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Optical diffraction tomography is an imaging technique that permits retrieval of the map of permittivity of an
object from its scattered far field. Most reconstruction procedures assume that single scattering is dominant so
that the scattered far field is linearly linked to the permittivity. In this work, we present a nonlinear inversion
method and apply it to complex three-dimensional samples. We show that multiple scattering permits one to
obtain a power of resolution beyond the classical limit imposed by the use of propagative incident and dif-
fracted waves. Moreover, we stress that our imaging method is robust with respect to correlated and uncorre-

lated noise. © 2006 Optical Society of America
OCIS codes: 180.6900, 110.6960, 290.3200.

1. INTRODUCTION

In an optical diffraction tomography (ODT) experiment,
the unknown object is illuminated under several angles of
incidence and the diffracted field is collected along many
directions of observation. In contrast to optical micros-
copy, in which lenses are used to image the object, ODT
relies entirely on a numerical procedure to retrieve the
three-dimensional map of permittivity of the sample. For
a long time, this technique has been limited to the study
of absorbing objects whose typical length scale is much
larger than the wavelength. In the short-wavelength
limit, the reconstruction algorithms are based on a geo-
metrical model of propagation similar to techniques de-
veloped in x-ray tomography, and sole intensity measure-
ments are necessary for retrieving the three-dimensional
(3D) variations of the absorption in the sample. When the
features of the object of interest are of the same order as
the wavelength, the physical optics approximation is no
longer valid and a more precise model of the electromag-
netic scattering is necessary. In this case, most inverse
procedures require amplitude and phase measurements.
The latter can be obtained with a phase-shifting interfer-
ometry setup, as proposed by Lauer” or Destouches et al.?

The inversion procedures used in ODT experiments are
usually based on the Rytov or the Born approximation un-
der which the 3D Fourier components of the 3D scatterer
are obtained from the two-dimensional (2D) Fourier com-
ponents of the scattered field? by varying the angle of the
incident plane wave. The reconstruction of the map of per-
mittivity is then performed with a simple Fourier trans-
form. To compensate for the missing cones in the Fourier
space due to the limited solid angle of collection and illu-
mination and the discrete number of measures, recon-
struction procedures using interpolation techniques,
backpropagation algorithms, and least-squares minimiza-
tions have been developed.*® These methods are justified
when there is a linear relationship between the scattered
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field and the Fourier components of the permittivity, i.e.,
under the weak-scattering approximation.

Recently, a 3D linear inversion procedure based on the
reconstruction of the induced currents in the object has
been proposed to address imaging of objects with moder-
ate dielectric contrast and size.® Combined with an appro-
priate posttreatment, it leads to the resolution of two
cubes of permittivity e=2.25 and of side \/4 separated by
\/4 in the transverse plane, or \/2 in the axial direction,
with relatively few illumination and observation
directions.

In this work, we consider the same experimental con-
figuration, and we propose a nonlinear inversion scheme
that takes into account the multiple-scattering effect. Al-
though the presented inverse scheme does not use any
regularization technique nor postprocessing procedure in-
cluding prior information on the sample, it yields a higher
resolution than that reached in the previous work of the
authors.® In Subsection 2.A, we sketch the coupled-dipole
method that is used to simulate the experiment and in
Subsection 2.B we describe the inversion procedure. In
Section 3, we present several reconstructions from syn-
thetic data and investigate the axial and transverse reso-
lution and the role of multiple scattering. We analyze the
sensitivity of the reconstruction to correlated and uncor-
related noise, and we point out the ability of our tech-
nique to image complex 3D objects. In Section 4 we
present our conclusions.

