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Abstract-Reconstructions of two dimensional dielectric or conducting
objects from multi-frequency experimental data are considered in the
present paper. Two different iterative methods are used for solving the
inverse scattering problem. The first one is based on a boundary in-
tegral formalism and retrieves boundaries and complex permittivities
of unknown homogeneous scatterers. For this method initial guesses
are derived from method of decomposition of the time reversal opera-
tor (DORT) combined with a low frequency approximation. The sec-
ond method is based on a domain integral formalism and retrieves the
relative complex permittivity distribution inside some investigated do-
main. The data were carried out in a controlled environment (anechoic
chamber) and the reconstructions have been performed using multi-
frequency approach, i.e., the scheme starts with the lowest available
frequency and uses the final result as initial guess at higher frequency
in order to enhance the resolution.

1. INTRODUCTION

The present paper deals with the reconstruction, from a measured scat-
tered field, of the shape and of electromagnetic parameters of unknown
objects illuminated by a known electromagnetic excitation. During
the last decade the development of algorithms for solving such inverse
scattering problem has gained much interest. There are several ways
to tackle the problem depending on the application at hand and on
the realistic assumptions to be made. For example, a quasi-real time
reconstruction can be reached with algorithms based on diffraction to-
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mography [1, 2] but the price to be paid is that the reconstruction
is merely qualitative in the sense that only the induced current den-
sity distribution is retrieved. Another approach for solving the inverse
scattering problem is the use of iterative methods [3-7] which, starting
from an initial guess of the parameter of interest, adjust step by step
the unknown by minimizing an adequate cost function related to the
discrepancy between the data and those that would be generated with
the estimated parameter. When dealing with synthetic data, some care
has to be taken to avoid an inverse crime, which is described in [8] as
occurring when the forward solver used to generate the data is also used
in the inversion procedure, or when the same discretization is used in
both numerical procedures. An obvious step is to validate the inversion
algorithms with real data obtained in a controlled environment. This
might be an intermediary step, before applying inverse algorithms to a
realistic configuration which is always extremely complicated. The Ip-
swich data base is available for teams developing algorithms to solve the
inverse scattering problem. Results have been obtained with different
methods including: (i) diffraction tomography, (ii) linearized methods
such as the distorted wave Born method or Newton-Kantorovich algo-
rithmn, (iii) the modified gradient and its variant the contrast source
inversion method. These results are reported in [9-15] for the first set
corresponding to simple shaped objects. For more complicated objects,
the results are presented in [16-23] and [24-31] for the second and third
set, respectively. The experimental setup is described in [9] and the
measured data were provided courtesy of Rome Laboratory Electro-
magnetic Measurement Facility, in Ipswich, Massachusetts. The data
consist in a measured scattered far field for a single frequency with
several angles of incidence.

In order to enlarge the scope of applications and inspired by the
Ipswich sessions, we carried out a series of experiments in the anechoic
chamber of the Center Commun de Resources Micro-ondes (CCRM) in
Marseille. This facility has been designed for three-dimensional bistatic
measurements, thanks to three angular degrees of freedom. Therefore,
most configurations encountered in applications can be reproduced, for
instance a fixed transmitter with a mobile receiver, or a transmitter and
a receiver moving together, or both moving independently. We used the
latter configuration, with two degrees of freedom only, since the study is
restricted to cylindrical objects. Indeed, the algorithms tested here are
based on rigorous integral formalisms, and lead to iterative processes
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with the aim of minimizing a cost function. One of them, based on
the modified gradient method [6, 32}, can deal with a large variety of
problems, involving inhomogeneous and large contrasted objects. As
a counterpart, this algorithm is numerically expensive, thus has been
developed for two-dimensional problems first.

The reconstruction can be speeded up with the help of additional
assumptions. For instance, it is well known that, for low contrasts
between the scatterer and the embedding medium, the Born approx-
imation makes the inverse scattering problem linear and its solution
can be obtained rapidly. Here, we have tested a method restricted
to homogeneous objects, with arbitrary contrasts. In this case, the
domain integral equations can be replaced by boundary equations, in-
volving much less unknowns. The generalization of this method to
three-dimensional inverse problems would not require large numeri-
cal facilities. In order to validate both domain and boundary integral
methods, the reconstructions from real data performed in this paper
only concern homogeneous objects, either dielectric or metallic,

The cost functions often present local minima, and methods to avoid
being trapped in them are generally time consuming [33]. ‘To overcome
this problem, a multiple frequency approach has been implemented [34,
35], i.e., the iterative scheme is started at low frequency and the final
result is used as initial guess at higher frequency in order to enhance
the resolution. Indeed, it has been observed that local minima are
avoided at low frequencies thanks to the accuracy of the initial guess
derived from an approximate theory, and that convergence is more
easily and rapidly achieved. Since the frequency of the experimental
setup is tunable from 1 to 18 GHz, multi-frequency data have thus
been recorded between 1 and 8 or between 2 and 16 GHz, depending
on the size of the scatterer.

