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Chapter 1

Introduction

The advances in nanosciences, and the improvement of nanofabrication techniques in particular,
have strongly encouraged investigations of the optical properties of nanostructured components.
In particular, small aggregates of particles and inclusions have emerged as key elements in nano-
optical physics for the conception of new, efficient and compact optical components operating at
micro-nanometer scale. This manuscript presents numerical studies employing particles for tailor-
ing the electromagnetic interactions of light within the medium surrounding the particles.

A common approach to increase light matter/interactions consists in focusing light to small vol-
umes in order to enhance the local electromagnetic intensity. A combination of convergent lenses
or mirrors are commonly employed to achieve the high excitation rates required in a variety of
applications such as fluorescent spectroscopy or optical datastorage. These systems however op-
erate from the far field domain so that the focal zone is located far from the focusing system and
involves only propagating light. The dimensions of the focal volumes obtained are consequently
limited by diffraction effects (Rayleigh criterion). The use of small particles as near-field focus-
ing systems provides highly compact and efficient systems that can furthermore utilize evanescent
field contributions and the specific properties of metallic structures in the optical frequency range
which support plasmon resonances. These latter resonances increase the interactions of light with
nanometric particles which are much smaller than the incident optical wavelength. This results in
strongly localized electromagnetic fields providing a potential downscaling of classical optical and
electromagnetic devices.

Investigations of light interactions with such small systems require complete modeling tech-
niques employing the electrodynamical theory of Maxwell. Our approach consists in generalizing
Mie theory which is one of the few vectorial three-dimensional modal methods in electromag-
netism enabling an analytical resolution of the Maxwell equations for spherical objects. It should
be stressed that the results and methods presented in this manuscript are not restricted to spherical
particles, but can be extended to non-spherical objects such as ellipsoids.

The studies in this manuscript required us to develop several extensions and modifications of
generalized Mie theory. A matrix balancing method was developed in order to stabilize the numer-
ical inversions involved in multiple scattering theory [1]. We elaborated a spectral development of
vector multipolar waves on a plane wave basis in order to analyze the physical properties of highly
focused beams and ‘jets’ [2]. Finally, we recently developed analytical formula for calculating the
radiation enhancement properties of nano-antennas [3].

An important distinction is performed in this manuscript according to the respective dielectric
(lossless) or metallic nature of the material composing the particles. Dielectric particles of micro-
metric dimensions will be investigated in this manuscript as efficient tools for ‘focusing’ light (i.e.
concentrating light in small volumes) as an extension of classical macroscopic focusing systems
such as microscope objectives. It will be demonstrated that a straightforward focusing of light
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can be achieved by these compact dielectric systems in a non-resonant regime, thus operating in
a large bandwidth frequency domain. It will be emphasized that this basic component produces a
variety of intensity patterns in its near field according to characteristics of the incident illuminating
beam. When illuminated by a plane wave, the focusing properties of the microsphere are notably
adapted to optical datastorage or nanoparticles detection [2, 4], while under focused beam illumi-
nation, the resulting focal volume is suitable for enhancing fluorescent spectroscopy signals [5, 6].
This latter property is a striking result of the investigations performed during this PhD since we
highlight that a surprising three-dimensional confinement of light can be achieved with this simple
component [7, 8]. Nevertheless, although strong confinements can be obtained with these sim-
ple dielectric components, they are incommensurate with those achieved when employing metallic
structures supporting electromagnetic resonances when illuminated at optical frequencies.

These resonances enhance the electromagnetic cross-sections of small metallic particles allow-
ing light to interact with particles much smaller than the optical wavelength. The Localized Surface
Plasmon Resonances (LSPRs) can be understood as resonant oscillations of the free electron gas of
the particles creating charge density at their surface. This results in intense fields occurring in the
vicinity of the particles producing focusing effects in nanometer scaled volumes. Strong couplings
between individual localized plasmon resonances can provide even greater fields which are local-
ized in the dielectric medium enclosed between the particles, thus providing efficient nanolensing
effects. More interestingly, the strong interactions between individual localized plasmon reso-
nances have recently attracted an additional interest since they enable an accurate control of the
focal position with spatial resolutions on the order of λ/10 via the excitation of antisymmetric
modes [9].

A question will consequently arise then as how a single active emitter will radiate in the pres-
ence of the nanoparticles? This topic has recently given rise to the concept of nanoantenna. This
concept, analogous to radiofrequencies antennas consists in increasing the couplings between prop-
agative radiations and single emitting systems such as fluorescent molecules or quantum dots. It
can be then proven by invoking the reciprocity theorem, that spontaneous emission rates can be
enhanced in the presence of resonant plasmonic nanoparticles. In addition, the strong interactions
of an emitting dipole with a single nanoparticle or a chain of nanoparticles enable a redirection of
light emission [10]. These properties will be investigated in the second part of the manuscript and it
will result in a strategy to design optical antennas employing a judicious combination of dielectric
and metallic materials [11].
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Transfer matrix for spherical scatterers
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2.1 Introduction
Interaction of light with small particles has attracted much interest in optics. A major motivation
for this problem can be found in the need to understand the atmospheric pertubations that affect
astronomic observations and more generally that affect free space traveling wave detection [12].
Although these investigations were first undertaken to explain far field properties of disturbed radi-
ations, the solution of the physical problem requires a microscopic modeling of the interactions.