2. THEORY

A. Formulation of the Forward-Scattering Problem

The coupled-dipole method (CDM) was introduced by Pur-
cell and Pennypacker in 1973 for studying the scattering
of light by nonspherical, dielectric grains in free space.’
The object under study is represented by a cubic array of
N polarizable subunits. The monochromatic electromag-
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netic field at each subunit can be expressed with the fol-
lowing self-consistent equation:

N
E(r)=E™@r)+ > T(r,r)a(r)Er;), (1)

j=1,j#i

where E™(r;) denotes the incident field at the position r;,
i.e., the total electric field that would be observed in the

absence of the scattering object. T describes the linear re-
sponse of a dipole in free space8 and a(r)) is the polariz-
ability of the subunit j. According to the Clausius—
Mossotti expression,” the polarizability distribution «

may be written as

3d3 e(r) — g

Es(rj) + 280 ’

(2)

a(rj) =

where d is the spacing of lattice discretization and &(r))
the relative permittivity of the object. The relative per-
mittivity of the homogeneous background medium is de-
noted by &(. This expression of the polarizability corre-
sponds to the weak form of the CDM and is accurate
enough for the present study. However, in a different
topic, such as optical force analysis!®? or extinction-
cross-section modeling,13 one needs to take into account
the radiative reaction term. The material under test is as-
sumed to be isotropic. Hence, the relative permittivity
&(r;) and subsequently the polarizability are both scalars.
Once Eq. (1) is solved, the scattered field Ed(r) at an ar-
bitrary position r exterior to the object is given by

N
El(r)= Y T(r,r)a(r)E;). (3)

J=1

For the sake of simplicity Eq. (1) is rewritten in a more
condensed form as

E=E™+Ap, (4)

where A is a square matrix of size 3N X 3N and contains
all the field susceptibilities T(r;,r;). Further

E= [Ex(rl)}Ey(rl)7Ez(r1)7 cee 7Ez(rN)]}
Einc = [chnc(rl)’Eji/nc(rl)’Eiznc(rl)> o 7E;nc(rN)]?

pP= [px(rl)’py(rl)apz(rl)’ s vpz(rN)]’

where E and E™° denote the total and the incident elec-
tric field, respectively. The dipole moment p is related to
the electric field as p(r;)=a(r; E(r;).

In an ODT experiment, the scattered field is collected
at M observation points for L successive illuminations.
Let Eld be the scattered field corresponding to the /th illu-
mination. We can then rewrite the far-field Eq. (3) in the
condensed form

E{=Bp, (5)
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where [=1,...,L, and B is a matrix of size 3M X 3N. The

matrix B contains the field susceptibilities T‘(rk,rj),
where r; denotes a point in the discretized object with j
=1,...,N, while r, is an observation point with £

=1,...,M. Note that B does not depend on the angle of
incidence.

B. Formulation of the Inverse-Scattering Problem

The geometry of the problem investigated in this paper is
illustrated in Fig. 1. We assume that an unknown 3D ob-
ject is entirely confined in a bounded box Q) C R? (test do-
main or an investigating domain) and illuminated succes-
sively by /=1, ...,L electromagnetic excitations E;2] ;.
For each excitation [, the scattered field f; is measured at
M points on a surface I' that is located outside the inves-
tigating domain ().

The inverse-scattering problem is stated as finding the
permittivity distribution e inside the investigation do-
main () such that the associated scattered field matches
the measured field f;_; ;. Many accurate iterative tech-
niques have been developed to solve this inverse problem.
In these methods, starting from an initial guess, one ad-
justs the parameter of interest gradually by minimizing a
cost functional involving the measured scattered-field
data. Two main approaches can be found in the literature.
In the first one,Mf17 the linearized method, the field in the
test domain () is considered fixed. This field is the solu-
tion of the forward problem—the solution of Eq. (4)—for
the best available estimation of the permittivity at each
iteration step, or it is the reference field if the Born ap-
proximation is assumed.

