Gratings: Theory and Numeric Applications

ed. E. Popov (Institut Fresnel, CNRS, AMU, 2012) ISBN: 2-85399-860-4

D. Maystre, Chapter 2: Analytical Properties of Diffraction Gratings

Table of Contents:

2.1 Introduction .	2.1
2.2 From the laws of Electromagnetics to the boundary-value problems	. 2.1
2.2.1 Presentation of the grating problem .	2.1
2.2.2 Maxwell's equations .	2.3
2.2.3 Boundary conditions on the grating profile	2.4
2.2.4 Separating the general boundary-value problem into two separated scalar	
problems	2.4
2.2.5 The special case of the perfectly-conducting grating	.2.7
2.3 Pseudo-periodicity of the field and Rayleigh expansion	2.8
2.4 Grating formulae .	2.10
2.5 Analytic properties of gratings	2.11
2.5.1 Balance relations .	2.11
2.5.2 Compatibility between Rayleigh coefficients	2.14
2.5.3 Energy balance	2.15
2.5.4 Reciprocity	2.16
2.5.5 Uniqueness of the solution of the grating problem .	2.18
2.5.6 Analytic properties of crossed gratings .	2.19
2.6 Conclusion	2.21