A first approximation consists in neglecting the coherent interactions of light with the nearby
object, thereby reducing the problem to the interaction of light with a single scatterer. Coherent
multiple scattering that occurs when distance separations between the particles are small will be
detailed later in chapter 5 in the framework of the Mie theory and multiple scattering equations.
The multiple scattering method will still require the electromagnetic response of the individual
object.

Rayleigh was the first to perform a dipolar approximation of the particle response in a qua-
sistatic picture. This electrostatic approach provides an explanation of the blue coloration of the
sky due to enhanced scattering of light at the small wavelengths of the optical range. The electro-
static response of small spherical particles will be detailed in chapter 5. However, this approach is
insufficient for describing the scattering of light by particles of sizes close to the wavelength.

In 1908, Mie proposed an analytical solution of the vectorial electromagnetic problem of the
interaction of light with spherical particles. The key idea consists in expanding the electromagnetic
field upon vectorial spherical partial waves and verifying the EM boundary conditions. This histor-
ical period coincides with great advances in quantum and solid states physics and not surprisingly,
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Figure 2.1: Sketch of the electromagnetic problem of light scattering by spherical objects. The
external field is composed of the excitation field plus the scattered field. The spherical coordinates
system is also displayed: the coordinates of a point (r, θ, ϕ) are defined in terms of the distance r,
the inclination angle θ and the azimuthal angle ϕ.

strong analogies between the Lorentz-Mie formalism and electron interactions with atoms can be
found. Indeed, Mie extended the concept of scalar spherical waves to vectorial spherical waves
allowing a description of the electromagnetic field polarization. The spherical expansion then en-
ables a straightforward satisfaction of the boundary conditions leading to a linear relation between
the incident and the scattered field. A matrix formalism, that we will discuss later, enables the
definition of a transfer matrix of the isolated particle independently of the applied excitation field.
This transfer matrix contains all the optogeometrical informations required to describe the time
harmonic electromagnetic response of the particle and will be combined with multiple scattering
equations in chapter 5 to accurately calculate the EM field in aggregates of arbitrary sized spherical
particles.

It must be stressed that only a few number of modal and thus analytical solutions exist to tackle
three-dimensional problems in electromagnetism. Although, the analytical framework introduces
specificity about shape of the particles, it also enables rapid calculations of the fields. All the nu-
merical simulations presented in this manuscript have been performed using a modal Mie theory. A
modular FORTRAN code has been developed to give a rapid access to various physical parameters
such as the field intensity, the electromagnetic cross sections or the Poynting vectors. This chapter
aims to review the fundamentals of the Mie theory by defining the elements of the transfer matrix
for a single scatterer and provides references to publications containing further details. Since the
transfer matrix is defined on the basis set of vectorial multipolar waves, the question of the expan-
sion of the excitation field is of fundamental importance. A variety of excitation fields generated
from the far field are currently employed in nano-optics such as plane waves or focused beams.
One also encounters near-field excitation such as the dipole emission of fluorophores and quantum
dots as well as evanescent fields. All these excitation fields will be defined in terms of the vector
spherical waves.

In addition, the modal method gives a straightforward access to the eigen-modes of the spherical
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structure. Such modes, frequently called Whispering Gallery Modes, have been intensively investi-
gated for their high quality factors of practical interest for biosensing [13], lasing systems [14, 15]
or EM transport via Coupled Resonator Optical waveguide (CROW) [16]. These resonances are
directly related to Mie coefficients and it appears relevant to begin this manuscript by recalling
properties of these well-known resonances.

2.2 Generalized Mie Theory

The Mie theory is based on an analytical solution of the Helmholtz equation in spherical coordinates
for EM vector fields. The solutions (or eigen-vectors of the Maxwell propagation equation) will
provide a relevant basis of vector functions for solving the boundary conditions at a spherical
interface. In a source free homogeneous, non magnetic medium. The time harmonic Maxwell
equations yields that the electric field must satisfy the Maxwell propagation equation:

∇ × (∇ × E) − k2
bE = 0 (2.1)

where kb =
√
εbµbω/c = 2πnb/λ0 is the associated wavenumber in the source free homogeneous

medium (λ0 is the wavelength in vacuum).