How to model the incident field is another important issue when
dealing with real data. The difficulty is reinforced when the algorithm
is restricted to two-dimensional geometries, where the field emitted
by the horn antenna must be represented by a cylindrical wave. From
measurements without any scatterer and from far-field approximations,
an estimation of the value and of the polarization of the incident field
has been derived in the target area. For reconstruction purposes, this
estimated field is approached with the help of fictitious wire antennas.
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Figure 1. Geometry of the problem.

2. NOTATIONS AND STATEMENT OF THE PROBLEM

The geometry of the problem studied in this paper is depicted in Fig. 1
where a two-dimensional object of cross-section {}; with arbitrary
boundary C; is confined in a domain (. The embedding medium (2, is
assumed to be infinite and homogeneous, with permittivity €, = €o&rp,
and permeability g = po. The scatterers are assumed to be homo-
geneous cylinders when dealing with boundary integral formalism and
inhomogeneous when dealing with domain integral formalism. The
permittivity of the scatterers is denoted by &; == gger; and the perme-
ability p; = o .

A right-handed Cartesian coordinate frame (O, ex, ey,€;) is de-
fined. The origin O could be either inside or outside the scatterer
and the z-axis is parallel to the axis of the scatterer, When needed,
cylindrical coordinates (p,#,z) are also used and the position vector
OM is written as:

OM =ze,+ye,+2e,=r+ze,. (1)

The unit normal vector n to the scatterer is directed outwards the
cylinder and the unit tangential vector is defined by: t=nxe,.
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The sources are assumed to be lines parallel to the z-axis, located
at (r7)1<i<r . Therefore, the diffraction problem can be reduced to a
two-dimensional one with two fundamental cases of polarization: the
E;, case and the H;, case depending on whether the electric field or
the magnetic field is parallel to the z-axis respectively. Taking into
account a time dependence in exp(—jwt), in the E /) case the time-
harmonic incident electric field created by the Ith line source is:

W

Efnc(r) = Eimc(r)ez = Pe,

RHD (ks le—xil),  (2)

where P is the strength of the electric source, w the angular fre-
quency, Hc(,l) the Hankel function of zero order and first kind, %, the
wavenumber in the surrounding medium.

For the inverse scattering problem we restrict the study to the Eyy
polarization and we assume that the unknown object is successively
illuminated by ¢ = 1,...,L electromagnetic excitations and for each
incident field the scattered field is available along a surface I" at M

positions.

3. INVERSION ALGORITHM BASED ON BOUNDARY
INTEGRAL FORMALISM

3.1 Integral Equation

For the sake of simplicity, the equations are established with one
cylinder, but the generalization to several cylinders is straightforward.
The forward two-dimensional problem is solved using a boundary in-
tegral equation, based on a single layer representation of the scattered
field B¢ = E — Einc with density ¢:

Edr) = fc Glr, v )p(r)ds'. (3)

where G is the 2D free-space Green function G(r,r’) = —%Hél)(k”r——
r’[}. The unknown surface density ¢ satisfies the boundary integral
equation written in the operator form [36]:

Ap=B (4)
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where, identifying the integral operators and their kernel,

(5 dG § dG

A_(-é—dn) G+Gl( dﬂ) (5)
5 dGi\ i, dE

B—‘(ﬁ"aﬂE"%ﬂ. (6)

with

e G; defined as G but with the wavenumber k;,

o dG being the normal derivative evaluated at v,

° ﬁl being the normal derivative evaluated at r

The mtegral equation is transformed into a linear system using a
boundary finite element method. The boundary C; is represented by
a polygonal contour with N segments. The result is a dense linear
system of N equations solved by a classical LU decomposition. For
typical examples, N ranges from 50 to 100.

3.2 Cost Functional

The aim of the computation is to determine the shape C; and the
permittivity &; of the diffracting cylinder from the knowledge of the
permittivity of the embedding medium ¢, the incident fields (Emc)
and the set of L x M measured fields f;,, . The shape and the per-
mittivity are alternatively estimated in an iterative scheme, in order
to minimize a cost functional which gives the normalized deviation be-
tween the computed field and the measured one. This cost functional
is defined by:

Ed rm) f,m,2
(C;,Eg = LxM‘ZZ' !f,ml : l (7)

l=1 m=1

where, for a given receiving antenna located at ry, and a given incident
field Ei",
e fi;m is the measured scattered field,
® E;i(rm) is the field scattered by an object with boundary C; and
permittivity €;.

3.3 Shape Reconstruction

The minimization of the above cost functional is performed by a
conjugate gradient method with linear search of the minimum in the
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conjugate direction. In order to find a new shape at each step of the
iterative algorithm, the functional derivative of F is needed. If §E¢
is a given change in the computed field, a simple differentiation yields:

L M d % dI‘m

f {, f im
where the overbar denotes complex conjugation.

The adjoint state method [37, 38}, based on the Lorentz reciprocity
theorem, is used here to calculate the variation of the electric field §E
as a function of a small change 8C; of the shape C;. It is shown that
the functional derivative can be written as a simple boundary integral
of the solution of two adjoint diffraction problems:

5E‘l(rm) ~ jw(ei - Eb)/ EI.EFJCi ds. ' (9)

C;

where B denotes the electric field obtained when the line source is
located at the observation point ry, .