In the second approach,'® typically the modified gra-
dient method, the field inside the test domain () is an un-

Illumination

Fig. 1. Sketch of the illumination and detection configuration of
the ODT experiment. The observation points are regularly placed
on the half-sphere I' (with a radius of 400 \). The illumination is
as represented by the arrows, which denote a plane wave propa-
gating toward positive z. For the ODT experiments, the authors
took as illumination 16 plane waves in both planes (x,z) and
(y,2). The angle between the incident wave vector and the z axis
ranges over —80° to 80°. See text for more detail.
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known that is obtained, together with the permittivity, by
the minimization procedure. A hybrid method?*?? that
combines the ideas from the two approaches has also been
developed. All these methods deal with 2D inverse-
scattering problems. In three dimensions, most tech-
niques use a linear inversion based on the Born
approximation®?® and are restricted to the scalar case.

Recently, a more advanced method, namely the
contrast-source-inversion (CSI) method,24 has been intro-
duced for solving the full vectorial 3D problem.?*?® In the
CSI method the induced dipoles are reconstructed itera-
tively by minimizing at each iteration step a cost func-
tional involving both far-field Eq. (5) and domain-field Eq.
(4). Here, we also present an iterative approach to solving
this nonlinear and ill-posed inverse-scattering problem in
which at each iteration step the forward problem, Eq. (4),
is solved for the available estimation of the polarizability
a. Thus, the field inside the test domain () is considered
fixed at each iteration step. The sequence {a,} is built up
according to the recursive relation

a, =1+ andn’ (6)

where the updated polarizability «, is deduced from the
previous one «,_; by adding a correction. This correction
is composed of two terms: a scalar weight a,, and a search
direction d,,. Once the updating direction d,, is found (this
will be specified below), the scalar weight a,, is deter-
mined by minimizing the cost functional F,(«,) involving
the residual error h;, on the scattered field computed
from observation Eq. (5),

hl,n = fl - éanEla (7)

with E; being the total electric field that would be present
in  if the polarizability distribution were «. This field
can be written symbolically from Eq. (4) as

E =[I-Aa] 'E™, (8)

with I being the identity matrix.
The cost functional F,,(a,) mentioned above reads as

L
DR Y

Falay) = —g——— =W [y}, (9)
e
where the subscript I' is included in the norm. ||| and
later the inner product {-|-) in L2 to indicate the domain of
integration.

Note that substituting the expression of the polarizabil-
ity «a, derived from Eq. (6) in Eq. (9) and approximating
the actual field E; by the field that would be present in
the investigating domain ) for the best available esti-
mate of the polarizability «, i.e.,

E ~E;,_;=[1-Aq, ] 'E™,
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leads to a polynomial expression with respect to the sca-
lar coefficient a,. Thus the minimization of the cost func-
tional F,(a,) is reduced to a minimization of a simple cost
function F,(«,). Moreover, for the particular case of di-
electric material, i.e., the polarizability « is real, the cost
function F,(a,) takes the form

L

Fulay) = Wi, (hy, |7+ a?z”i)'dnEl,n—lH?‘

=1
- 2a, Re(hy ,_1[Bd,E;,_1)r). (10)

In this case, the unique minimum of 7, («,) is reached for

L =
21:1 Re(hl,n—1|BdnEl,n—1>F
a,= — — (11)
> IBdE,,

As updating direction d,, the authors take

dn =gn;a + ’)/ndn—b (12)

where g, is the gradient of the cost functional 7, with re-
spect to the polarizability assuming that the total fields
E,; do not change:

L

8nja=" WFE E;,n—l : ﬁThl,n—l’ (13)
=1

in which u” denotes the complex conjugate of u and B
represents the transposed complex conjugate matrix of

the matrix B.
The scalar coefficient v, is defined as in the Polak—
Ribiére conjugate-gradient method?” by

<gn;a‘gn;a - gn—l;a>F
Yy =
" Hgn—l;a”%‘

To complete the inverse scheme, we need to specify the
initial guess. As initial estimate for ay the authors take
the estimate obtained by the back-propagation procedure.
This technique is described in detail for the 2D problem in
Refs. 21 and 28-30. The extension to the 3D problem is
straightforward and therefore does not need to be pre-
sented here.