2.2.1 Scalar resolution in spherical coordinates

As a first step, we solve the homogeneous Helmholtz equation in the scalar case, the vectorial
solutions will then be obtained from the scalar solution:

4 ϕ + k2
bϕ = 0 (2.2)

where ϕ is the scalar wave function. The solution in spherical coordinates is fully detailed in [17].
The separation of the radial and angular variables in spherical coordinates leads to resolving two
independent differential equations. Furthermore, two independent solutions are required to provide
a complete basis for an arbitrary solution of Eq. (2.2):

Rg
{
ϕn,m(kbr)

}
≡ jn(kbr)Yn,m(θ, φ) (2.3)

ϕn,m(kbr) ≡ h+
n (kbr)Yn,m(θ, φ) (2.4)

where jn(x) are the first kind spherical Bessel functions and h+
n (x) = jn(x) + iyn(x) are the outgoing

spherical Hankel functions defined using the yn(x) second kind spherical Bessel functions. They
can be defined in terms of the cylindrical Bessel functions Jn(x) and Hn(x) as:

jn(x) ≡
(
π

2x

)1/2
Jn+1/2(x) (2.5)

h+
n (x) ≡

(
π

2x

)1/2
H+

n+1/2(x) (2.6)
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It should be noticed that the Hankel functions h+
n (x) = jn(x)+iyn(x) have an essential singularity

when x→ 0. The regular parts Rg{h+
n (x)} = jn(x) do not diverge for any finite value of x. Although

one could build a complete basis set using these two Bessel functions jn(x) and yn(x), the h+
n (x)

Bessel functions provide a more physical solution since they correspond to outgoing propagating
waves. The Yn,m(θ, φ) are the normalized spherical harmonics defined using associated Legendre
functions:

Yn,m(θ, φ) ≡ Pm
n (cos θ)eimφ (2.7)

It can be observed that the solutions are characterized by two quantum integers n and m resulting
from constraints associated with the separation of the radial and the angular variables. This is fully
analogous to the three dimensional Shrödinger equation leading to an angular quantization of the
electronic eigenmodes.

n = 0, 1....,∞ et m = −n, ...n

Figure 2.2: (a) Colored illustration of the angular dependence of the amplitude of scalar spherical
harmonics and (b) radial dependence of the spherical Bessel functions j1, j2 and j3.

Fig. 2.2 graphically illustrates the angular dependence of the spherical harmonics Yn,m(θ, φ) and
the radial dependency of the scalar solution ϕ(x). The amplitude of the scalar spherical harmonics
over a unitary spherical surface is displayed in Fig. 2.2(a) for the four first orders (i.e n = 1 to n
= 4) and the first kind Bessel function is displayed from n = 1 to n = 3. Increasing the multipole
orders enables to describe more rapid angular variations of the field.
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2.2.2 Vectorial Multipolar Waves and Vector Spherical Harmonics (VSHs)

2.2.2.1 Vector Spherical waves

From the scalar solution, one can construct a vectorial wave solution by defining:

Mn,m(kbr) ≡
∇ × [rϕn,m(kbr)]
√

n(n + 1)
(2.8)

Nn,m(kbr) ≡
∇ ×Mn,m(kbr)

kb
(2.9)

2.2.2.2 Vector Spherical Harmonic Functions

It is also convenient to define the Vector Spherical Harmonics Functions (VSHs):

r = r̂r

Yn,m(θ, φ) ≡ Yn,m(θ, φ)̂r (2.10)

Xn,m(θ, φ) ≡ Zn,m(θ, φ) × r̂ (2.11)

Zn,m(θ, φ) ≡
r∇Yn,m(θ, φ)
√

n(n + 1)
(2.12)

The Vector Spherical Harmonics define a complete orthogonal basis for describing the angular
variations for any vector field. The outgoing vector spherical waves can be written in terms of the
VSHs:

Mn,m(kbr) ≡ h+
n (kbr)Xn,m(θ, φ) (2.13)

Nn,m(kbr) ≡
1

kbr
[
√

n(n + 1)h+
n ((kbr))Yn,m(θ, φ) + ξ′n((kbr))Zn,m(θ, φ)] (2.14)

where we have introduced the Riccati-Bessel functions:

ψn(x) ≡ x jn(x) and its derivative ψ′n(x) ≡ jn(x) + x j′n(x)
ξn(x) ≡ xh+

n (x) and its derivative ξ′n(x) ≡ h+
n (x) + x[h+

n (x)]′

The regular solutions can be written:

Rg{Mn,m(kbr)} ≡ jn(kbr)Xn,m(θ, φ) (2.15)

Rg{Nn,m(kbr)} ≡
1

kbr
[
√

n(n + 1) jn((kbr))Yn,m(θ, φ) + ψ′n((kbr))Zn,m(θ, φ)] (2.16)
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2.2.3 Field expansion in homogeneous media

We have constructed a basis set of vector wave solutions of the vector Maxwell propagation equa-
tion. Any vector wave solution can be expanded on a set of multipolar eigenwaves. The incident
field is commonly expanded on the regular waves:

Einc = E
∞∑

n=1

n∑
m=−n

[Rg{Mn,m(kbr)}a(h)
n,m + Rg{Nn,m(kbr)}a(e)

n,m] (2.17)

where a(h)
n,m et a(e)

n,m are the respective coefficients of Einc according to Rg{Mn,m(kbr)} and
Rg{Nn,m(kbr)}.

