
numerical implementation. In our opinion, the understanding
that follows from this analysis distinguishes our approach from
the “trial and error” on which the development of inverse-scat-
tering schemes is often based.

We first analyze the dynamic range and the resolution of lin-
earized schemes from a theoretical point of view. For the dy-
namic range, a parameter study is carried out for the special
case of homogeneous circular cylinders. For the resolution, we
assume that the linearized data equation is exact. Using the lin-
earity, we specialize in the reconstruction of a localized “pixel”
that may be considered as a small contrast with respect to a
smooth reference medium. The results lead to the conclusion
that configurations with a large contrast with respect to the sur-
rounding medium can be reconstructed with an acceptable res-
olution by using multiple-frequency information. This conclu-
sion was also reached by other authors [22], [23]. A second re-
sult from the theoretical analysis is the parameterization of the
unknown susceptibility profile. We approximate this profile by
piecewise-linear interpolation and remove ambiguities due to
local oversampling by adding a regularization term to the cost
function. This term restricts the linear variation over adjacent
cells and is thus consistent with the parameterization.

A second feature of our implementation is the fast solution
of the underlying forward problem, which is achieved by com-
bining the CGFFT method with a special extrapolation pro-
cedure. This method is capable of solving a discretized field
equation for a varying physical parameter with a numerical ef-
fort equivalent to completely solving a few forward problems
[24]–[26]. It is this efficiency that has made inversion methods
based on exact field computations feasible again, even com-
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pared with gradient-type methods. The update step in linearized
inversion now typically takes at least as much time as the field
computation. This suggests that it should be possible to replace
that step by a line search in a nonlinear optimization proce-
dure based entirely on repeated field computations. A discus-
sion of an implementation based on the quasi-Newton method
concludes this paper.

We illustrate our approach by a few representative numerical
results. For tutorial purposes, we restrict ourselves in these ex-
amples to a lossless dielectric object. This allows us to avoid the
discussion of the frequency dependence of a complex permit-
tivity. However, all algorithms presented in this paper have been
tested successfully for lossy objects and/or lossy surrounding
media as well.

II. FORMULATION OF THE PROBLEM

In this section, we describe the configuration. Subsequently,
some basic relations are given that are needed throughout the
text. Finally, we formulate the inverse-scattering problem as an
optimization problem for a parameterized configuration.

A. The Configuration

We consider a 2-D inhomogeneous, isotropic dielectric
cylinder in a homogeneous surrounding medium. As shown
in Fig. 1, the interior of the cylinder is represented as, the
boundary as , and the exterior as . For the permittivity, we
have in and in , while the permeability

in . Both and may assume complex
values. In the direct-scattering problem, both the shape and
the constitution of the cylinder are completely known. In the
inverse-scattering problem, we assume that the cylinder is
enclosed in a square domain of width centered around the
-axis. The configuration is excited by an electrically polarized,

time-harmonic line source that is located on an observation
contour . The electric field is detected by receivers on the
same contour. The observation domain is a region of
bounded by . A time factor of with is
assumed implicitly in all fields and currents mentioned in this
paper.

To avoid “inverse crimes,” the boundary information is only
used in generating the scattered-field data for the exact profile.
In the inversion, we only use the information that the object is
located in . Since , we will therefore formulate all
integral equations for a contrast in , so that these equations
also describe the approximate direct-scattering problems that
are solved in each iteration of the inversion.

We consider two choices for the contour . The first
choice is a circle with centered around the
-axis. For this contour, we have the following equivalence

theorems.

1) Any incident field in the region can be repre-
sented as being generated by a surface current on,
embedded in a homogeneous dielectric with the proper-
ties of the surrounding medium.

2) Any scattered field in the region can be expressed
in terms of the electric field on .

Fig. 1. The dielectric cylinder, part of the observation contour and the various
domains mentioned in the text. The regionD is the region outside@D.

Both theorems are derived in Appendix A. Combining these the-
orems leads to the conclusion that the scattering behavior of
the interior of is completely characterized by the scattered
field at caused by a line source at , with
and being arbitrary points on . Hence, no new informa-
tion can be obtained by exciting the object with other sources in

and detecting the scattered field in the same domain.
The second choice for is a straight line at .

For this contour, similar conclusions can be drawn with respect
to observation in . The difference between both choices
is observed by considering which plane waves are excited and
detected. A single plane wave can be written as

(1)

with and , with .
For excitation and detection on a circle, we have
for both the incident and the scattered field. Since these plane
waves allow a complete representation of any source-free field
in the surrounding medium, we refer to this choice as the case
of complete data. When is a straight line, the incident field
contains only “downgoing” waves with 0. Therefore, we
refer to this choice as the case ofpartial data.

In the description of the theoretical results and of the numer-
ical implementation, we concentrate on the case of complete
data. However, as demonstrated by the numerical results, most
of the analysis can be generalized to the case of partial data.

B. Basic Relations

Since the forward problem is linear, it suffices to consider
Green’s function, i.e., the solution of the second-order differen-
tial equation

(2)



1318 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 39, NO. 6, JUNE 2001

that satisfies the radiation condition

(3)

In (2) and (3), and are 2-D position vectors, is the
2-D gradient operation, is the speed of light in free space,
is the complex wave speed in the , is a complex relative
permittivity and is a 2-D delta function. Equation (2) is
valid for all , with for .

With the aid of the radiation condition (3) and Green’s second
identity, it can be shown directly that satisfies the reciprocity
relation:

(4)

for any pair in .
Equation (2) can be reduced to an equivalentintegral rela-

tion. We introduce a reference medium with relative permit-
tivity and the corresponding Green’s function .
In principle may be chosen arbitrarily; in the present con-
text we will assume that this parameter only differs from
inside . Subtracting the differential equations forand ,
writing the contrast source as a superposition of delta functions,
and using the reciprocity relation (4) for results in the con-
trast-type integral relation

(5)

which again holds for any pair in . Equation (5) is
the cornerstone of our approach of reconstructing .

