Interactions lumière-matière aux échelles nanométriques

Accueil › Recherche › Nanophotonique - Couches Minces OptiquesInteractions lumière-matière aux échelles nanométriques › Nanoaperture enhanced fluorescence


Nanoaperture enhanced fluorescence

Metal nanoapertures and zero-mode waveguides

Principal investigator : Jerome Wenger

Milling a nanometer-size aperture in a metallic film is an intuitive way to fabricate nanophotonic devices. Although the concept appears very simple, such apertures (also known as zero-mode waveguides) exhibit attractive properties for biophotonics :

  • localization of excitation light
  • strong isolation from emission produced by species located outside the aperture
  • enhancement in the fluorescence signal

Bright unidirectional fluorescence emission with corrugated apertures A special kind of nanoantenna made of an aperture surrounded by circular corrugations milled in a gold film allows to enhance and control the fluorescence emission from a single molecule. This antenna transforms a standard molecule into a bright unidirectional fluorescence source : the fluorescence intensity is enhanced up to 120 fold, and almost all the light is emitted into a narrow cone in the vertical direction.

Plasmonic Antennas for Directional Sorting of Fluorescence Emission Tuning the directionality of fluorescence emission remains an open challenge for emitters with random positions and orientations. To solve this issue, we propose a class of corrugated aperture antennas to control the fluorescence emission directivity for molecules in solution. The key result is that for each emission wavelength the fluorescence beam can be directed along a specific direction with a given angular width.

Beaming of fluorescence light with plasmonic crystals Small plasmonic crystals patterned in gold film result in strong directionality of emission for molecules located in the structure. This work pioneers the control of directionality by coherent coupling in finite antenna arrays driven by a single emitter. Moreover, it demonstrates that fluorescence radiation patterns can be designed at will by engineering surface plasmon Bloch modes. These results open a rich toolbox to engineer single photon emitters to emit selectively in particular angles, polarization states, or in more exotic beam profiles.