3.4 Determination of Permittivities

The determination of the permittivity ¢; is also achieved by min-
imizing the cost functional described in Section 3.2, with the same
conjugate gradient method. The profile C; of the cylinder is fixed and
the aim is to compute the gradient of the cost functional with respect
to the permittivity ¢; . From the definition of the wavenumber k; and
the properties of derivation of composed functions, we have:

§F 8k 6F ki OF

652 58, 5&; 25,- 6_1.,, (10)

In order to compute g—,ﬁ: , the expression (8) shows that computation

of %%i is needed. Starting from (3), we derive:

& )
E(r)z/ﬁ(}'(rr)di( )dsmG£ (11)

Note that %’f—f = g«f‘f because the incident field is independant of ;.
Now, to evaluate g{f{:—_ , we have to solve the integral equation obtained
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by taking the derivative of (4) with respect to the wavenumber F;.
This yields:
s _om oA
8k 8k Sk

¢ (12)

1t results that here also, the derivative is obtained by solving two linear
systems with the same matrix, representing the integral operator A.

3.5 Initial Guess

Our iterative scheme requires some initialization which, in general,
cannot be arbitrary. Indeed, since the cost function may have local
minima, one must start as “close” as possible to the solution. In ad-
dition, since we have not been able to build a rather systematic and
reliable criterion to split or to coalesce the various boundaries during
the reconstruction process, the number of scatterers in the investigated
area must be known. To overcome this problem, we first attempt to
derive the number of scatterers and their location directly from the
data. With this aim, we apply the so-called decomposition of the time
reversal operator (DORT) method {39]. The principle is as follows:
for each source radiating alone, M values of the scattered field are
recorded by the receivers. This way, a M by L matrix T is built.
Since here time reversal and phase conjugation are equivalent [40], the
combination of the direct and of the time-reversed scattering events
is thus described by H = T*T, where T* denotes the adjoint of T,
and H represents the so-called time reversal operator.

The properties of the time reversal operator in the frame of a rig-
orous electromagnetic theory have been extensively studied in a re-
cent paper [41] For a single cylindrical scatterer in the low frequency
range, the eigenvalues distribution follows that of the coefficients of the
Fourier-Bessel expansion of the scattered field. Therefore, in s polar-
ization, provided that the size of the scatterer does not exceed half a
wavelength, the zero order term strongly dominates. Consequently, the
associated eigenvalue remains much larger than the others. Since this
term describes the isotropic part of the radiated field, the correspond-
ing eigenvector provides the distribution of the L complex amplitudes
allowing one to synthesize a cylindrical wave focusing onto the scatterer
from I line sources placed at (rp)m . This method is very efficient to
get an accurate estimation of the location of a scatterer. In addition,
it is very robust against noise, as can be predicted from the capacity
of phase conjugation mirrors to compensate wave front perturbations



Validation of 2D inverse scattering algorithms 1645

during the backpropagation. When several objects are present, their
number can be easily deduced from the eigenvalues distribution if their
scattering cross-sections are comparable. The behavior of the eigenvec-
tors may be less obvious, but some means to obtain the location of the
objects have been suggested in [41]. Concerning permistivity, though
approximate methods could provide some estimation, it is arbitrary
set to the one of the surrounding medium.

3.6 Regularization

In the shape reconstruction process, the conjugate gradient algo-
rithm minimizes the cost functional F' by computing the displacement
0M,, of the middle of each segment along the normal. At each step
of the iteration, it gives us the new middles from which the position
of the new vertices are determined. A drawback is to take N as an
odd number. Besides, we have noticed that the reconstructed profile
becomes very irregular after just a few iterations. To overcome this
problem, we propose a regularization based on a new representation of
the profile as a Fourier series.

Numerically, the regularization procedure is as follows: starting
from a circular profile, parameterized by the function C(8) = ag +

ay exp{j8), our iterative process computes % and fﬂﬁl in order to

find the optimal coefficients ap and a; which represent the center
and the radius respectively. The profile obtained is called “optimal
circle”. Then, the coefficient a_; is inserted and the function becomes
C(0) = ap + a1 exp(j8) + a1 exp(—j8) . The initial values ap and a;
are those found for the “optimal circle” and a_; = 0. As previously,
we search for the optimal coefficients ag, a1, and a_; by computing
fTFO, 5{11’: , and 5‘;‘? - to obtain the “optimal ellipse”, Afterwards, we

repeat the same process with more and more Fourier coefficients.

4. INVERSION ALGORITHM BASED ON DOMAIN
INTEGRAL FORMALISM

4.1 Principles of the Algorithm

The direct scattering problem may be formulated as two contrast-
source integral relations (i) the state or observation equation and (ii)
the field or coupling equation
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EfreD) = fﬂng (v') E (v} G {r,7)dr’, (13)
E(re)=Em+ Lkgx (') E; ()} G (x, 1) dr', (14)

where y(r) = &,(r) — &4 denotes the permittivity contrast, G(r,r'}) is
the two dimensional homogeneous free space Green's function and kg
represents the wave number in vacuum. For the sake of simplicity, the
equations (13), (14) are rewritten using the operator notation, thus:

Efi = Kx£E, (15)
E; = EI" + GxE;, (16)

The inverse scattering problem consists now in finding the function
x{r € Q) in the investigated area 0 (test domain} so that the
diffracted field associated to y matches the measured diffracted field
filr € T). In the present section, we have limited the study to iter-
ative approaches such as the Modified Gradient Method, referred to
from now on as MGM.