C. Parameterization and Cost Function

Any computational reconstruction procedure can only yield
with limited resolution. In Section IV, it will be argued

that, for iterative procedures, this resolution depends on the op-
erating frequency and the local average value of . This
means that we have to introduce a parameterization for the un-
known profile. For now, it suffices to write the relative permit-
tivity as

(6)

where is a finite set of known, real-valued expansion
functions with support inside the observation domain. The
symbol was chosen since, for an object in free space,
and the sum in the right-hand side of (6) is a dielectric suscepti-
bility. The parameters are obtained by minimizing a cost
function of the form

(7)

where is the known field at receiver position
for a source at , and is the corresponding field

in a parameterized configuration. In the actual implementation,
which will be discussed in Section V, we augment the cost func-
tion (7) by a suitably chosen regularization term to compensate
for any possible oversampling in (6). Thus, we have written the
problem as an optimization problem for the parameters ,
while the determination of the fields in a parameterized con-
figuration may be envisaged as an auxiliary computation in an
“inner loop.”

III. L INEARIZED SCHEME: METHOD OFSOLUTION

The problem formulated in Section II is inherently nonlinear,
since the field inside the observation domain is determined
by the unknown permittivity profile. One way to handle this
problem is to linearize the equation pertaining to the known
scattered field data around the best available estimate. This is
known as the distorted-wave Born approximation. By using
this approximation repeatedly in an iterative procedure, we are
able to reconstruct objects with a larger contrast with respect
to the surrounding medium than would be possible with the
conventional Born approximation. Both ideas are described in
this section.

A. Distorted-Wave Born Approximation

As a first step toward formulating our method of solution, we
choose in (5) as an estimate of . For a field generated
by a source at and detected by a receiver at , we
then have

(8)

Thedata equation(8) is a nonlinear equation for the unknown
permittivity profile , since also depends on this profile.
To facilitate its solution, we introduce alinearizationby taking
the counterpart of (8) for and

(9)

Equation (9) is one possible form of afield equationand is still
exact. Substituting this expression in (8) results in

(10)

The first term on the right-hand side is the so-calleddis-
torted-wave Born approximationof the left-hand side. The
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second term is the error in the approximation, also referred to
as theBorn error. This error can be written as

(11)

From the expression in (11), it is immediately observed that
as . Therefore,

neglecting the term in (10) is indeed a lineariza-
tion of the data equation. The quality of this linearization will
be discussed in Section IV-A.

B. Iterative Procedure

With the theory given above, we are now in a position to for-
mulate our version of the distorted-wave-Born iterative proce-
dure. In each iteration step, we start from a previously estimated,
parameterized permittivity profile of the form (6). For
sources at , we determine the fields
that would be present in in this configuration.

To this end, we return to the integral relation (5). In this rela-
tion, we choose , and .
This results in the integral equation

(12)

In (12), is the susceptibility as introduced in (6), and
is Green’s function of the surrounding medium

(13)

where denotes the modified Bessel function of the second
kind of order zero. The advantage of choosing this integral equa-
tion is that both the incident field and the Green’s function in
(12) are available in closed form.

Next, we use the integral relation (12) for and
to obtain the field on . For this field, we use the dis-

torted-wave Born approximation (10) to derive the linearized
equation

(14)

In this equation the “profile update,” represented by the coef-
ficients , is determined by minimizing a cost
function of the form (7). This results in a subsequent estimate
of the unknown profile , which allows us to carry out
the next iteration step. Formulated in this manner, the distorted-
wave-Born iterative procedure is also identical to the so-called
Newton–Kantorovitch method. For the discrete form of the al-
gorithm, this was first shown in [9]. An analysis in operator form
can be found in [10].

IV. L INEARIZED SCHEME: FUNDAMENTAL ASPECTS

The formulation of the iterative procedure in Section III-B
leaves us with two fundamental questions. Will the scheme con-
verge and what resolution can we expect upon convergence?
For the dielectric slab, these questions were addressed in [1],
[2] with the aid of WKB theory. For the present configuration,
we have only partial answers. Nevertheless, these answers are
needed to justify the numerical implementation discussed in
Section V. In the present section, we discuss both these ques-
tions.

A. Dynamic Range

The question of convergence depends critically on the quality
of the distorted-wave Born approximation in the first iteration
step. To be more specific, the “profile update” in each iteration
step is determined by matching the linear term in
in (10) to the difference . Therefore,
the issue is how well that difference is actually approximated.
To quantify this in a single number, we introduce the root mean
square error (RMSE)

ERR

(15)

where is the distorted-wave-Born approximation
that is obtained by neglecting in (10). This choice
of error has the advantage that it indicates the relative accuracy
even when and/or are small.

As mentioned above, a general estimate of the behavior of the
error defined in (15) is hard to give. Therefore, we restrict our-
selves to a parameter study for a canonical problem where this
error can be evaluated in closed form. In Figs. 2–5, we present
results for the case where the actual and the estimated configu-
rations are concentric, homogeneous, lossless circular cylinders
with relative permittivity and and radius and , re-
spectively. In both configurations, the surrounding medium is
free space. The relevant theory is summarized in Appendix B.
Here, we concentrate on the results.

In Figs. 2–5, we consider the influence of three properties of
our setup.