In a similar manner, the internal field can be expanded on the regular multipolar waves with the
coefficients s(e)

n,m and s(h)
n,m. One can easily assume that the field scattered by the object is an outgoing

field. The scattered field is then described using the outgoing multipolar waves:

Escat = E
∞∑

n=1

n∑
m=−n

[Mn,m(kbr) f (h)
n,m + Nn,m(kbr)(e)

n,m] (2.18)

where f (h)
n,m et f (e)

n,m are the respective coefficients of Escat developped on Mn,m(kbr) and Nn,m(kbr).
One can introduce a matrix formalism, by placing the VSWs as elements of a row vector:

Rg{Ψt(kbr)} ≡ {Rg{M1}, ......,Rg{M∞},Rg{N1}, .....,Rg{N∞}}
while placing the coefficients in a column vector:

a =



...

a(h)
p
...

a(e)
p
...


We have introduced a single integer index p ≡ n(n + 1) − m to replace the two integer indices

n,m. This transformation has the following inverse relations: n(p) =
√

p and m(p) = −p+n(n+1).
With this matrix notation, one can write the incident field in a compact manner:

Einc = ERg{Ψt(kbr)}a (2.19)

In a more general manner, one can define the excitation field on an object ( j) as the total field
minus the field scattered by the object itself:

E( j)
exc = ERg{Ψt(kbr j)}e( j) (2.20)

where r j ≡ r − x j and x j is the position of the center of the scattering object. This definition will
be particularly useful in the context of multiple scattering (c.f. Appendix A). For a single scatterer,
the incident and excitation field are the same.

The field inside the object j can be similarly expressed:

E( j)
int = ERg{Ψt(ksr)}s( j) (2.21)
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where ks is the wavenumber inside the particle defined as ks = ns/nbkb with ns the refractive index
of the particle and kb = 2πnb/λ0 is the wavevector in the background medium, with nb the refractive
index of the surrounding medium and λ0 the wavelength in vacuum. The scattered field is expressed
as:

E( j)
scat = EΨt(kbr j) f ( j) (2.22)

The "regular" part is not required here since the field scattered by the object is an outgoing wave.

2.2.4 Generalized Mie Theory: T-Matrix of an isotropic sphere

We define the transfert matrix t( j) of an object j as the matrix relation between the excitation and
the scattered field coefficients:

f ( j) ≡ t( j)e( j) (2.23)

2.2.4.1 Calculations of the field components in the vector spherical harmonics basis: bound-
ary conditions.

To obtain the components of the scattered field as a function of the incident field, the boundary
conditions need to be solved. These interface conditions are easily solved using the expansion on
the vector spherical harmonics.

E(r) =

∞∑
n=0

n∑
m=−n

[
E(Y)

n,m(r)Yn,m(θ, φ) + E(X)
n,m(r)Xn,m(θ, φ) + E(Z)

n,m(r)Zn,m(θ, φ)
]

(2.24)

=

∞∑
p=0

[
E(Y)

p Yp(θ, φ) + E(X)
p X(θ, φ) + E(Z)

p Z(θ, φ)
]

(2.25)

The VSHs basis is orthogonal and a straightforward identification between equations (2.13,
2.14) and 2.24 shows that the radial functions of the external field are:

E(Y)
e,p(r) = E

√
n(n + 1)

[
jn(kbr)

kbr
e(e)

p +
h+

n (kbr)
kbr

f (e)
p

]
(2.26)

E(X)
e,p (r) =

E
kbr

[
ψn(kbr)e(h)

p + ξn(kbr) f (h)
p

]
E(Z)

e,p(r) =
E

kbr

[
ψ′n(kbr)e(e)

p + ξ′n(kbr) f (e)
p

]
The expansion inside the sphere gives

E(Y)
s,p(r) = E

√
n(n + 1)

jn(ksr)
ksr

s(e)
p (2.27)

E(X)
s,p (r) =

E
ksr

ψn(ksr)s(h)
p

E(Z)
s,p(r) =

E
ksr

ψ′n(ksr)s(e)
p



10 Chapter 2. Transfer matrix for spherical scatterers

On can deduce the components of the corresponding magnetic field H thanks to the Maxwell-
Faraday equation

H =
1

iωµ0µr
(∇ × E) (2.28)

and utilizing the following relations for the curl of the VSWFs

∇ ×Mp(kbr) = kbNp(kbr) (2.29)

∇ × Np(kbr) = kbMp(kbr)

We can then deduce the expansion of the excitation and scattered magnetic fields:

Hscat(r) =
kb

iωµeµ0
E
∞∑

p=1

[
Np(kbr) f (h)

p + Mp(kbr) f (e)
p

]
(2.30)

Hexc(r) =
kb

iωµeµ0
E
∞∑

p=1

[
Rg

{
Np(kbr)

}
e(h)

p + Rg
{
Mp(kbr)

}
f (e)
p

]
(2.31)

And in the same manner as the electric field, we deduce the H field components both outside,

H(Y)
e,p (r) =

ap

iωµ0µb

E
r

[
jn(kbr)e(h)

p + h+
n (kbr) f (h)

p

]
H(X)

e,p (r) =
1

iωµ0µe

E
r

[
ψn(kbr)e(e)

p + ξn(kbr) f (e)
p

]
H(Z)

e,p(r) =
1

iωµ0µe

E
r

[
ψ′n(kbr)e(h)

p + ξ′n(kbr) f (h)
p

]
and inside the sphere:

H(Y)
s,p (r) =

√
n(n + 1)
iωµ0µs

E
r

jn(ksr)s(h)
p

H(X)
s,p (r) =

1
iωµ0µs

E
r
ψn(ksr)s(e)

p

H(Z)
s,p(r) =

1
iωµ0µs

E
r
ψ′n(ksr)s(h)

p

One should remark that E(Y)
p (r)Yp(θ, φ) and H(Y)

p (r)Yp(θ, φ) are directed normally to a spherical
surface while E(X)

p (r)X(θ, φ), E(Z)
p (r)Z(θ, φ), H(X)

p (r)X(θ, φ) and H(Z)
p (r)Z(θ, φ) are tangential to it.