The general principle of the MGM for solving this inverse scattering
problem is to build up two sequences related to contrast and total field
inside the test domain {x,} and {FE,,}, respectively, according to
the following recursive relations:

El,n = El,n-—l + Vi p, (17)
Xn ®= Xn—1+ Pnda, (18)

where v, and d, are search directions with respect to the total
field E;, and to the contrast, respectively. The choice of these search
directions will be discussed in the next section. The coefficients «y
and 3, are weights that are chosen at each iteration step n so as to
minimize the normalized cost functional Fy(xn, Fyn) given by:

. ZH

Fn(Xn:Eln) +

Z !lEf"cué Z 17202
I=1

L

= Waq Z

I=1

o (19)
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where the normalizing coefficients Wq and Wy are as follows:

1 1
anL_m—Q’ pVFZ I (20)
i 2
2_M1E g DAl
=1 B=1
The subscripts T' and Q are included in the norm ||-|| and later in
the inner product < ,- > to indicate the domain of integration. The

functions h( ) and hl(n) are two residual errors. The first one is the

residual 61101 with respect to the incident field in the test domain
computed from the field or coupling equation. The second residual
error is the error on the scattered field computed from the state or
observation equation.

b = E{" ~ Eypy + GxnEip, (21)
= fi — KxnEin- (22)

The use of a priori information may improve the inversion algorithm.
For instance in [42] a binary constraint is used to reconstruct the shape
of homogeneous object with known constitutive parameters and in [43]
none-negative a priori information is applied to a pure imaginary con-
trasted object (conducting object) and in [44] non-negative a priori
information is used to retrieve the shape of homogeneous object. We
incorporated here a priori information stating that the real and imagi-
nary parts of the scatterer’s relative complex permittivity are non neg-
ative. Instead of retrieving a complex function ¥, , two real auxiliary
functions &, and 7, are reconstructed such that

Xn =1+ fg + jﬂrgz — Erpy (23)

wherein the real and imaginary parts of the relative complex permittiv-
ity distribution are forced to be greater than unity and non negative,
respectively (Rele;] > 1; Qmlg,] > 0). The recursive relation with
respect to contrast x, (18) is splitted into

&n = fn—l + JBn;Edn;Ea (24)
M == Tp-—1 + ﬁn;ndnm- (25)

Once the updating directions dpe, d,, and vy are found, F, is a
nonlinear expression with L complex variables (o) and two real
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variables (Bne, Ony). The minimization of Fp is accomplished using
the Polak-Ribiere conjugate gradient method {45].

4.2 Search Directions

As updating directions dp¢ and dp;,, the authors take the standard
Polak-Ribi¢re conjugate gradient directions [43, 44].

< Gnig v Gne — Gn-1;¢6 0

dni¢e = gnie + Tngdn-1,6 With e = o ; . (26)
n—-1:€1lQ
i < Gnin 1 Gnn — Gn=1;n >Q
dnm = Gnin + Tninn-15 with yn.p = Inin Hggn n Sﬁ"; 1in . @D
n—1mHq

where g¢ and gy are the gradients of the cost functional Fn(¢,n, E)
with respect to £ and 7 respectively, evaluated at the (n — 1)th step
assuming that the total field inside the test domain does not change.
These gradients are given by:

L L
Gnse = 26n—1Re [Wn 3 B GIAG —w Y Ez,n_lKTh,‘?n)_l} ,
[=1 =1
(28)

L L
Gnyn = 2 -18m [Wﬂ Z El,n—lGhI';(,lfz_l - Wr Z El,n——lKJr hﬁ?_l} ,
1=1 =1
(29)

where the overbar denotes the complex conjugate, and ¢t and K1
are the adjoint operators adjoint of G and K, respectively.

The search direction vy, for the total field inside the test domain
is similar to those chosen for the object functions £ and 7.

Un = GlmE T VB Vin—1
< gl,n;E; ?g[,n;Ea - glg,n—l;Eg >Q , (30)
o1 n-1:E 1l

with  Yynm =

where gin.g is the gradient of the cost functional Fn(€,m Ey) with
respect to the field Ej, evaluated at (n — 1)th step and assuming that
¢ and n do not change.
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YimE = Wao [XH—IGTh'g,In)—1 - h’g,ln)——l] - IVFXEKTh‘I(?n)—l‘ (31)

Since a fast forward solver is available for the configuration concerned
here [46], we added a second search direction wy, for the total field
inside the test domain; the recursive relation (17) with respect to the
field E; then becomes

El,n = El,n—l + e T QLaaeWia. (32)

The cost function F, is now a nonlinear expression with 21 com-
plex variables (oynu, Gunw) and two real variables (Bniey Prn) -
The minimization of F,, is again accomplished using the Polak-Ribiére
conjugate gradient method [45].