• Operating frequency.In Fig. 2, we consider the Born error
as a function of the normalized frequency (with
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Fig. 2. Born error as a function of the normalized frequency!a=c for a
circular configuration witha = a = 1 m, � = 1.5 m and" = 5. Solid
line " = 2; dotted line" = 5.5; dashed line" = 6.

Fig. 3. Born error as a function of the estimated permittivity" for a circular
configuration witha = a = 1 m, � = 3 m and" = 2. Solid linef = 30
MHz; dotted linef = 100 MHz; dashed linef = 200 MHz; dash-dot linef =

300 MHz.

) for two cylinders with 1 m and
1.5 m. The exact configuration has a relative per-

mittivity of 5.0, and the estimated permittivities
are 2.0, 5.5, and 6.0, respectively. All three curves
show a linear increase until the approximation becomes
meaningless. Further, the slope increases with increasing

. The oscillations may be associated with reso-
nances of the exact and the estimated configuration.

• Contrast.In Fig. 3, we consider the influence of the rela-
tive permittivity of the estimated configuration. The cylin-
ders have 1 m, the actual permittivity is
2, the observation is at 3 m, and the lines are for

with 30, 100, 200, and 300 MHz. Similarly,
Fig. 4 shows results of varyingfor 2.0 and other
parameters as in Fig. 4. From these figures, we conclude
that the Born error increases linearly with increasing con-
trast, with a slope determined by the operating frequency.

• Observation.In Fig. 5, we consider the influence of the
choice of for 1 m, 6, 5.5,

Fig. 4. Born error as a function of the estimated radiusa=a for a circular
configuration witha = 1 m,� = 3 m and" = " = 2. Solid linef = 30
MHz; dotted linef = 100 MHz; dashed linef = 200 MHz; dash-dot linef =

300 MHz.

Fig. 5. Born error for an observation contour with varying� =a for a circular
configuration witha = a = 1 m, " = 6 and" = 5.5. Solid linef = 100
MHz; dotted linef = 200 MHz; dashed linef = 300 MHz.

and 100, 200, and 300 MHz. Fig. 5 indicates that we
should not choose the observation contour too close to the
scattering obstacle. A possible explanation is that, in that
region, the evanescent field plays an important role. For
observation further away from the cylinder, the quality of
the Born approximation is almost independent of the value
of .

Summarizing, the dynamic range of the Born-type iterative pro-
cedure appears to be determined by , where is
the norm.

B. Resolution

The second question is how much information can be re-
trieved from the linearized equation. To keep the discussion
tractable, we again restrict ourselves to lossless media. We as-
sume that the reference profile is a smooth estimate of the
actual profile , and that the difference between both pro-
files is so small that the distorted-wave-Born approximation is
almost exact. Further, we take .
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In that case, we can invoke the following argument, which has
been inspired by [27] and by the back-propagation algorithm as
applied in geophysical imaging. The data equation (10) is now
linear in . Therefore, we may consider the situation
where

(16)

where is a “pixel” centered around a point in
. We assume that has a finite support that is small

enough to treat as a constant, i.e., when
. In that case, the unit-amplitude plane wave

(17)

is a valid solution of the second-order differential equation (2)
for the reference medium in . The angle may be viewed
upon as an angle of incidence in the equivalent problem with the
pixel in a homogeneous environment.

Now the solution has a unique continuation in any
source-free region enclosing , and in particular in [28].
It may not be easy to compute this continuation for a general
configuration, but it does exist. As argued in Appendix A, this
means that for this solution can be written in
the form of a Fourier representation

(18)

Using the equivalence principle formulated in (A.5), we can
then express as a linear combination of Green’s func-
tions

(19)

In (19), may assume any value in the interval .
Introducing an observation angle , we can therefore invoke
(10) to obtain

(20)

where the right-hand side may be recognized as a spatial Fourier
transform (FT) of . Following the same lines as in the clas-
sical Ewald theory for a homogeneous background medium then
leads to the conclusion that this spatial FT can be determined

up to . Since the field con-
tains this information, a minimization of the cost function (7)
will attempt to generate a reconstructed profile with the cor-
rect FT up to this limit. This leads to the usual concept of a
point-spread function, but this function now depends on the
local value .

As an illustration, we consider in Fig. 6 the reconstruction of a
circularly symmetric configuration with a small contrast with re-
specttoahomogeneouscylinderwithradius1minfreespace.
We consider the reconstruction of a radially inhomogeneous per-
mittivity

,

,

,
(21)

from the scattered field at 64 equally spaced source and receiver
positions at 1.1 m. The direct problem was solved by
numerically integrating two coupled first-order differential
equations for the coefficients in a Fourier representation of the
form (B.3) [29]. The images were generated by using (B.14)
and (B.15) to identify the Fourier coefficients of the weighting
function , interpolating in cylindrical coordinates
in wavenumber space to obtain sampled values of (20) on a
Cartesian grid, and applying a 2-D FFT to obtain the permittivity
contrast.

Fig. 6(a) shows the reconstruction for , i.e., a suscepti-
bility profile in free space for 200 MHz. In Fig. 6(b) and (d),
we improve the resolution by raising the frequency to 500 MHz
and 1 GHz, respectively. In Fig. 6(c) and (e), we keep the fre-
quency fixed and raise the permittivity of the reference medium
inside the cylinder to 6.25 and 25, respectively. The
results confirm that the parameter determines the re-
construction. Finally, it should be remarked that reconstructions
of this quality could only be obtained for this special configura-
tion because an exact theory was available.

C. Multiple Frequencies

The results presented in the previous two subsections lead
to the following conclusions. Ideally, any reconstruction pro-
cedure should be started from a homogeneous space, i.e., from

. Thus, the onlya priori knowledge is the fact
that the scatterer is located in . However, especially for large
contrasts, this imposes a restriction on the maximum value of.
This restriction, in turn, limits the resolution with which
is reconstructed upon convergence.

