Instrumentation

Accueil › Recherche › Imagerie avancée - VivantInstrumentation › Quantitative phase microscopy


Quantitative phase microscopy

using wavefront sensing

Principal investigators : Serge Monneret, Julien Savatier

keywords : lateral shearing interferometry, phase contrast, wavefront sensing, microscopy

Quantitative phase imaging techniques are now conventionally used in microscopy for measuring specific properties of semi-transparent samples without any labelling. By placing a wavefront sensor on the exit image plane of a microscope, we measure the complex field spatial distribution in this plane, and then retrieve the quantitative optical path difference (OPD) of the observed sample. Most of works presented in this page were developed in a close collaboration with a company (Phasics SA, Saint-Aubin, France).

The wavefront sensor we use is a commercial Quadri-Wave Lateral Shearing Interferometer (QWLSI) provided by Phasics SA. It is an efficient tool for measuring phase gradients of optical beams along two perpendicular directions. Post-processing integration then allows obtaining the complete phase spatial distribution of the beam with a high spatial resolution (diffraction-limited). Moreover, QWLSI is achromatic, and thus compatible with the white-light illumination pathway of conventional wide-field microscopes.

In the last years, we extended the technique to new applications, where different physical phenomena produced a given sample-induced change in the phase of the exit optical beam that modulates the incident wavefront. More precisely, we used direct refractive-induced OPD, thermal-induced OPD, and resonant vibrational-induced OPD to produce phase contrast images of physical or biological samples, temperature distribution of complex patterns of nanostructures, and Raman spectra of polystyrene beads, respectively. We are now developing the technique to reach 3D resolution, but also to focus on optical retardance distribution inside observed samples.

Application area

Quantitative phase microscopy on living cells, optical waveguides, laser damage sites
Measurement of photo-induced changes in materials (laser damage, local temperature)
Optical profilometry on etched surfaces, laser damage craters
Dry mass determination of cells / Cell cycle follow-up
Quantitative phase imaging with nonlinear microscopy (CARS)
Refractive index and thermo-refractive index (dn/dT) measurement of liquids
Phase tomography
Optical retardance imaging / specific imaging of birefringent samples
Temperature microscopy (see "thermoplasmonics" page)
3D localization of metallic nanoparticles

Publications

2018
Optical imaging and characterization of graphene and other 2D materials using quantitative phase microscopy
S. Khadir, P. Bon, D. Vignaud, E. Galopin, N. McEvoy, D. McCloskey, S. Monneret, G. Baffou
ACS Photonics 4, 3130–3139 (2017).
2016
Time-resolved quantitative phase microscopy of laser-material interactions using a wavefront sensor
L. Gallais, S. Monneret
Optics Letters 41(14), 3245-3248 (2016).
2015
Living cells dry mass measurements using Quantitative Phase Imaging with Quadri Wave Lateral Shearing Interferometry. An accuracy and sensitivity discussion
S. Aknoun, J. Savatier, P. Bon, F. Galland, L. Abdeladim, B. Wattellier, S. Monneret
Journal of Biomedical Optics 20(12), 126009 (2015).
Quantitative phase imaging applied to laser damage detection and analysis
D.-B. Douti, M. Chrayteh, S. Aknoun, T. Doualle, C. Hecquet, S. Monneret, L. Gallais
Applied Optics 28 (54), 8375-8382 (2015)
Three dimensional nanometer localization of nanoparticles to stabilize super-resolution microscopy
P. Bon, N. Bourg, S. Lécart, S. Monneret, E. Fort, J. Wenger, S. Lévêque-Fort
Nature Communications 6, 7764 (2015)
Quantitative Retardance Imaging of biological samples using Quadri-Wave Lateral Shearing Interferometry
S. Aknoun, P. Bon, J. Savatier, B. Wattellier, S. Monneret
Optics Express 23 (12), 16383-16406 (2015).
2013
Photo-induced heating of nanoparticle arrays
G. Baffou, P. Berto, E. Bermudez, R. Quidant, S. Monneret, J. Polleux, H. Rigneault
ACS Nano 7 (11), 6478-6488 (2013)
Three-dimensional temperature imaging around a gold microwire
P. Bon, N. Belaid, D. Lagrange, C. Bergaud, H. Rigneault, S. Monneret, G. Baffou
Applied Physics Letters 102, 244103 (2013)
Wide-field vibrational phase imaging in an extremely folded box-coherent anti-Stokes Raman scattering geometry
P. Berto, A. Jesacher, C. Roider, S. Monneret, H. Rigneault, M. Ritsch-Marte
Optics Letters 38 (5), 709-711 (2013).
2012
Wide-field vibrational phase imaging
P. Berto, D. Gachet, P. Bon, S. Monneret, H. Rigneault
Physical Review Letters 109, 093902 (2012).
Imaging the Gouy phase shift in photonic jets with a wavefront sensor
P. Bon, B. Rolly, N. Bonod, J. Wenger, B. Stout, S. Monneret, H. Rigneault
Optics Letters 37 (17), 3531-3533 (2012).
Non-iterative boundary-artifact free wavefront reconstruction from its derivatives
P. Bon, S. Monneret, B. Wattellier
Applied Optics 51 (23), 5698-5704 (2012)
Optical detection and measurement of living cell morphometric features with single-shot quantitative phase microscopy
P. Bon, J. Savatier, M. Merlin, B. Wattellier, S. Monneret
Journal of Biomedical Optics 17 (7), 076004 (2012)
Modeling quantitative phase image formation under tilted illuminations
P. Bon, B. Wattellier, S. Monneret
Optics Letters 37 (10), 1718-1720 (2012)
Selected in Virtual Journal for Biomedical Optics 7 (7), 2012
Tomographic diffractive microscopy with a wavefront sensor
Y. Ruan, P. Bon, E. Mudry, G. Maire, P. Chaumet, H. Giovannini, K. Belkebir, A. Talneau, B. Wattellier, S. Monneret, A. Sentenac
Optics Letters 37 (10), 1631-1633 (2012)
Selected in Virtual Journal for Biomedical Optics 7 (7), 2012
Quantitative absorption spectroscopy of nano-objects
P. Berto, E. Bermúdes Ureña, P. Bon, R. Quidant, H. Rigneault, G. Baffou
Physical Review B 86, 165417 (2012)
2009
Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells
P. Bon, G. Maucort, B. Wattellier, S. Monneret
Optics Express 17 (15), 13080-13094 (2009)
Selected in Virtual Journal for Biomedical Optics 4 (9), 2009