‘The second updating direction for the total field w;, is given by

Wi = Erp-1— Bia_1; Ey1=[1—Gyaor| T E™,  (33)

where E;,nml represents the total field inside the test domain €, com-
puted from the coupling equation with the contrast y,_1. Adding this
search direction provided an acceleration of the algorithm’s conver-
gence at least in terms of number of iterations. Note that if (0fpy =0

and o = 1) then B, = El,n—}; in this case the scheme is
a conjugate gradient algorithm, linearized method without a regu-
larization procedure. Now, if (o5, # 0 and apy = 0) then

Ein = Eyp_1 + opin which provides us with a standard modi-
fied gradient algorithm. Therefore, the algorithm presented above can
be considered as a hybrid algorithm.

4.3 Initial Estimates: Backpropagation Technigue

Given the e priori information stating that the objet functions £
and 7 are positive, the initial guess (&, = 1y = 0) must be rejected
since the gradients vanish (g1, = g1,, = 0) . We therefore need another
initial guess. This can be provided by the backpropagation method.
We combined the initial guess obtained by backpropagation [44] rel-
ative to a real object function with the initial guess also obtained by
backpropagation [43] relative to a pure imaginary object function. The
process can be summarized in three steps:
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Estimation of (o= xoEn0:

Determination of a solution of the form
Go = Kl f, (34)
with ~ minimizing the cost function F{v;).
2
Fow) = hi-Kaol = | -KKTg] . (35)

This parameter 7 results from the necessary condition so that
F(v) is minimal

_<KX!f, fi>r
2
[t af

(36)

. Estimation of the total field E;q:

From (o and using the field equation, we deduce an initial guess
for the total field A
ELE) = Efnc + G’C[’() (37)

. Estimation of objet functions & and 75!

From (o = XoEio and from the initial guess of the total field
Ejo obtained above, we can deduce & [44] and o [43].

Z{a%e Cro(r) Erol )+5rb|EED(r)I — B o]}

E
Lre )= L olt
> 1Eo(r))?
=1
(38)
{i‘fm Cl 0 I‘)E{ Q(I‘) -+ 5rb|EI 0(1‘)| ]}
4 Z Bl
nre ) = I (39)

> |Bo(n)?

=1
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Figure 2. Experimental setup — anechoic chamber.

5. EXPERIMENTAL SETUP

5.1 Description

The experimental setup described here consists in an anechoic cham-
ber, 14.2m in length and 6.5 m both in width and height. It is designed
to work in a frequency range from 300 MHz to 26.5 GHz. In addition,
either the transmitter or the receiver can move along a circular line in
the cross-sectional plane of the cylindrical target, allowing us to work
with a bistatic configuration. The incidence and scattering angle are
known with better accuracy than 0.5°. During our measurements, the
transmitter was fixed, and the incidence angle was varied by rotating
the scatterer around a vertical axis at the center of the setup (Fig. 2).
This way, the incidence angle can vary from —180° to 180°. This
is not the case of the scattering angle, since the encumbrance of the
supports of the antennas prevents us to get angles smaller than 60°
between the receiver and the transmitter.

The distances pg and pg, between the center of the experimen-
tal setup and the transmitter or the receiver, are 72.0 £ 0.3 c¢m and
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76.8 + 0.3 cm, respectively. To make the two-dimensional assump-
tion realistic, the length of the targets in the direction of invariance
was between 1 and 3 meters, in accordance with the directivity of
the antennas, to make the incident field negligible at the ends of the
scatterers. To cover of a wide frequency range with the same pair of
antennas, wideband horn antennas, devoted to the [1,18] GHz range
were used.

5.2 Incident Field

As mentioned above, the experimental setup uses wide band horn
antennas. Their 3dB bandwidth is quite large, from 30° at 1GHz
down to 15° at 16 GHz. Consequently, since the electric field is paral-
lel to the cylinder axis at the input of the antenna, the field radiated in
the vicinity of the cylinder is close to a TM cylindrical wave (magnetic
field perpendicular to the cylinder axis). Therefore, the incident elec-
tric field is no longer parallel to the cylinder axis when moving away
from the cross-section plane. From this point of view, the experiment
is not achieved in a perfectly E/; case of polarization. Writing the
incident field as a superposition of plane waves would lead to coni-
cal diffraction problems, which couple TM and TE waves. However,
bearing in mind that the cosine function decays slowly between 0 and
30° , and that the amplitude of the incident field decays very rapidly for
higher angles, the deviation from the E;;, polarization remains small.
In addition, the receiving antenna only measures the E;; scattered
field, thus does not take the cross-polarized component into account.

Except at f = 1 GHz, both emitting and receiving antennas are lo-
cated at large distances compared to the wavelength as well as to the
characteristic size of the target cross-section. For such a far-field con-
figuration, it makes almost no difference to model the incident waves by
plane waves or cylindrical isotropic ones. For reconstruction purposes,
the complex amplitude of the modeled incident wave is estimated from
the incident field measured in the forward direction. The Figures 3 and
4 display the measured and the calculated scattered field, respectively.
The object is a metallic cylinder of rectangular cross-section and the
numerical computation was achieved by a method based on a contour
integral formalism [36] assuming that the object is perfectly conduct-
ing. The measured field agrees well with the calculated one and the
normalized error
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36 490 5
Z Z ‘Emes(i, m) - Ecal(l, m)
I=1 m=1 —~
err = TR 2 0.055, (40)
YO RS m)?
{=1 m=1}

where E™®5([,m) denote the measured scattered field at the mth re-
ceiver and for the lth position of emitting antenna. E°¢! (!,m) denotes
the calculated field.