The VSHs basis is orthogonal so that the continuity of the tangential components of E and H
is:

E(X)
e,p (r) = E(X)

s,p (r), E(Z)
e,p(r) = E(Z)

s,p(r) (2.32)

H(X)
e,p (r) = H(X)

s,p (r), H(Z)
e,p(r) = H(Z)

s,p(r) (2.33)
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2.2.4.2 Elements of the T-matrix for a single spherical particle

The coordinates fp can be then expressed in terms of the ep coefficients by imposing the continuity
of the tangential E and H fields and eliminating the internal coefficients sp :

f (h)
p =

µsψ
′
n(keR)ψn(ksR) − ρsµeψ

′
n(ksR)ψn(keR)

ρsµeψn(ksR)ξ′n(keR) − µsξn(keR)ψ′n(ksR)
e(h)

p ≡ t(h)
n e(h)

p (2.34)

f (e)
p =

µsψ
′
n(ksR)ψn(kbR) − ρsµbψ

′
n(kbR)ψn(ksR)

ρsµbψn(ksR)ξ′n(kbR) − µsξn(kbR)ψ′n(ksR)
e(e)

p ≡ t(e)
n e(e)

p (2.35)

where ρs ≡
ks
kb

= ns/nb is the refractive index contrast parameter.
These can be expressed in a matrix form:

[
f (h)
p

f (e)
p

]
= t

[
e(h)

p

e(e)
p

]
(2.36)

where the individual t-matrix for an isolated scatterer [t] is a diagonal matrix:

[t] =

[
t(h)
n 0
0 t(e)

n

]
(2.37)

We use the lower-case t here to distinguish it from the multiple scattering T-matrix treated later
on. The t-matrix for a single spherical scatterer has been readily obtained thanks to the Vector
Spherical Harmonics. This t-matrix contains all the opto-geometrical properties of the spherical
particle and provides a description of the particle response independently of the incident field. One
can then change the features of the incident field without recalculating the t-matrix. Furthermore,
this approach will prove practical benefits for treating the multiple scattering of light in aggregates
of particles (see Appendix A).

2.2.4.3 Plane waves expression in the multipolar framework

One readily remarks that a multipole expansion of a plane wave field is not trivial. In particular,
the expansion of a plane wave over all space requires an infinite number of multipole orders. The
coefficients of an incident plane wave on the multipole expansion can be written as [17]:

a(h)
n,m = 4πinX∗n,m(θk, ϕk).̂ei (2.38)

a(e)
n,m = 4πin−1Z∗n,m(θk, ϕk).̂ei (2.39)

where θk and ϕk give the direction of the incident wave-vector kinc. Although the plane wave expan-
sion on multipolar waves requires an infinite numbers of multipole, a finite number of multipoles
is sufficient for a local expansion close to a particle.
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2.2.4.4 Davis expansion of focused beam on the multipolar framework

The multipolar expansion of focused beams by classical microscope objectives, in the manuscript,
is based on Davis-type approach [18] extended to the non-paraxial domain. In this approach, one
adopts a vector potential analysis which automatically imposes div(E) = 0 to a given order in s
where s ≡ 1

2kbzr
≡ tan θ0/2 is the dimensionless beam shape parameter, with zr the Rayleigh length

of the focused beam and θ0 is the opening angle of the numerical aperture. For an axisymmetric
power density, it leads to the following expansion in the VSWF framework:

a(h)
n,m = 4πingn(s)X∗n,m(θ, ϕ).̂ei (2.40)

a(e)
n,m = 4πin−1gn(s)Z∗n,m(θ, ϕ).̂ei (2.41)

where the gn are beam structure coefficients describing the beam shape. If we furthermore impose
a Lorenzian distribution of the axial beam intensity, gn is equal to:

gn(s) =
i−n+1[ jn−1( i

2s2 ) − 2s2

i (n + 1) jn( i
2s2 )]

2s2[(1 + 8s4) sinh( 1
2s2 ) − 4s2 cosh( 1

2s2 )]
(2.42)

A first approximation was made by Gousebet et al. [19–21] in the context of so-called localized
approximation:

gn(s) = e−s2(n−1)(n+2) (2.43)

leading to the expansion in the VSW framework:

a(h)
n,m = 4πine−s2(n−1)(n+2)X∗n,m(θ, ϕ).̂ei

a(e)
n,m = 4πin−1e−s2(n−1)(n+2)Z∗n,m(θ, ϕ).̂ei

This simple formula agrees relatively well with the exact results given in Eq. (2.42) for s up to
0.25 corresponding to a divergence angle of 30◦. Due to its simplicity, we will employ this approx-
imation for modeling highly focused beams even though for large apertures, Eq. (2.42) gives more
realistic results. Several theoretical studies have investigated more realistic beams. Such modelings
however require specific modeling of the given experimental configuration [22, 23] and the previ-
ous formulation remains a first order approximation that enables rapid and simple modeling of a
focused beam. Although the Davis approach is reputed to fail for tightly focused beams, experi-
mental measurements correlated with our numerical simulations (c.f. section 4.2) tend to validate
this choice.