Therefore, we use multiple frequencies. The first approxi-
mation of the unknown permittivity profile is indeed obtained
starting from . When the restrictions onimposed
by this choice are too severe, we use this approximation as a
starting value for a reconstruction at a larger value of. By
gradually increasing the operating frequency, we are then able
to determine the required detail of the configuration, even for
large contrasts in permittivity between the cylinder and the sur-
rounding freespace.Ofcourse, increasing the frequency requires
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Fig. 6. Reconstruction of a small permittivity contrast as specified in (21) fora = 1 m,� = 1.1 m and other parameters as indicated.

scaling the imaginary part of . In practice, the assumption
of a Maxwellian model generally leads to acceptable results.

The use of multiple-frequency information as proposed above
implicitly relies on the assumption that the spatial FT of

decreases in magnitude with increasing. This assump-
tion holds for most practical profiles, but may be violated in
pathological cases. Finally, the multiple-frequency procedure
also supplies the answer to the one remaining question from
the resolution analysis of Section IV-B, i.e., the choice of the
smooth estimate . At each new frequency, the final result for
the previous frequency may be considered as that estimate. This
result is then used to choose the smallest spacing with which
we expect to reconstruct the unknown permittivity somewhere
in . Applying the reconstruction algorithm will then gradu-
ally produce more detailed knowledge of the unknown profile.

V. LINEARIZED SCHEMES: NUMERICAL IMPLEMENTATION

Now that we have gained some insight into the capabilities of
the distorted-wave iterative Born procedure, we need to address
its numerical implementation. We follow the same order as in
the actual computation. In Section V-A, we discuss the determi-
nation of the fields in the actual and estimated configurations.
In Section V-B, we discuss the translation of the theoretical re-
sults into the numerical determination of the profile update. In
Section V-C, our approach is validated for a representative con-
figuration.

A. Forward Problem

The feasibility of iterative schemes for the solution of in-
verse-scattering problems based on optimizing a parameterized
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configuration depends strongly on the availability of a fast pro-
cedure for determining the fields in the estimated geometry in
successive iteration steps. For the present configuration, such
a scheme is available from [25]. Starting point is the contrast-
source integral equation

(22)

where is given by (13) and . The
region , , in which is embedded, is
subdivided into square subregions with mesh size

. The grid points of the square mesh are located at
, with for ,

and for . Solving (22) now
amounts to determining an approximation of at the
grid points .

The space discretization of the integral in the right-hand side
of (22) has two special aspects. First, the logarithmically sin-
gular behavior of as is substracted
by breaking up the integral over into

(23)

Second, the discretization of the integrals in (23) is based on ap-
proximating suitable parts of the integrands by piecewise-linear
interpolation, and integrating analytically over polygons deter-
mined by the boundary of and the grid. This results in a dis-
cretized integral equation of the form

(24)

where is a sampled, filtered version of . In (24),
the convolution-type structure of the continuous (22) has been
preserved. This makes this equation suitable for the application
of the conjugate-gradient-FFT method. In addition, it is second-
order accurate in the mesh size.

The initial estimate for this procedure is obtained by taking
a linear combination of previous “final” solutions and deter-
mining the coefficients by minimizing the squared error for the
problem at hand. This idea was first suggested as “marching on
in frequency” for the computation of transient fields in [24] and
[25]. In [26], a more detailed explanation is given, as well as sev-
eral examples of other physical parameters for which the effec-
tiveness of this extrapolation has been demonstrated. In the it-
erative procedure formulated in Section III-B, we extrapolate in
source position for the first two steps of the distorted-wave-Born

iterative procedure. Subsequently, we use the fields for the exact
source position in the previous two estimated configurations to
generate the initial estimate for the field in the configuration at
hand. This is referred to as “marching on in source position” and
“marching on in profile,” respectively.

As mentioned in Section II-A, the boundary information is
only used in generating the scattered-field data for the exact
profile. Further, scattered fields were used for a homogeneous
(Appendix B) or radially inhomogeneous [29] circular cylinder,
which is positioned eccentrically inside the observation contour.
In both cases “inverse crimes” are avoided inherently.

B. Update Step

The second part of each step in the distorted-wave Born ap-
proximation is the determination of the “profile update.” In our
implementation, the parameterization of the contrast function

in (6) is chosen such that this function is approximated by
a piecewise bilinear expansion in and

(25)

with and being the same discrete coordinates as in the
space discretization of the forward problem and ,
Thus, the mesh size in the field computation istimes smaller
than the one in the profile update. is a triangular expansion
function

for ,

otherwise.
(26)

The approximation (25) is substituted in the Born-approximated
equation (14), and the coefficients are deter-
mined by minimizing the squared error (7).

The final issue is the choice of the number of subintervals
in the representation of the contrast function in (25). This

choice follows from the resolution analysis of Section IV-B.
This analysis has revealed that the resolution depends on the
local average of the refractive index . Therefore, if we
want to obtain maximum resolution where this index is large,
the representation (25) will be oversampled where this index
is smaller. This ambiguity is removed by augmenting the cost
function in (7) with theregularizationterm

(27)

In (27), is a small parameter. The terms in (27) restrict the vari-
ation in derivative in the - and -directions between adjacent
cells. The factor of ensures that the relative impor-
tance of the regularization term becomes independent ofand

. The factor of can be envisaged as changing the integrals
in (7) into path integrals over the observation contour and com-
pensates for the decrease of with increasing . The
factor of makes (27) approximately proportional to a
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double integral over of the squares of and .
Thus, the smoothing effect of (27) remains invariant in a multi-
grid reconstruction. The regularization term (27) pertains to the
total susceptibility and not to the profile update. Particularly, in
the presence of noise, this choice avoids a possible dependence
of the final result on the initial estimate.