6. NUMERICAL RESULTS

6.1 Description of Targets and Data

In this section the authors present results of the reconstruction from
experimental data using boundary and domain integral formalisms.
Three different objects are reported and we refer the reader to the
Table 1 to convert the sizes of the targets in terms of the wavelength
in the vacuum. The data consist in measured real and imaginary parts
of the scattered field (deduced by subtracting the incident field from
the total field) at 49 different positions of the receiving antenna and
for 36 different positions of the emitting antenna. The first example
corresponds to a metallic cylinder of (1.27 x 2.54) cm? rectangular
cross-section located at about = —0.5¢m and at about —0.75cm
along the y-axis. The second example consists in a circular dielectric
cylinder of radius 1.5c¢m and of dielectric constant €, = 3. The
cylinder is shifted from the center of the experimental setup along the
y-axis, y = 28mm. The third and last example corresponds to two
identical circular dielectric cylinders of radius 1.5 cm and of dielectric
constant €, = 3. One of the cylinder is located at about z = 0 and
at y = 4.5 cm, while the other is located at about 2z = —1.0cm and at
y = —4.5cm. For the metallic cylinder the scattered field is collected
for f = 4GHz and for f = 16 GHz. The scattered field for the circular
dielectric is carried out for f = 2GHz and for f = 8 GHz. For the last
example, two dielectric cylinders, the scattered field has been measured
for f=1GHz and for f = 4 GHz.
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Table 1. Wavelength in free space at the chosen operating frequencies.

f |GHz A [em]
1 30
4 7.5
8 3.75
16 1.88

Receiver
]
F

Receiver

M 21
Source

14 pal 28
Source

Figure 3. Real and imaginary parts of the measured scattered field by
metallic cylinder with rectangular cross-section sized (1.27 x 2.54) cm?
at f = 4GHz. The correction of the incident field has been taken into
account.

2.5%10° g 2.93010°

1,72+10"

Receiver

Receiver

14
Source

Figure 4. Real and imaginary parts of the calculated scattered field by
perfectly conducting cylinder of rectangular cross-section sized (1.27 x
2.54)cm? at f = 4GHz. The metallic cylinder is located at @ =
—-0.5cm and at y = —0.75 cm.
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Figure 5. Reconstructed boundary of the metallic cylinder at f=
4GHz (left) and at f = 16 GHz (right). The bold dotted curve rep-
resents the final result for each operating frequency and the solid line
represents the actual shape of the object to be retrieved. At f = 4
GHz the dashed line represents the initial guess deduced from DORT
method combined with the low frequency approximation, the plain
dotted line presents the optimal circle. At f = 16 GHz the dashed
line corresponds to the initial guess which is the optimal circle found at
f =4 GHz. The object has been assumed to be perfectly conducting
only to generate the initial estimate and the reconstructed conductiv-
ity at f =4 GHz and f = 16GHz is ¢ = 51S/m, ¢ = 11S/m,
respectively.

8 T J L1

9 : o
Figure 6. Reconstructed boundary of the circular dielectric cylinder
at f = 2GHz (left) and at f = 8GHz (right). The bold dotted
curve represents the final result for each operating frequency and the
solid line represents the actual shape of the object to be retrieved.
At f = 2GHz the dashed line represents the initial guess deduced
from DORT method combined with the low frequency approximation.
At f = 8GHz the dashed line corresponds to the initial guess found
at f = 2GHz. The dielectric constant used to generate the initial
estimate is €, = 1 and the reconstructed relative permittivity is e, =
2.95 and e, = 3.89 at f=2GHz and f = 8 GHz, respectively.
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6.2 Boundary Method