2.3 Multipolar resonances: Whispering Gallery Modes
In the previous section, we have obtained an analytical relation between the incident excitation
coefficients and the scattered field coefficients (Eq. (2.34) and Eq. (2.35)). The Mie coefficients
establish a relation that remains valid for any type of spherical particles even with complex permit-
tivity such as metals. In this manuscript, both metallic and dielectric materials will be modeled in
this framework. In the first part of the manuscript, only purely dielectric materials are studied (the
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refractive index is real) so that no dissipation occurs in the particle. However, it is important to
realize that the refractive index of the spherical object strongly influences its scattering properties.
The focusing properties of dielectric microspheres in low refractive contrasts conditions will be
investigated in chapter 3.

Figure 2.3: (a) Layout of the geometric interpretation of Whispering Gallery Modes: internal re-
flections are responsible for trapping light inside the particle. (b) Layout of the wave interpretation
of Whispering Gallery Modes: a standing wave is established leading to resonant fields inside the
particle.

Morphological resonances were first investigated in the context of sound waves by Lord
Rayleigh to explain properties of so called whispering galleries. Indeed, the circular or ellipsoidal
domes of such large rooms permit whispers from one person to be clearly heard in any location
close to the walls of the room. Rayleigh showed that standing waves resonances were created in
the circular cavity enhancing the amplitude of the field around the cavity. These resonances have
been consequently called Whispering Gallery Modes (WGMs). Excitation of WGMs in the visi-
ble range in spherical micrometric cavities attracted a particular interest in the 60’s since the high
quality factors [24, 25] of the resonances enable intense fields inside the particle. Quality factors of
109 principally limited by the intrinsec absorption in the material have been observed and spherical
microparticles have been since investigated for molecular sensing [13], lasing systems [14, 15],
optical waveguiding [16, 26, 27] and delay lines [28].

Oscillating systems have specific resonant frequencies at which, a driving force produces large
oscillating response even for weak applied amplitudes. Since the Mie coefficients link the coordi-
nate vector of the scattered field to the incident field, they should exhibit maxima at their resonance
frequencies. Let us focus our attention on the Mie coefficients (Eq. (2.44) and Eq. (2.45)). These
coefficients have denominators which exhibit numerous zeros for complex values of kbR. The spec-
tral position as well as the strength of these resonances depend both on kbR and on the contrast ratio
ρ = ns/nb.

t(h)
n ≡

µsψ
′
n(kbR)ψn(ksR) − ρsµbψ

′
n(ksR)ψn(kbR)

ρsµbψn(ksR)ξ′n(kbR) − µsξn(kbR)ψ′n(ksR)
(2.44)

t(e)
n ≡

µsψ
′
n(ksR)ψn(kbR) − ρsµbψ

′
n(kbR)ψn(ksR)

ρsµbψn(ksR)ξ′n(kbR) − µsξn(kbR)ψ′n(ksR)
(2.45)
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These zeros can be first distinguished according to the mode number n involved. Fig. 2.4 shows
the amplitude map of the magnetic coefficients of order 6, |t(h)

6 | when kbR = 2πnbR/λ0 varies in the
complex plane, for a microsphere of diameter 2 µm and of refractive index ns = 2. The distribution
is given in terms of the real part (horizontal axis) and the imaginary part (vertical axis) of the
incident wavelength. One can notice that several peaks can be observed for different real values
of the wavelength. The corresponding imaginary part illustrates the confinement of the field inside
the particle and the width of the corresponding resonance on the real axis is directly related to the
amplitude of the imaginary part [29, 30]. Magnetic coefficients have been displayed here because
they have a weaker imaginary part than the electric coefficients so that they are more easily coupled
with the external field.

Figure 2.4: (a) Amplitude map of the magnetic coefficients |th
6| when kbR = 2πnbR/λ0 varies in the

complex plane. The refractive index of the 2 µm diameter microsphere is set to ns = 2 and the
distribution is given in terms of the real part (horizontal axis) and the imaginary part (vertical axis)
of the incident wavelength. (b), (c) and (d) Intensity maps for complex illumination for the first
order resonances occuring at respectively (b) λ0 = 0.786 + i*0.0188, (c) λ0 = 1.0017 + i*0.02 and
(d) λ0 = 1.392 + i*0.0078.

