(Archives) Conférence de Sajeev John intitulée "Photonic Band Gap Materials : Light Trapping Crystals" le mardi 3 juillet 2012 à 9H00, Campus Saint Charles.

Accueil › Annuaire › Pages persoimport ne pas tenir compte de cette rubriqueSéminaires › (Archives) Conférence de Sajeev John intitulée "Photonic Band Gap Materials : (...)


(Archives) Conférence de Sajeev John intitulée "Photonic Band Gap Materials : Light Trapping Crystals" le mardi 3 juillet 2012 à 9H00, Campus Saint Charles.

Sajeev John (Dept. of Physics, University of Toronto, Ontario, Canada) donnera cette conférence en Amphithéatre Charve de 9h00 à 9h50.

Cet exposé entre dans le cadre du congrès NUMELEC 2012. Cependant, vous pouvez assister uniquement à cette conférence d’ouverture et ce gratuitement en vous inscrivant via le Doodle suivant : http://www.doodle.com/n5c3cp66sufxu4sn
(places limitées)

Abstract :
Photonic Band Gap Materials : Light Trapping Crystals


Photonic band gap (PBG) materials [1,2] are artificial periodic dielectric microstructures capable of trapping light in 3-D [3] on sub-wavelength scales without absorption loss. This offers new opportunities for efficient solar energy trapping and harvesting in suitably micro-structured thin films [4-6]. It also enables virtually complete control of the flow of light on microscopic scales in a 3D optical chip [7-9] as well as very strong coupling of light to matter where desired. By further engineering the electromagnetic density of states [10-12], it is possible to realize unprecedented coherent optical control of the quantum state of resonant atoms or quantum dots [13, 14]. This defines a fundamentally new strong-coupling regime for quantum optics. I review some of the underlying physics and numerical approaches to describing light trapping in photonic crystals. I also discuss ongoing challenges to experimentally realize the consequences of this remarkable effect.

[1] S. John, Physical Review Letters 58, 2486 (1987)
[2] E. Yablonovitch, Physical Review Letters 58, 2059 (1987)
[3] S. John, Physical Review Letters 53, 2169 (1984)
[4] A. Chutinan and S. John, Physical Review A 78, 023825 (2008)
[5] G. Demesy and S. John, J. Applied Physics (in press)
[6] A Deinega and S. John, J. Applied Physics (submitted)
[7] A. Chutinan, S. John, and O. Toader, Phys. Rev. Lett. 90, 123901 (2003)
[8] A. Chutinan and S. John, Physical Review B 72, 16, 161316 (2005)
[9] A Chutinan and S. John, Optics Express 14 (3), 1266 (2006)
[10] D. Vujic and S. John, Physical Review A 76, 063814 (2007)
[11] R.Z. Wang and S. John, Physical Review A 70, 043805 (2004)
[12] R.Z. Wang and S. John, J. Photonics and Nanostructures (Elsevier)
2, 137 (2004)
[13] Xun Ma and Sajeev John, Physical Review Letters 103, 233601 (2009)
[14] Xun Ma and Sajeev John, Physical Review A 80, 063810 (2009)