The reconstructions performed with the boundary integral method
result from a multi-frequency approach. Indeed, the higher the fre-
quency, the harder the convergence of the inversion algorithm to
achieve. Since our initial guess is based on a low frequency approxi-
mation, inversion in the resonance domain requires two steps. This is
illustrated with the reconstruction of the metallic rectangular rod. At
# = 4 Gz, the area of the cross-section is about A/3 x A/6 ~ A*/18.
In this range, the low frequency approximation is still accurate and,
assuming an infinite conductivity, leads to the initial guess plotted as
a circular dotted line in Fig. 5. Then, following the regularization pro-
cess, an optimal circle, very well centered on the actual scatterer is
found after fifteen iterations. This circle has been used as initial guess
for reconstructions at higher frequencies. As shown in Fig. 5, it al-
lows the algorithm to converge at f = 16 GHz (about 200 iterations),
when the cross-section area is about one wavelength square. Though
expected, the improvement of the resolution from 4 to 16 GHz is to
be noticed. Concerning conductivity, the inversion leads to 51S/m
at f = 4GHz and to 11S/m at f = 16 GHz, both corresponding
to a skin depth close to 0.1c¢cm. The next example concerns the sin-
gle circular dielectric rod. Since our regularization scheme consists in
truncating the Fourier series describing the boundary, stabilization of
the cost function is achieved much more rapidly when reconstructing
a circle than a rectangle. This is why the number of iterations here is
twice or three times smaller than previously. Starting from f =2GHz
(Fig. 6), a low frequency approximation provides an initial guess which
also allows convergence at higher frequencies. As an example, the re-
construction at f = 8GHz is given in Fig. 6. The result may not
seemn impressive because of the circular shape of the boundary, but it
must be kept in mind that this information is not known a priori, and
that the number of Fourier coefficients to optimize was not restricted
to one. As a result, the boundary is very well reconstructed, while
the permittivity is over estimated, &, = 3.9 to be compared to the
measured value &, = 3.0 obtained from a technique using waveguides
[47). On the contrary, at f = 2 GHz, the permittivity was well esti-
mated e, = 2.95, but the radius of the reconstructed circle was too
large. It is interesting to notice that, whatever the frequency, at the
end of the reconstruction process, the product of the cross-section area,
by the contrast of permittivity is always the same. This is a typical
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ambiguity of the low frequency range, which may drive the algorithm
to local minima. A more significant example is given next. Let us
consider two identical dielectric rods, similar to the previous one, sep-
arated by a distance d = 9cm between their centers, and let us start
our study at f = 1 GHz. Unfortunately, at this frequency it was not
possible for us to separate the rods from the initial guess. Therefore,
starting from a single circular rod (dashed line in Fig. 7), the recon-
struction leads to a single scatterer, much larger than the actual rods,
but with smaller permittivity ¢, = 1.4, such that the product of the
contrast of permittivity by the cross-section area is correct, in accor-
dance with low frequency approximations. This shortcoming does not
occur at f = 4 GHz where the DORT method provides two isolated
scatterers lying in the investigated area, located at the centers of the
dashed circles plotted in Fig. 7. As initial guess, two circles with ar-
bitrary radii (but small enough for the boundaries not to cross during
the reconstruction) and permittivity of vacuum have been chosen. In
this case, the reconstruction is quite accurate in terms of locations,
sizes and permittivities (¢, = 3.42 and 3.46 instead of 3). On the
other hand, since the scattered field no longer mirrors the symmetry
of revolution of the cylinders, the reconstruction is not as accurate as
for one circular body.

6.3 Domain Method

The initial guesses for the reconstructions with MGM are all ob-
tained by backpropagation technique and all the final results reported
here correspond to the 16th iteration for which the cost function
reached a plateau. Moreover, the reconstructions have been performed
in two steps according to the multi-frequency approach. We start the
reconstruction at the lowest available operating frequency with very
large square test domain of size (20 x 20)cm? and we reduce the in-
vestigated domain for the reconstruction at higher frequency. For the
metallic cylinder, at the lower frequency f = 4 GHz, the test domain
§} consists in a large square domain of surface about 7A? and the com-
plex relative permittivity (object function) is discretized into 30 x 30
equal subsquare cells. The real part of the reconstructed complex per-
mittivity distribution is found more or less homogeneous inside € and
its value is close to unity. Therefore only the reconstructed conduc-
tivity distribution is presented in Fig. 8. The final value of the cost
function is Fig = 0.07 and the maximum of the reconstructed conduc-
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Figure 7. Reconstructed boundary of two circular dielectric cylinders
at f = 1GHz (left) and at f = 4GHz (right). The bold dotted
curve represents the final result for each operating frequency and the
solid lines represent the actual shapes of the objects to be retrieved.
The dashed lines represent the initial guesses. The dielectric constant
used to generate the initial estimates is €, = 1 and the reconstructed
relative permittivity is &, = 1.4 at f = 1GHz. At f = 4GHz the
reconstructed relative permittivities are £, = 3.42 and &, = 3.46 for
the upper and the lower cylinder, respectively.