Intensity maps of the electric field are displayed in Fig. 2.4 for three different resonances, at
(b) λ0 = 0.786 + i*0.0188, (c) λ0 = 1.0017 + i*0.02 and (d) λ0 = 1.392 + i*0.0078. These maps
show that strong intense fields occur inside the particle. The resonance at the longer wavelength
(Fig. 2.4(d)) shows a single circular field confined at the internal surface of the microsphere. The
standing waves established in the particle exhibits 2n = 12 highly intense peaks regularly dis-
tributed along the surface. For smaller wavelengths,(Fig. 2.4(b)and (c)) several rings are produced
in the particle. The numbers of peak along the radial direction is so called the order of the reso-
nance l. The lowest order l = 1 corresponds to Fig. 2.4(d) and a decrease wavelength enables the
excitation of higher order resonance as l = 2 in Fig. 2.4(c) and l = 3 in Fig. 2.4(b).
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A formal analogy can be made with quantum mechanism. As mentioned in the introduction,
Mie formulation is strongly analog to the elastic scattering of electron waves on an atom. In the
same manner as an electron can be coupled into atomic eigenstate and confined around the nucleus,
the photon can be coupled to quantified eigen modes in the dielectric particles. The refractive index
acts as a potential well that trap the electromagnetic field in the orbital region of the dielectric
particle [29]. The available states depend on the energy of the incident wave that can be distributed
over high order orbitals.

2.4 Conclusion
In this chapter, the fundamental elements of the generalized Mie theory have been reported. The ex-
pansion of the electromagnetic field on the Vector Spherical Waves enables the analytical resolution
of boundaries conditions. As a result, all the scattering properties of spherical objects are encom-
pressed in a transfer matrix matricial formalism independent of the incident field. Calculations
performed in this manuscript will employ this framework. As an example, we have investigated
morphological resonances occuring in spherical dielectric particles and pointed out the close rela-
tion with the elements of the T-matrix. In the next chapters, the Mie theory will be employed to
investigate various situations such as light focusing by low refractive index particles (chapter 3 and
chapter 4) and interactions of light with metallic nanoparticles (chapter 5 to chapter 7).
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3.1 Introduction to focusing systems

Convergent dielectric lenses such as glass lenses can be considered as the most common optical
components. As an example, magnifying lenses have been commonly employed to produce a
magnified image of the object of interest. Sherlock Holmes is the most famous example of the
popular usage of this particular type of lenses but its invention is said to date at least from the
XV th century before J.C. Although, this simple object is no longer employed in modern optics, this
well-known object can in a first approach illustrate our purpose about light focusing.

We know that a magnifying lens may set fire to an underneath object during a sunny day. In
this case, the incident light enters the system and is concentrated in the focal region. Consequently,
the light energy density is increased in the focal region increasing by the way potential interactions
between light and matter. Currently, light focusing is employed for applications such as data stor-
age, optical nanopatterning or in biophotonic for fluorescence spectroscopy. In this manuscript, we
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are more interested in increasing light/matter interactions rather than in producing a perfect two-
dimensional image. In particular, we are interested in focusing light using spherical micrometric
lenses.

Figure 3.1: (a) Schematic of an ideal lens in the geometrical approximation. The incident plane
wave is focused in a single focal point. (b) Geometrical ray tracing of a spherical lens performed
using the commercial software ZEMAX . Rays converge at different positions on the optical axis,
illustrating the geometric spherical aberration.

Considering an ideal convergent lens in the geometric approximation as illustrated in Fig. 3.1(a),
the propagating incident light would be focused in a single position called the focal point. Such
focusing remains an ideal case and focusing systems may suffer from geometrical aberrations at
large opening angles. In particular, spherical lenses have not often been employed to focus light
since they intrinsically suffer from strong geometrical aberrations. The ray tracing for a spherical
lens performed using the commercial software ZEMAX displayed in Fig. 3.1(b) shows a typical
spherical aberration. It is easy to notice that light rays are not focused at the same position along
the optical axis. This shows that spherical lenses are not suitable for focusing light particularly for
rays crossing the lens far from the optical axis (also called non-paraxial domain).

Modern optical systems have been since corrected from the major geometrical aberrations [31]
but other limitations remain. Indeed, even perfectly corrected systems have to face the fundamental
diffraction limit when attempting to focus light in very small volumes. The focal volumes of tighlty
focused beams result from the interferences of propagating electromagnetic waves and the spatial
variations in the field distribution depend directly on the incident wavevectors of the focused beam
as well as on the relative phase of the different contributions. The achievement of small focal
volumes requires high angular openings objectives as well as the phase matching of the incident
angular components to produce a clear focal volume. The correction of diffraction aberrations [32]
will result in a minimal focal volume on the order of the incident wavelength and a fundamental
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boundary spatial resolution of optical systems is given by the Rayleigh limit. Perfectly corrected
systems such as state of art high numerical microscope objectives enable to concentrate light in
volumes as small as (λ/2)3 but at the price of complex optical systems.

Focusing of light is currently employed to produce extremely localized effects such as material
damaging for data storage (CD, DVD, BluRays), or laser surgery, and a need for compact and
cost effective materials is needed. The advances in nanofabrication technics and the fundamental
limitations of far field focusing systems recommend the use of near field and compact operating
microlenses to focus light.