Including (27) with a large value of is an alternative to
using multiple-frequency information for obtaining the “trend”
of , which can then be used as an initial estimate for re-
constructing the available “detail.” Finally, it should be men-
tioned that the minimum of the combined cost function is again
searched with the aid of the conjugate-gradient method.

C. Examples

A large number of numerical experiments were carried out to
validate the theory and the algorithms presented in the previous
sections. As an illustration, we present in Fig. 7 results for the
Österreich profile, which was first discussed at a PIERS meeting
in Austria [20] and has since been studied by a number of groups
inEurope(seee.g., [21]).Theconfigurationconsistsofa largecir-
cular cylinder of radius 0.6 m with a hole of radius 0.3 m, flanked
by two small circular cylinders of radius 0.2 m. The surrounding
mediumwas freespaceand the relativepermittivity inside theob-
jectwas 2, i.e., 1.Asmentioned in the introduction,we
considera losslessconfigurationtoavoid thediscussionofdisper-
sion effects. The scattered field was computed with 64 for
64 source and receiver positions on an observation contour with
radius 3 m. Fig. 7a shows the discretized susceptibility for
the forward field computations. Fig. 7(b) shows the reconstruc-
tion for 300 MHz with 10 for the first five iterations,
and 10 for subsequent steps, starting from .
Fig. 7(c) shows the reconstruction for 500 MHz with
10 , starting from the reconstruction for 300 MHz. An at-
tempttoreconstructthisprofiledirectlyfor 500MHz,starting
from 0, was unsuccessful.

Similar results were also obtained for larger contrasts. Re-
constructing such configurations does require smaller frequency
steps. Space limitations prevent us from including the results.
Instead, we show in Fig. 8 results for reconstructing the same
configuration as in Fig. 7 from data on a line. To include the ef-
fect that the smaller cylinders may be shaded by the larger one,
the configuration has been turned upside down. The field com-
putations were carried out for 64, and we had 64 receivers
on a line of width 32 m at 3 m for an object in a square
with 1 m. In both cases, the regularization parameter was

10 in the first five iteration steps, and 10 in the
remaining ones. Although in particular the lateral resolution is
poorer than for the case of complete data, the features of the
scattering object can still be recognized very well. The results
in Fig. 8 give an indication of how well an object in a half space
can be reconstructed from measurements above that half space.

VI. NONLINEAR OPTIMIZATION

The forward field computation as outlined in Section V-A is
so efficient that, on average, updating the profile as described in
Section V-B in each iteration step takes at least as much compu-
tation time as computing the fields. The dynamic range of such

Fig. 7. Reconstructions of the Österreich profile as specified in the text. (a)
Discretized susceptibility for forward problem withN = 64; (b) result after
eight iterations forf = 300 MHz andK = 32 of the distorted-wave Born
scheme starting from�(���) = 0, and (c) result after two iterations for 500 MHz,
starting from the estimate shown in (b).

methods depends on the occurrence of local minima, which in
turn seems to be determined by the size of the region in param-
eter space for which the cost function behaves as a quadratic
function. This is exactly the region where the linearization intro-
duced in Section III-A is a good approximation. Further, upon
convergence, any nonlinear optimization scheme reduces to a
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Fig. 8. Reconstructions of the inverted Österreich profile from data on a line. (Top) Result after 20 iterations forf = 300 MHz starting from�(���) = 0. (Bottom)
Result after 13 iterations for 500 MHz, starting from the result atf = 300 MHz.

linearized scheme, since higher-order terms in the Taylor se-
ries expansion of the cost function become negligible. There-
fore, the stability and resolution of nonlinear schemes can still
be assessed from the validity and the resolution of the linearized
equation. This gives us all the elements for replacing the update
step by a line search in a nonlinear optimization procedure. In
the present context, we can only give a general description. De-
tails will be published elsewhere.

A. Gradient of Cost Function

The first issue to be resolved in almost any nonlinear opti-
mization scheme is the evaluation of the steepest-descent di-

rection for a given estimate of the configuration of the
parameterized form specified in (6). Since is also of the
form given in (6), we may rewrite the distorted-wave Born ap-
proximation of about as

(28)
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Substituting this result in (7) and interchanging the order of the
integration then results in

Re

(29)

where the function is theprofile gradient

(30)

where means complex conjugation. Since our forward algo-
rithm is capable of computing for at the
cost of solving a few forward-scattering problems, the evalua-
tion of is very efficient.

Breaking up the parameters into their real and imaginary
parts according to and using the limit defini-
tion of derivative then gives the following expressions for the
gradient of

Re (31)

and

Im (32)

Expressions similar to (31) and (32) can also be found in [8]. An
independent verification of these expressions was obtained by
differentiating , and using the field equation (22) and
the reciprocity relation (4) to derive an expression for

. For completeness, it should be mentioned that the
gradient of the regularization term (27) is obtained directly in
terms of the same real and imaginary parts.

B. Numerical Implementation

In our nonlinear optimization, we used the quasi-Newton
method, with the Broyden–Fletcher–Goldfarb–Shanno or
BFGS formulation of the Hessian [30]. The line-search algo-
rithm consist of a bracketing phase, in which an acceptable
search interval is supposed to be found, and a sectioning phase,
in which this interval is divided into smaller brackets. In the
forward scheme, we march in source position in the first two
iterations of each line search. Subsequently, we use the feature
that the parameter vector is modified in a single direction
to “march on in search direction.” The resulting computation
times are typically about twice as long as those of the linearized
scheme.