tivity is omax = 2.7 S/m which corresponds to a skin depth of 0.5cm.
From the reconstruction at f = 4 GHz, one can observe that the un-
known object is included in a rectangular subdomain plotted in dashed
line in Fig. 8. This rectangular subdomain is used for the reconstruc-
tion at the higher frequency f = 16 GHz for which the test domain
has been changed as well as its discretization. For this frequency the
investigated domain § consists now in a rectangular domain of size
(2.5x 5y em? = 0.22)% centered at £ = —0.5cm and y = —7.5cm. The
object function to be retrieved is discretized into 20 x 40 equal sub-
square cells, The reconstructed conductivity distribution is presented
in Fig. 8 and the maximum value of the conductivity is omax = 4.85/m
correspondingto a skin depth of 0.2cm. The final cost function value
is Fig = 0.10. The reconstruction is clearly improved when switching
the frequency. For the second example, the reconstruction of the cir-
cular dielectric cylinder at the lower frequency f = 2GHz has been
performed with a square test domain of the same size as the one used
for the reconstruction at f = 4 GHz of the metallic cylinder. The re-
constructed conductivity distribution vanishes inside §¢ and therefore
only the reconstructed real part of the complex relative permittivity
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distribution is presented in Fig. 9 and the maximum value of the recon-
structed permittivity is e, = 4.2, which is quite large compared to the
actual one g, = 3. The final value of the cost function is Fig = 0.007.
The dashed square box of Fig. 9, sized (5 x 5) em? represents the new
investigated domain {1 that is used for the reconstruction at higher
frequency f = 8GHz. The result of the reconstruction is presented
in Fig. 9 and the maximum value of the reconsiructed permittivity
is now g, = 3.6 instead of 4.2 previously. The final value of the
cost function at f = 8 GHz is Fig = 0.04. The Fig. 10 compares
the actual relative permittivity with the reconstructed one along a di-
ameter of the cylinder. The cylinder has been correctly located with
a good estimate of the shape as well as of its constitutive material.
For the last example, corresponding to two identical circular cylinders,
the result of the inversion at the lower frequency f = 1GHz with
the large test domain is presented in Fig. 11. The final value of the
cost function is Fig = 0.02. The low frequency result doesn’t show
that two distinct objects are present inside {1, but the reconstructed
permittivity distribution differs from the background permittivity in
a rectangular subdomain centered at the center of the experimental
setup (dashed box in Fig. 11}. The rectangular domain is used as in-
vestigated domain for the reconstruction at f = 8 GHz. The size of
the test domain is now (8.5 x 17)cm? =~ 2.6A? and it is discretized
into 20 x 40 equal subsquare cells. The result is presented in Fig. 11
and now the two cylinders are detected. The final value of the cost
function is Fig = 0.02. Fig. 12 presents a comparison between the
actual dielectric constant and the reconstructed one along diameters
of the circular cylinders.

Inversions from real data performed with boundary and domain in-
tegral formalism lead to very close results especially for the dielectric
cases. For the conducting object the reconstructed shapes are simi-
lar, but the reconstructed conductivity is higher with the boundary
method. The authors presented results of reconstructions in the case
of E;; polarization, however satisfactory results have been obtained
with H;, polarization using the boundary method. Full results are
reported in [48]. Data described in this paper as well as in [48] are at
disposal of anyone interested.
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Figure 8. Map of the conductivity distribution reconstructed with
the MGM for the metallic cylinder of rectangular cross-section at f =
16 GHz (right} and at f = 4 GHz (left). The dashed rectangular box
is used as investigated domain for the inversion at f = 16 GHz. The

solid line represents the actual shape.
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Figure 9, Reconstructed real part of the relative complex permittivity
distribution with the MGM for the single circular dielectric cylinder
at f=2GHz (left} and at f = 8 GHz (right). The dashed square box
is used as the test domain for the reconstruction at f = 8 GHz. The
solid circle represents the actual shape. A comparison between the
actual permittivity and the reconstructed one along the dash-dotted
line is presented in Fig. 10.
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Figure 10. Cross-sectional cut along the dash-dotted line plotted
in Fig. 9. Solid and dashed line, respectively, present the measured
relative permittivity and the reconstructed relative permittivity at
f =8GHsz.
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Figure 11. Reconstructed real part of the relative complex permittiv-
ity distribution with MGM for the example corresponding to two iden-
tical circular dielectric cylinders at f = 1 GHz (left) and at f = 8 GHz
(right). The solid line circles represent the actual shapes and the
dashed rectangular box represents the investigated domain that is used
for the reconstruction at f == 8 GHz. A comparison between the actual
permittivities and the reconstructed ones along the dash-dotted lines
is shown in Fig. 12.
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Figure 12. Cross-sectional cut along the dash-dotted lines plotted
in Fig. 11. Solid and dashed line, respectively, present the measured
relative permittivity and the reconstructed relative permittivity at f =
8 GHz. The left graph corresponds to the upper cylinder of Fig. 11 and
the right graph corresponds to the lower cylinder of Fig. 11.

7. CONCLUSION

In this paper, both the experimental setup and reconstruction algo-
rithms have been validated. We have presented two different inverse
reconstruction methods. One is based on the contour integral for-
malism which is particularly adapted to reconstructing the shape and
permittivity of homogenecous objects. The second method is based
on domain integral formalism and retrieves complex permittivity dis-
tribution. Both methods succeeded in reconstructing dielectric and
conducting objects. The dynamic range of the setup has allowed us
to accurately measure the field scattered by a small dielectric rod in a
bistatic configuration.

Multi-frequency data can be recorded with wide band horn anten-
nas. This is very useful for reconstructions in the resonance domain
where convergence often requires an initial guess rather close to the
solution. Indeed, since the algorithms are more robust in the lower
frequency range, such an initial guess can be derived from a rough
reconstruction at low frequency. This technique has been successfully
used here with both domain and boundary methods.

These results encourage us to now deal with more complicated tar-
gets, like inhomogeneous cylinders. In addition, since the experimen-



Validation of 2D inverse scattering algorithms 1663

tal setup is also designed for three-dimensional bistatic measurements,
three-dimensional objects can be investigated if algorithms are avail-

able,
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