(14)

3. NUMERICAL RESULTS

In this section we report some examples of reconstruction
of targets from synthetic data for different configurations
simulating ODT experiments. In all examples, the syn-
thetic data were computed using the CDM in which the
mesh size /20 of the scattering domain () is different
from that used in the inversion A/10, where \ stands for
the wavelength of the incident field in the background
medium. The scattered fields are evaluated at 65 points
regularly distributed on half-sphere I' (see Fig. 1). The ra-
dius of the sphere is 400 \ so that only far-field component
data are considered and the diffracted field at the obser-
vation point can be considered a plane wave with wave
vector k,. The azimuthal angle of observation, defined as
the angle between the diffracted wave vector and the z
axis, ranges from 6=-80° to 80°. The incident fields con-



Belkebir et al.

sist of 16 plane waves. Eight plane waves have their wave
vector k and their electric field in the (x,z) plane (which
corresponds to the p polarization), while the others have
their wave vector and field in the (y,z) plane. The angle of
incidence, defined as the angle between the incident wave
vector and the z axis, varies from 6¢=-80° to 80°. In all
the reconstructions, the investigation domain is a box of
side 1.6\ surrounding the object, except in Figs. 9 and 10
below where the side of () is 2\. The reconstructed per-
mittivity is plotted after enough iterations for the cost
function to reach a plateau.

A. Image of a Single Scatterer; Role of Multiple
Scattering

In most imaging techniques in optics, such as far-field or
near-field microscopes, the resolution is obtained by
studying the “impulsional response” of the system, i.e.,
the image of a dipole (namely, a sphere or cube small
enough that the electromagnetic field can be assumed to
be constant over its volume). The latter is a function of
the three variables of space, called the point-spread func-
tion (PSF). It presents a peak at the dipole position whose
width at midheight along the x,y,z axis is commonly used
to determine the transverse and axial power of resolution
of the imaging technique. In a standard optical micro-
scope in transmission, the width of the PSF is roughly
0.6\/NA transversally and 2n\/(NA)? axially, where NA
=n sin ¢ is the numerical aperture of the system, n being
the index of the propagation medium and ¢ being the
half-aperture of the imaging optics—objective.

Defining the resolution of an imaging system from its
response to a point source is relevant if one can assume
that the image of a collection of dipoles is the convolution
of the PSF with the dipole distribution. While this as-
sumption is clearly justified in fluorescence microscopy, in
which the sources radiate incoherently, it can be ques-
tioned in coherent microscopy or tomography, especially
when multiple scattering is present.

To point out this difficulty, we have studied the image
of a cube of width A\/20 and permittivity £=2.25 as ob-
tained with the nonlinear inversion scheme. Because of
its small width and moderate permittivity, the object can
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Fig. 2. Reconstructed permittivity of a single cube of permittiv-
ity £=2.25 of widths A\/20 (dashed curve) and \/4 (solid curve).
Upper figure, plot of the relative permittivity along the x axis;
lower figure, plot along the z axis. The legend on the left is for the
solid curve (large cube), on the right for the dashed curve (small
cube).
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be assimilated to a radiating dipole and its image can be
considered as the PSF of our system. In Fig. 2 we compare
the reconstructed permittivity of the dipole along the x
and z axis to that of a cube of width A/4 and same permit-
tivity. The most important feature of Fig. 2 is that the
width of the permittivity peak of the larger cube along the
z axis is smaller than that of the dipole.

To confirm this surprising result, we have applied our
nonlinear inversion scheme to two dipoles whose centers
are separated by 0.6\, and we compare the reconstructed
map of permittivity to that of two cubes of width A/4
whose centers are separated by the same distance. In Fig.
3(a) we display a map of the reconstructed permittivity of
the dipoles while in Fig. 3(b) we plot the normalized re-
constructed permittivity contrast (e—1)/max(e—1) along
the z axis for the two dipoles and the two cubes. We ob-
serve that the two dipoles are not resolved while the
cubes are easily distinguished. In our opinion, the pres-
ence of multiple scattering and the use of a nonlinear in-
version scheme is responsible for the better resolution of
the image of the two cubes. This observation calls in ques-
tion the notion of resolution as usually defined by the PSF
and it points up the difficulty of defining it in a nonlinear
imaging system.

