Gratings: Theory and Numeric Applications

ed. E. Popov (Institut Fresnel, CNRS, AMU, 2012) ISBN: 2-85399-860-4

E Popov, Chapter 7: Differential Theory of Periodic Structures

Table of Contents:

7.1. Maxwell equations in the truncated Fourier space	1
7.2. Differential theory for crossed gratings made of isotropic materials	6
7.3. Electromagnetic field in the homogeneous regions – plane wave expansion	9
7.4. Several simpler isotropic cases	11
7.4.1. Classical grating with one-dimensional periodicity, example of a	
sinusoidal profile	11
7.4.1.1. Fourier transformation of the permittivity	13
7.4.1.2. Fourier transformation of the normal vector	14
7.4.2. Classical isotropic trapezoidal or triangular grating	14
7.4.3. Classical lamellar grating	16
7.4.4. Crossed grating having vertical walls made of isotropic material	18
7.5. Differential theory for anisotropic media	19
7.5.1. Lamellar gratings made of anisotropic material	20
7.6. Normal vector prolongation for 2D periodicity; Fourier transform	22
7.6.1. General analytical surfaces	22
7.6.2. Irregular general surfaces	23
7.6.2.1. Single-valued radial cross-section	23
7.6.2.2. Objects with polygonal cross section	25
7.6.2.3. Mutlivalued cross-sections	28
7.6.4. Objects with cylindrical symmetry	28
7.6.5. Objects with elliptical cross-section	29
Remark on the prolongation of the normal vector	30
7.6.6. Multiprofile surfaces	33
7.7. Integrating schemes	34
7.8. Staircase approximation	40
Appendix 7.A: S-matrix propagation algorithm	44
Appendix 7.B: Inverted S-matrix propagation algorithm	48
References:	50