Compared with linearized schemes, the quasi-Newton
method has a slightly larger dynamic range. Multiple-fre-
quency information or overregularization can still be used

to improve convergence. When both schemes converge, the
results are comparable. Nonlinear optimization is more stable
with respect to noise and regularization only seems to be
necessary in limiting cases. A possible explanation is that the
quasi-Newton method repeatedly searches for the direction
in -space, for which the cost function locally shows the
strongest variation, while the distorted-wave-Born iterative
procedure attempts to computes a fully detailed update of the
vector in each iteration step.

Fig. 9 shows an illustration of these effects. In this figure, we
again attempt to reconstruct the Österreich profile, starting from
the results at 300 MHz for the same algorithms, but with an op-
erating frequency of 700 MHz. Compared with Fig. 7, the
vertical scale was adjusted to display also the profile in Fig. 9(a),
which shows the diverging result of five iteration steps with
10 and five steps with 10 . In Fig. 9(b), the Born-type
scheme was carried out for 10 , and 10 . In both
cases, the results are unstable. Fig. 9(c) and (d) show results for
eight iterations with the quasi-Newton scheme without regular-
ization, and for two iterations with 10 .

VII. CONCLUSIONS

In this paper, we have analyzed linear and nonlinear iterative
procedures for determining 2-D permittivity profiles in a ho-
mogeneous environment. Compared with related research, our
work has two main points of attraction. First, the entire numer-
ical implementation is based on a theoretical description, albeit
an incomplete one. The theoretical analysis has led to ideas like
using multiple-frequency data and making a consistent choice
for the parameterization of the unknown profile and the regu-
larization term in the cost function. Second, the combination of
a second-order accurate space discretization that preserves the
convolution structure of the continuous integral equation with
the CGFFT algorithm and a special extrapolation procedure al-
lows an extremely efficient computation of the fields in the suc-
cessively estimated configurations. After the first few field com-
putations, each new forward problem is solved in a few itera-
tions of the classical CGFFT procedure. It is this efficiency that
makes reconstruction schemes based on “exact” field computa-
tions feasible again, even compared with schemes of the modi-
fied-gradient type. In view of space limitations, we have not ad-
dressed the reconstruction of objects in more complex environ-
ments. However, an embedding scheme has already been imple-
mented that translates the scattering operator for a homogeneous
environment to a counterpart for a more practical environment.

APPENDIX A
EQUIVALENCE THEOREMS

In the text, we have twice used the feature that the total field
in and the scattered field in may be regarded as being
generated by an equivalent surface source distribution on.
In this appendix, we discuss this property in more detail. We re-
strict ourselves to the case of complete data. For partial data, the
analysis can be generalized by using a spatial FT with respect
to the -coordinate.
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Fig. 9. Reconstructions atf = 700 MHz of the Österreich profile starting from the result displayed in Fig. 7(b).

From Fig. 1, it is clear that for , the relative permit-
tivity of the configuration is equal to . In that region, we can
write the counterpart of (2) for a surface current on as

(A.1)

where is an arbitrary weighting function, and are
cylindrical coordinates. Expanding and in terms of
an angular Fourier series of the form

(A.2)

then results in

(A.3)

where and are modified Bessel functions of order,
and where and . In (A.3),
the coefficients represent the scattered field, which con-
tains the information on the geometry inside .

For , any incident field generated by sources in
assumes the form

(A.4)

Comparing (A.3) and (A.4) directly leads to the identification
. For thetotal field in , we then

have

(A.5)

with defined by (2) and (3). For thescattered fieldin
, we may write

(A.6)

where the Fourier coefficients are directly available
from the scattered field on . With these results, we have
arrived at the desired equivalence theorems.

APPENDIX B
HOMOGENEOUS, LOSSLESSCIRCULAR CYLINDER

For parameter studies in the investigation of thedynamic
range and for numerical confirmation of theresolution anal-
ysis, we used analytical expressions for a homogeneous,
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circular cylinder, embedded in a homogeneous dielectric. In
this appendix, the relevant theory is summarized.

A. Direct Problem

As a first step, we choose the line-source excitation of a ho-
mogeneous, dielectric cylinder with radiusand relative per-
mittivity , embedded in a homogeneous dielectric with rela-
tive permittivity . For this equation, the second-order differ-
ential equation (2) simplifies to

(B.1)

where

for ,

for .
(B.2)

Using separation of variables, we obtain

(B.3)

with

for

for

(B.4)

where and . The con-
stants follow by applying the boundary conditions
at the edge of the cylinder, i.e., enforcing the continuity of

and across . We arrive at

(B.5)

and

(B.6)

B. Born Approximation

Second, we consider the distorted-wave-Born approximation
as formulated in Section III-A. For theactualconfiguration, we
consider the homogeneous cylinder specified in Appendix B-A.
For theestimatedconfiguration, we consider a similar cylinder

with radius and relative permittivity for 0 . We
are interested in evaluating the approximate field

(B.7)

where . The integral over on the right-hand
side can be evaluated by using the orthogonality of the functions

:

(B.8)

where is the angular Fourier coefficient introduced
in (B.3), generalized to the reference configuration. This means
that we can write

(B.9)
with

(B.10)

is a piecewise constant function. Therefore, the
integral over can be evaluated in closed form by breaking up
the integration interval and using

(B.11)
which holds for any linear combination

. With the aid of Parseval’s theorem, we then
arrive at

(B.12)

With this result and a similar expression for
, we are able to compute the normalized Born error

as specified in Section IV-A.