One can get a physical insight into the role of multiple
scattering with the following arguments. Consider an ob-
ject defined by its permittivity contrast with the back-
ground medium (vacuum), Ae(r)=&(r)—1. The object is il-
luminated by a plane wave with wave vector k. The far
field diffracted along the direction defined by the
wavevector kg can be assimilated to a plane wave with
amplitude E(kg, k). Assuming the Born approximation,

the latter is proportional to Az(kq—k) where Ag is the 3D
Fourier transform of Ag.’! Hence, under the single-
scattering approximation, the far-field amplitudes are di-
rectly linked to the Fourier transform of the permittivity
contrast. By studying the spatial frequency domain, or
the portion of the Ewald sphere that is covered by the ex-
periment, one can estimate the limit of the resolution of
the imaging system. In our configuration, the boundaries
of the accessible spatial frequencies are roughly
[-2kq,2k] in the (x,y) plane and [-k(,kq] along the z
axis. Consequently, the expected widths at midheight of
the dipole image are about \/4 along the x axis and \/2
along the z axis. The better result observed in Fig. 2 is
due to the a priori information of the location of the dipole
in a relatively small investigation box.® Note that the PSF
of a tomography experiment is naturally smaller than
that of a microscope with the same NA! because of the use
of multiple illuminations.

When multiple scattering is present, the classical Fou-
rier analysis no longer holds. Indeed, in this case, the am-
plitude of the far field diffracted in the kq4 direction car-
ries information on the Fourier transform of the
permittivity for all spatial frequencies. More precisely, by
iterating the Born series, it is shown that the second or-
der of E(kgq,k) can be cast in the form
IB(ky,k, k') Ae(ky-k’)As(k’ ~k)dk’.?? Thus, it should be
possible to obtain a better resolution than that classically
expected from considerations of the single-scattering ap-
proximation. Note that the presence of multiple scatter-
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(a) Map in the y=0 plane of the reconstructed permittivity of two dipoles (cubes of width A/20, £=2.25) separated by 0.6\ along

the z axis. (b) Normalized reconstructed permittivity contrast [(e—1)/max(e—1)] versus z/\ for x=y=0: dashed curve, two dipoles sepa-
rated by 0.6\ along the z axis; solid curve, two cubes of width \/4, £¢=2.25, whose centers are separated by the same distance as the

dipoles, 0.6\, along the z axis.
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Fig. 4. Two cubes of side a=\/4 separated by a distance ¢c=\/7 along the x axis. (a) and (b) show reconstructed maps of permittivities
with a test domain of size (1.6 X 1.6 X 1.6) \%; the square in dashed line indicates the position of the actual cubes: (a) map of the relative
permittivity in the plane (x,z) for y=0; (b) map of the relative permittivity in the plane (x,y) for z=0. (c) Relative permittivity versus x

for y=2z=0 (dashed curve) and the actual profile (solid curve).

ing is linked to the size of the objects and to their dielec-
tric contrast. Thus, it is to be expected that the power of
resolution of a nonlinear imaging system depends on
these two parameters. This will be confirmed in Subsec-
tion 3.B.

B. Spatial Separation of Two Scatterers

To check the resolution along the x axis or z axis, we have
taken two cubes of side a=\/4 and permittivity £=2.25
that are placed either along the x axis and separated by a
distance ¢c=\/7 or along the z axis and separated by a dis-
tance c=\/3 (the centers of the cubes are separated by c
+M\/4).