Publications

[27] J. de Torres, P. Ghenuche, S. B. Moparthi, V. Grigoriev, J. Wenger, FRET Enhancement in Aluminum Zero-Mode Waveguides, Chem. Phys. Chem. 16, 782-788 (2015).
[26] P. Ghenuche, J. de Torres, S. B. Moparthi, V. Grigoriev, J. Wenger, Nanophotonic Enhancement of the Förster Resonance Energy-Transfer Rate with Single Nanoapertures, Nano Lett 14, 4707-4714 (2014).
[25] D. Punj, P. Ghenuche, S. B. Moparthi, J. de Torres, V. Grigoriev, H. Rigneault, J. Wenger, Plasmonic antennas and zero-mode waveguides to enhance single molecule fluorescence detection and fluorescence correlation spectroscopy toward physiological concentrations, WIREs Nanomed Nanobiotechnol 6, 268 (2014).
[24] H. Aouani, R. Hostein, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, J Wenger, Saturated excitation of fluorescence to quantify excitation enhancement in aperture antennas, Opt. Express 20, 18085-18090 (2012).
[23] H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T.W. Ebbesen, J. Wenger, Plasmonic antennas for directional sorting of fluorescence emission, Nano Lett. 11, 2400-2406 (2011).
[22] H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, J. Wenger, Large molecular fluorescence enhancement by a nanoaperture with plasmonic corrugations, Opt. Express 19, 13056-13062 (2011).
[21] H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T.W. Ebbesen, J. Wenger, Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations, Nano Lett. 11, 637-644 (2011).
[20] P. Schön, N. Bonod, E. Devaux, J. Wenger, H. Rigneault, T.W. Ebbesen, and S. Brasselet, Enhanced second harmonic generation from individual metallic nanoapertures, Opt. Lett. 35, 4063-4065 (2010).
[19] N. Djaker, R. Hostein, E. Devaux, T.W. Ebbesen, H. Rigneault, J. Wenger, Surface Enhanced Raman Scattering on a Single Nanometric Aperture, J. Phys. Chem. C 114, 16250-16256 (2010).
[18] H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, J. Wenger, Colloidal Quantum Dots as Probes of Excitation Field Enhancement in Photonic Antennas, ACS Nano 4, 4571-4578 (2010)
[17] J. Wenger, H. Rigneault, Photonic Methods to Enhance Fluorescence Correlation Spectroscopy and Single Molecule Fluorescence Detection, Int. J. Mol. Sci. 11, 206-221 (2010)
[16] H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T.W. Ebbesen, F. Mahdavi, T. Xu, S. Blair, Crucial Role of the Adhesion Layer on the Plasmonic Fluorescence Enhancement, ACS Nano 3, 2043-2048 (2009).
[15] J. Wenger, D. Gérard, H. Aouani, H. Rigneault, B. Lowder, S. Blair, E. Devaux, T. W. Ebbesen, Nanoaperture-Enhanced Signal-to-Noise Ratio in Fluorescence Correlation Spectroscopy, Anal. Chem. 81, 834-839 (2009).
[14] J. Wenger, D. Gerard, P.-F. Lenne, H. Rigneault, N. Bonod, E. Popov, D. Marguet, C. Nelep, T. W. Ebbesen, Biophotonics applications of nanometric apertures, Int. J. Materials and Product Technology 34, 488-506 (2009)
[13] D. Gérard, J. Wenger, N. Bonod, E. Popov, H. Rigneault, J. Dintinger, T.W. Ebbesen, F. Mahdavi et S. Blair, Nanoaperture-enhanced fluorescence : Towards higher detection rates with plasmonic metals, Phys. Rev. B 77, 045413 (2008).
[12] N. Bonod, E. Popov, D. Gérard, J. Wenger, and H. Rigneault, Field enhancement in a circular aperture surrounded by a single channel groove, Opt. Express 16, 2276-2287 (2008).
[11] J. Wenger, D. Gérard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures, Opt. Express 16, 3008-3020 (2008).
[10] P.-F. Lenne, H. Rigneault, D. Marguet, J. Wenger, Fluorescence fluctuations analysis in nanoapertures : physical concepts and biological applications, HistoChem. Cell. Biol. 130, 795-805 (2008).
[9] E. Popov, M. Nevière, A. Sentenac, N. Bonod, A.-L. Fehrembach, J. Wenger, P.-F. Lenne, H. Rigneault, Single-scattering theory of light diffraction by a circular subwavelength aperture in a finitely conducting screen, J. Opt. Soc. Am. A 24, 339-358 (2007).
[8] Wenger J., Cluzel B., Dintinger J., Bonod N., Fehrembach A.-L., Popov E., Lenne P.-F., Ebbesen T.W., Rigneault H., Radiative and Nonradiative Photokinetics Alteration Inside a Single Metallic Nanometric Aperture, J. Phys. Chem. C 111, 11469-11474 (2007).
[7] J. Wenger, F. Conchonaud, J. Dintinger, L. Wawrezinieck, T.W. Ebbesen, H. Rigneault, D. Marguet, et P.-F. Lenne, Diffusion analysis within single nanometric apertures reveals the ultrafine cell membrane organization, Biophys. J. 92, 913-919 (2007).
[6] E. Popov, M. Nevière, J. Wenger, P.F. Lenne, H. Rigneault, P. Chaumet, J. Dintinger, T.W. Ebbesen et N. Bonod, Field enhancement in single subwavelength apertures, J. Opt. Soc. Am. A 23, 2342-2348 (2006).
[5] J. Wenger, J. Dintinger, N. Bonod, E. Popov, P.F. Lenne, T.W. Ebbesen et H. Rigneault, Raman scattering and fluorescence emission in a single nanoaperture : optimizing the local intensity enhancement, Optics Comm. 267, 224-228 (2006)
[4] J. Wenger, H. Rigneault, J. Dintinger, D. Marguet et P.-F. Lenne, Single fluorophore diffusion in a lipid membrane over a subwavelength aperture, J. Biol. Phys. 32, SN1-SN4 (2006).
[3] J. Wenger, D. Gérard, P.-F. Lenne, H. Rigneault, J. Dintinger, T.W. Ebbesen, A. Boned, F. Conchonaud, D. Marguet, Dual-color fluorescence cross-correlation spectroscopy in a single nanoaperture : towards rapid multicomponent screening at high concentrations, Opt. Express 14, 12206-12216 (2006).
[2] H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T.W. Ebbesen et P.F. Lenne, Enhancement of single molecule fluorescence detection in subwavelength apertures, Phys. Rev. Lett. 95, 117401 (2005).
[1] J. Wenger, P.F. Lenne, E. Popov, J. Dintinger, T.W. Ebbesen et H. Rigneault, Single molecule fluorescence in rectangular nano-apertures, Opt. Express 13, 7035-7044 (2005).