C. Plane Wave Synthesis

Third, we consider the possibility of synthesizing a local
plane wave inside a scattering object. Inside the cylinder, a
unit-amplitude plane wave propagating in the directioncan
be written as

(B.13)
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The idea is to represent this plane wave for as a
weighted combination of Green’s functions of the form

(B.14)

where an angular Fourier series representation of the form (A.2)
and the separation-of-variables solution (B.4) were used. The
convolution form can be chosen because of the circular sym-
metry of the problem. Comparing (B.13) and (B.14) directly
leads to the identification

(B.15)

A similar result was also used in [27].

ACKNOWLEDGMENT

The authors would like to thank Dr. Z. Q. Peng [25] for the
forward-scattering algorithm that was derived from earlier work
and Dr. E. S. A. M. Lepelaars for the availability of the BFGS
optimization. They would also like to thank Dr. F. E. van Vliet,
E. R. Bonsen, J. H. Kop, and W. H. A. B. Janssen for their contri-
butions to parts of this research. Finally, the authors are indebted
to Dr. A. I. M. Franchois for her constructive comments on the
first drafts of this article.

REFERENCES

[1] A. G. Tijhuis,Electromagnetic Inverse Profiling: Theory and Numerical
Implementation. Utrecht, The Netherlands: VNU Science, 1987.

[2] , “Born-type reconstruction of material parameters of an inhomo-
geneous, lossy dielectric slab from reflected-field data,”Wave Motion,
vol. 11, pp. 151–173, 1989.

[3] T. M. Habashy, E. Y. Chow, and D. G. Dudley, “Profile inversion using
the renormalized source-type integral equation approach,”IEEE Trans.
Antennas Propagat., vol. 38, pp. 668–682, 1990.

[4] Y. M. Wang and W. C. Chew, “An iterative solution of two-dimensional
electromagnetic inverse scattering problem,”Int. J. Imag. Syst. Technol.,
vol. 1, pp. 100–108, 1989.

[5] W. C. Chew and Y. M. Wang, “Reconstruction of two-dimensional per-
mittivity distribution using the distorted wave Born iterative method,”
IEEE Trans. Med. Imag., vol. 9, pp. 218–235, 1990.

[6] M. Moghaddam and W. C. Chew, “Nonlinear two-dimensional velocity
profile inversion in the time domain,”IEEE Trans. Geosci. Remote
Sensing, vol. 30, pp. 147–156, Jan. 1992.

[7] N. Joachimowicz, Ch. Pichot, and J.-P. Hugonin, “Inverse scattering: An
iterative numerical method for electromagnetic imaging,”IEEE Trans.
Antennas Propagat., vol. 39, pp. 1742–1752.

[8] H. Harada, D. J. N. Wall, T. Takenaka, and M. Tanaka, “Conjugate gra-
dient method applied to inverse scattering problem,”IEEE Trans. An-
tennas Propagat., vol. 43, pp. 784–792, 1995.

[9] A. Franchois and Ch. Pichot, “Microwave imaging—Complex per-
mittivity reconstruction with a Levenberg–Marquardt method,”IEEE
Trans. Antennas Propagat., vol. 45, pp. 203–215, 1997.

[10] R. F. Remis and P. M. van den Berg, “On the equivalence of the
Newton–Kantorovitch and distorted Born methods,”Inv. Probl., vol.
16, pp. L1–L4, 2000.

[11] I. T. Rekanos, T. Y. Yioultsis, and T. D. Tsiboukis, “Inverse scattering
using finite-element method and a nonlinear optimization technique,”
IEEE Trans. Microw. Theory Tech., vol. 47, pp. 336–344, Mar. 1999.

[12] R. E. Kleinman and P. M. van den Berg, “A modified gradient method
for two-dimensional problems in tomography,”J. Comput. Appl. Math.,
vol. 42, pp. 17–35, 1992.

[13] , “An extended range-modified gradient technique for profile inver-
sion,” Radio Sci., vol. 28, pp. 377–884, 1993.

[14] P. M. van den Berg and R. E. Kleinman, “Gradient methods in inverse
acoustic and electromagnetic scattering,” inOptimization with Applica-
tions, L. T. Biegler, Ed. Berlin, Germany: Springer, 1997, pp. 173–194.

[15] R. Pierri and A. Tamburino, “On the local minima problem in conduc-
tivity imaging,” Inv. Probl., vol. 13, pp. 1547–1568, 1997.

[16] R. Pierri and G. Leone, “Inverse scattering of dielectric cylinders by
a second-order Born approximation,”IEEE Trans. Geosci. Remote
Sensing, vol. 37, pp. 374–382, Mar. 1999.

[17] A. G. Tijhuis and F. E. van Vliet, “Practical considerations for two-
dimensional velocity inversion using the distorted-wave Born iterative
technique,” inProc. 24th General Assembly of URSI, Kyoto, Japan, Au-
gust 25–September 2, 1993, p. 83.

[18] , “Two-dimensional Born-type velocity inversion using multiple-
frequency information,” inProc. IEEE Antennas and Propagation So-
ciety Int. Symp., Seattle, WA, June 19–24, 1994, pp. 2288–2291.

[19] , “Two-dimensional Born-type velocity inversion using multiple-
frequency information,” inProc. PIERS Symp., Noordwijk, The Nether-
lands, July 1994, 469, pp. 11–15.

[20] K. Belkebir and A. G. Tijhuis, “Using multiple frequency information in
the iterative solution of a two-dimensional nonlinear inverse problem,”
in Proc. PIERS Symp., Innsbruck, Austria, 1995, p. 353.

[21] A. Litman, D. Lesselier, and F. Santosa, “Reconstruction of a 2-D binary
obstacle by controlled evolution of a level set,”Inv. Probl., vol. 14, pp.
685–706, 1998.

[22] W. C. Chew and J. H. Lin, “A frequency-hopping approach for
microwave imaging of large inhomogeneous bodies,”IEEE Microw.
Guided Wave Lett., vol. 15, pp. 439–441, 1995.