We have first tried the linear inversion scheme pre-
sented in Ref. 6, which is based on the reconstruction of
the induced dipoles inside the test domain. Even with a
posttreatment, the method failed to distinguish the two
cubes, either in the x or z directions. We have also
checked an inversion procedure based on the extended
Born approximation. This approximation yields a better
estimation of the internal electric field than the standard
Born approximation, Ref. 33, and it permits one to skip
the resolution of Eq. (8) during the iterative process. This
method allowed us to resolve the two objects placed along
the x axis, though with an estimation of the relative per-

mittivity significantly smaller than the actual one, but
failed in resolving the two cubes placed along the z axis.

On the other hand, the full nonlinear scheme was suc-
cessful in retrieving accurately the location, permittivity,
and size of the cubes in both configurations, as can be
seen in the views of the reconstructed permittivity maps
in the (x,y) and (x,z) planes, Figs. 4 and 5. Not surpris-
ing, when multiple scattering is present a nonlinear in-
version scheme is more efficient than a linear one. The
slight shift of the positions of the cubes in Fig. 5 along the
positive z axis can possibly be explained by the nonsym-
metric configuration of the illumination and collection
and the shadowing effect between the cubes. This shift
vanishes when the illumination is symmetric with respect
to the (x,y) plane, or when the separation of the cubes is
increased.

We now check the influence of the permittivity of the
objects on the reconstruction. In Figs. 6(a)-6(c) we plot
the reconstructed permittivity versus z/\ for x=y=0 of
two cubes of width N/4 separated by ¢=\/3 along the z
axis, with permittivities e=1.01, 2.25, and 4, respectively.
We first observe that the retrieved value of the permittiv-
ity is correct in the three cases. This shows that our im-
aging system permits the characterization of the sample.
Second, we find, as expected, that the greater the permit-
tivity, the better the resolution of the two cubes. In par-
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ticular, when £=1.01, the Born approximation is valid
and the inversion scheme fails to resolve the two cubes. In
our opinion, this example emphasizes the role of multiple
scattering in the resolution.

C. Robustness against Noise

In this section we analyze the robustness of our inversion
algorithm with respect to different kinds of noise. First,
the scattered far-field data, f;_; _;, are corrupted with
uncorrelated noise on each component of the electric field,
and for each observation point

Re[f.,(r)] = Relfy., ()] + uA, &, (15)

Im[?l;v(rk)] = Im[fl;v(rk)] + uAi M

where v stands for the component along x, y, or z. &, and
7y, are random numbers with uniform probability density
in [-1,1], and u is a real number smaller than unity that
monitors the noise level:

Ar = max{[Re(fl;v)] - min[Re(f};v)]}l=1,. .Livs

(16)

Ai = max{[:[m(fl,v)] - min[Im(fl;U)]}l=l,. Ly

Figure 7 shows the effect of noise on the reconstructed
maps of relative permittivity versus the noise level u. The
reconstructed objects are always perfectly localized in
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both planes (x,z) and (x,y) whatever the value of u [5% or
15%; see Figs. 7(a), 7(b), 7(d), and 7(e)]l. The separation
between the two cubes is still visible, the only effect of the
uncorrelated noise being an increase of the relative per-
mittivity. As shown in Figs. 7(c) and 7(f), when u in-
creases, the maximum of the relative permittivity in-
creases. In fact, in the case presented A, and A; are both
positive, hence the intensity of the noisy scattered field,
averaged over the observation domain I', is larger than
the intensity of the uncorrupted field. In our opinion the
consequence is a larger relative permittivity in the recon-
struction to counterbalance the increase in this intensity.