[23] Y. Chen, “Inverse scattering via Heisenberg’s uncertainty principle,”Inv.
Probl., vol. 13, pp. 253–282, 1997.

[24] A. G. Tijhuis and Z. Q. Peng, “Marching-on-in-frequency method for
solving integral equations in transient electromagnetic scattering,”Proc.
Inst. Elect. Eng. H, vol. 138, pp. 347–355, 1991.

[25] Z. Q. Peng and A. G. Tijhuis, “Transient scattering by a lossy dielectric
cylinder: Marching-on-in-frequency approach,”J. Electromagn. Waves
Applicat., vol. 7, pp. 739–763, 1993.

[26] A. Tijhuis, K. Belkebir, P. Zwamborn, and A. Rubio Bretones,
“Marching on in anything: Solving electromagnetic field equations with
a varying parameter,” inProc. Int. Conf. Electromagnetics in Advanced
Applications, Torino, Italy, 1997, pp. 175–178.

[27] A. Broquetas, J. J. Mallorquí, J. M. Rius, L. Jofre, and A. Cardama,
“Active microwave sensing of highly contrasted dielectric bodies,”J.
Electromagn. Waves Applicat., vol. 7, pp. 1439–1453, 1993.

[28] M. H. Protter, “Unique continuation for elliptic equations,”Trans. Amer.
Math. Soc., vol. 95, pp. 81–91, 1960.

[29] A. G. Tijhuis and R. M. van der Weiden, “SEM approach to transient
scattering by a lossy, radially inhomogeneous dielectric circular
cylinder,” Wave Motion, vol. 9, pp. 43–63, 1986.

[30] R. Fletcher,Practical Methods of Optimization, 2nd ed. Chichester,
U.K.: Wiley, 1990.

Anton G. Tijhuis (M’88) was born in Oosterhout, The Netherlands, in 1952.
He received the M.Sc. degree in theoretical physics from Utrecht University,
Utrecht, The Netherlands, in 1976, and the Ph.D. degree (cum laude) from the
Delft University of Technology, Delft, The Netherlands, in 1987.

From 1976 to 1986 and from 1986 to 1993, he has been employed as an As-
sistant and Associate Professor at the Laboratory of Electromagnetic Research,
Faculty of Electrical Engineering, Delft University of Technology. In 1993, he
was appointed full Professor of electromagnetics, Faculty of Electrical Engi-
neering, Eindhoven University of Technology, Eindhoven, The Netherlands. He
has been a Visiting Scientist with the University of Boulder, Boulder, CO, the
University of Granada, Granada, Spain, the University of Tel Aviv, Tel Aviv, Is-
rael, and with McDonnell Douglas Research Laboratories, St. Louis, MO. Since
1996, he has been a Consultant with the T.N.O. Physics and Electronics Lab-
oratory, The Hague, The Netherlands. His research interests are the analytical,
numerical, and physical aspects of the theory of electromagnetic waves. In par-
ticular, he is working on efficient techniques for the computational modeling of
electromagnetic fields and their application to detection and synthesis problems
from several areas of electrical engineering.



1330 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 39, NO. 6, JUNE 2001

Kamal Belkebir was born in Algeria in 1966. He received the Ph.D. degree in
physics from the University of Paris XI, Orsay, France in 1994.

From 1995 to 1997, he was with the University of Eindhoven, Eindhoven, The
Netherlands, in a postdoctoral position. He joined the Laboratoire d’Optique
Electromagnétique, University of Provence, Provence, Marseille, in 1997, and
he is currently “Maître de Conférences” at the same university. His research
deals with both forward and inverse scattering techniques.

Amélie C. S. Litman was born in Marseille,
France, in 1972. She received the engineer degree
in computer science and applied mathematics and
the M.Sc. degree in applied mathematics, both from
ENSIMAG, a Grande Ecole of the Institut National
Polytechnique de Grenoble (INPG), Grenoble,
France, in 1994. She received the Ph.D. degree in
applied mathematics from the Laboratoire des Sig-
naux et Systèmes (CNRS-Supelec), Gif-sur-Yvette,
France, writing her thesis on inversion methods
for the electromagnetic characterization of buried

objects.
From November 1997 to June 1998, she was a Postdoctoral Researcher

with Faculty of Electrical Engineering, Eindhoven University of Technology,
Eindhoven, The Netherlands. Her research focused on the development
of nonlinear optimization algorithms applied to inverse scattering. Since
July 1998, she has been with Schlumberger, Clamart, France. Her current
interests include the application of inverse problem methods and minimization
techniques to oil prospection.

Bastiaan P. de Honwas born in Amstelveen, The Netherlands, in 1966. He
received the M.Sc. and Ph.D. degrees in electrical engineering from the Delft
University of Technology, Delft, The Netherlands, in 1991 and 1996, respec-
tively (both cum laude).

Since 1996, he has been with the Electromagnetics Group, Faculty of Elec-
trical Engineering, Eindhoven University, Eindhoven, The Netherlands, on a fel-
lowship awarded by the Royal Netherlands Academy of Arts and Sciences. He
has been a summer student at CERN, Geneva, Switzerland, and with Schlum-
berger Cambridge Research, Cambridge, U.K., and a Visiting Scientist with the
University of Tel Aviv, Tel Aviv, Israel. His research interests include theoretical
and numerical aspects of electromagnetic, acoustic, and elastic wave propaga-
tion. He currently focuses on issues concerning wave propagation along electro-
magnetic and optical waveguides, especially on fast and accurate solution tech-
niques, the design of fault-tolerant optical fibers, time-domain spectral modes,
and anisotropy.