The previous noise was uncorrelated but it is most
likely that experimental noise will be correlated. Indeed,
because of the envisaged experimental setup, we have
suspected cumulative errors on the phase measurements
as one moves away from the specular direction. Hence, to
be faithful to the experimental setup, we have chosen a
correlated noise of the form

?l;v(rk) =fl;v(rk)eiwl;v, ‘!’l;v = l!"?,y + (!f(lly (17)
where v denotes the component x, y, or z; [=1,...,L; and
k=1,...,M. l/f‘iv is a Gaussian noise with mean 0 and

standard deviation o while ¢ is a correlated noise de-
fined as ¢§=|ky;-k|/|k|y/2. In the experimental configu-
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Fig. 5. Two cubes of size a=\/4 separated by a distance c=\/3 along the z axis. (a) and (b) show reconstructed maps of permittivities
for a test domain Q sized (1.6 X 1.6 X 1.6) A3; the square in dashed line indicates the position of the actual cubes: (a) map of the relative
permittivity in the plane (x,z) for y=0; (b) map of the relative permittivity in the plane (x,y) for z=0. (¢) Comparison between the re-
constructed relative permittivity (dashed curve) and the actual profile (solid curve) versus z for x=y=0.
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Fig. 8. Same as Fig. 7 but the noise consists now of multiplying the scattered field by a phase factor of the form e‘¥ as specified in Eq.
(17). The term of Gaussian noise is of a standard deviation o=5°, and for the correlated phase #* we have chosen |y|=10°. For the upper
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ration, Fig. 1, the most important error on the phase,
max(®) = v, occurs when kax=-ky, or kgy=-k,, and the
maximum angle of incidence is §™°=+80°.

We note that the correlated noise, Fig. 8, has more im-
pact than the uncorrelated one on the reconstructed map
of permittivity. In the (x,y) plane, the localization, size,
and value of permittivity are still accurate [Figs. 8(b) and
8(e)]. The two cubes are resolved without any doubt since
the reconstructed relative permittivity vanishes between
them as shown in Figs. 8(c) and 8(f). The main changes
appear in the (x,z) plane where we observe a shift of the
center of the cubes along the z axis. We note that the shift
is different, following the sign of y. If y is positive (nega-
tive) the reconstructed cubes are shifted in the direction
of negative (positive) z. In fact, when vy is positive the
phase factor ¢ is also positive.

With our model, the maximum error on the phase oc-
curs for the scattered fields far from the specular direc-
tion, i.e., for the data richest in information on the posi-
tion of the objects. For the scattered field far from the
specular direction, the added phase ¢ can be interpreted
as an increase of the optical path. Since the points of ob-
servation are above the plane (x,y) the phase error yields
a shift of the objects in the direction of negative z. Con-
versely, when 7y is negative the error on the phase trans-
lates the two cubes in the direction of positive z. One
notes that whereas for y>0 the value of the relative per-
mittivity is close to the actual one, this is not the case for
y<0: The reconstructed relative permittivity is weaker.
Unfortunately, we did not find a complete explanation of
the underestimation of the permittivity when y<<0. How-
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ever, it is obvious that the two values of y cannot lead to
the same result. This is due to the nonsymmetrical mea-
surement configuration: The illumination and the obser-
vation points are located on opposite sides of the (x,y)
plane.

D. Multiple Scatterers

In the previous cases, we considered a simple target made
of only two cubes. The number of data was 65X16
=1040 (this number should be multiplied by a factor of 2
since we are considering the complex amplitude of the

Table 1. Coordinates of the Center of the Nine
Cubes (a=A/4) Embedded in an Investigation
Domain Q of Volume 8A3“

Coordinates Relative Permittivity
Scatterer x/\ yIN z/\ Fig. 9 Fig. 10
1 -0.575 -0.375 -0.675 2.25 15
2 0.675 -0.375 -0.675 2.25 15
3 -0.325 -0.375 -0.425 2.25 2.25
4 0.675 -0.375 -0.075 2.25 1.5
5 -0.575 -0.375 0.575 2.25 2.25
6 -0.175 -0.375 0.575 2.25 2.25
7 0.575 -0.375 0.575 2.25 2.25
8 -0.325 0.575 -0.425 2.25 15
9 0.675 0.575 -0.075 2.25 2.25

“Maps of the reconstructed relative permittivity by our nonlinear inversion algo-
rithm are presented in Figs. 9 and 10.
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Fig. 9. Nine cubes of side a=\/4 distributed in a test domain of volume 8\® (see Table 1 for their positions). (a), (b), (c), (d) are the
reconstructed maps of the relative permittivities: (a) map in the (x,z) plane for y/A=-0.375, (b) map in the (x,z) plane for y/A=0.575, (c)
map in the (x,y) plane for z/A=-0.675, (d) map in the (x,y) plane for z/\=0.575. (e) Relative permittivity versus x/\ along the horizontal
line plotted in (a). (f) Relative permittivity versus z/\ along the vertical line plotted in (a).
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Fig. 10. Same as Fig. 9 but the cubes have different relative permittivities as detailed in Table 1.

electric field) while that of the unknowns, i.e., the polar-
izability of each cell, was about 3375. Hence, the number
of measurements and unknowns were close to each other
and, finally, only few polarizabilities departed from that of
the background medium. One can wonder what would
happen if the test domain were larger, with several ob-
jects, and the number of unknowns larger than that of the
measurements. Hence, in the last example, we consider
an investigation domain  of side 2\ (V=8)\3) which
yields 8000 unknowns (note that if the relative permittiv-
ity were complex the number of unknowns would be mul-
tiplied by a factor of 2) while the number of data remains
equal to 1040. The sample consists of nine cubes of side
a=M\/4, distributed in the box () as specified in Table 1.
Figure 9 shows, in different planes, comparisons be-
tween the reconstructed relative permittivities and the
actual ones. One can note that, even with many objects
and a number of unknowns larger than the number of
measurements, the reconstructed maps localize without
any doubt the positions of the objects [see Figs. 9(a)-9(d)].
Satisfactory reconstructed profiles have been obtained.
These profiles are plotted in dashed curves in Figs. 9(e)
and 9(f), which show also that the presence of many ob-
jects does not alter the power of resolution along the x or
z axis. The two cubes that are separated by a distance of
N/T along the x axis (cubes 5 and 6 of Table 1) and the two
cubes separated by A/3 along the z axis (cubes 2 and 4)
are accurately resolved. In Fig. 9(f) one can notice the
same shift along the z axis as that observed in Fig. 5.
The nonlinear scheme is also able to characterize un-
known objects by giving a correct estimation of their per-
mittivity. In Fig. 10 we plot the map of permittivity of a
target made of several cubes placed at the same positions
as in Fig. 9 but presenting different permittivities (see

Table 1). The scattered far-field data are corrupted with
the uncorrelated noise described in Egs. (15) and (16)
with ©w=5%. We observe that the location, size, and per-
mittivity of each cube are accurately retrieved. We have
also checked the robustness of the reconstruction to cor-
related noise, Eq. (17), and obtained satisfactory results.

4. CONCLUSION

We have proposed a three-dimensional nonlinear inver-
sion scheme that permits one to retrieve the map of per-
mittivity of unknown objects from their scattered far field
in an optical diffraction tomography experiment in trans-
mission. The efficiency of the algorithm, based on the
coupled-dipole method, has been checked successfully on
complex targets made of many cubes positioned on vari-
ous planes of a box. We have shown that, for objects small
compared to the wavelength and with moderate dielectric
constant, accounting for multiple scattering in the recon-
struction procedure improves the image significantly.
Moreover, we have pointed out that the presence of mul-
tiple scattering permits one to obtain a power of resolu-
tion beyond that classically expected. Moreover, our algo-
rithm is robust to both correlated and uncorrelated noise.
Last, our method can be extended without conceptual dif-
ficulties to configurations that are closer to realistic ex-
periments, for example, objects deposited on a known sub-
strate or buried inside a semi-infinite medium. This can
be done by adding to the tensor of the free-space field sus-
ceptibility the tensor of the environment.?*6
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