Figure 3.2: Intensity colored map of a 10 µm diameter polystyrene (ns = 1.6) particle immersed in
water (nb = 1.33) illuminated by a plane wave at λ0 = 633 nm.

The ability of microspheres to focus light and enhance the local electromagnetic field was first
utilized to remove particles from a substrate in laser dry cleaning technique [33, 34] and arrays
of particles-lenses were proposed in 2003 as a means to pattern a substrate with neither mask
nor lithographic processes [35] offering various patterns when illuminating the array at different
angles [36].

Nevertheless, the focusing properties of microparticles have attracted a renewed interest since
the work of Chen et al. [37–39]. Their FDTD simulations showed that when cylinders [37] or
spheres [38] are illuminated by plane waves, narrow beams are produced in the near field of the
shadow-side surface. These beams typically have FWHM (Full Width at Half Maximum) smaller
than the incident wavelength over distances of several wavelengths and have been named “photonic
jets”. Moreover, the intensity can be hundreds of times higher than the incident intensity [38].
Fig. 3.2 shows the electric field intensity (Hermitian square of the electric field) in the vicinity
of a 10 µm diameter sphere illuminated by an optical plane wave. The existence of photonic jets
has since been experimentally confirmed in the microwave range of frequencies [40], and directly
observed in the optical spectrum with a confocal microscope operating in detection mode [4].

The advent of nanosciences and biotechnology have contributed to consider microparticles
as useful tools for high resolution nano-particles detection [37–39], fluorescence microscopy
improvements [41, 42], Raman scattering enhancement [43], datastorage [44] and nanopattern-
ing [35, 36, 45]. A deeper understanding of this beam is nevertheless needed to fully exploit the
potential performance of microspheres as optical components.

An analytical study of light focusing by axially symmetric systems has been performed us-
ing wave propagation theory in systems having spherical aberrations, extending the geometrical
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optics approach [46]. The field is developed on high-order Bessoid integrals which are vectorial
three-dimensional generalizations of the Pearsey Integral. Applied to microspheres, this formalism
describes "photonic jets" as resulting from off-axis rays converging towards different points with
different angles as a consequence of spherical aberrations. In this framework, photonic jets are ap-
proximated as Bessel beams of variable cross section. This description provides physical insights,
tending towards Mie theory for size parameters above 30.

For smaller spheres, the agreement is less accurate in part due to evanescent field contributions
that are not taken into account in the geometric optics framework. A spectral analysis of the pho-
tonic jets has previously been carried out by Itagi et al. [47] for cylinders. They concluded that
the evanescent field only makes small contributions to photonic jets properties which are mainly
due to a particular phase distribution. Chen et al. also affirmed that photonic jets do not involve
evanescent fields [37], but this still need to be closely examined for spherical problems invoking a
complete three-dimensional analysis.

In this manuscript, a thourough study of photonic jet beams is performed and we investigate in
particular the conditions suitable for its production. A comparison with focused beams is made for
didactic purposes to point out the performance of microparticles as microlenses. A three dimen-
sional analytical plane wave expansion of the field will then be undertaken to quantify contribu-
tions of the different spatial frequencies in photonic jets field distributions (section 3.3) including
evanescent field contributions. This study will readily lead us to compare photonic jets with Bessel
beams.

3.2 Optical properties of photonic jets in direct space

The clear focusing properties of microspheres encourages further investigations. In particular, the
conditions for the generation of photonic jets remains ill-defined and the focal properties of the
resulting beam depends on several parameters such as the size and the dielectric material of the mi-
crosphere as well as the illuminating wavelength and the surrounding background. A question has
also arisen concerning the benefits to employ such beams for biological applications. Experimental
studies have shown that a solution containing microspheres can enhance two-photon fluorescence
by 35 percent via the local electric field enhancement due to photonic jets [41]. However, as far as
we know, no single-photon fluorescence enhancement has been reported.

In the current state of the art, fluorescent spectroscopy is performed using tightly focused beams
produced by high numerical aperture microscopes. The question arises whether photonic jets can
outperform such far-field focused beams. For didactic purposes, a comparison of the dimensions
of photonic jets with focused beams will be performed (section 3.2.1).

3.2.1 Photonic jets in aqueous medium direct space

We consider typical conditions occuring in biophotonic experimentations. In general, biological
molecules at interest freely evolve in aqueous media of refractive index close to nb = 1.33. The in-
tensity pattern produced by a polystyrene-like microsphere (ns = 1.6) of diameter 2 µm illuminated
by a plane wave is simulated in Fig. 3.3. The incident plane wave propagates at a wavelength λ0
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= 633 nm in vacuum, along the z-axis for increasing z values (i.e. from the left to the right) and
is polarized along the x-axis. Fig. 3.3(a) displays the electric field intensity distribution in the x0z
plane and Fig. 3.3(b) in the y0z plane.

Figure 3.3: Intensity colored map of a photonic jet (a) in the x0z plane and (b) in the y0z plane.
The polystyrene microsphere (ns = 1.6), 2 µm in diameter is illuminated by a plane wave at λ0 =

633 nm. The electric field of the incident plane wave is polarized along the x-axis. Calculations are
performed with N = 30.

These colored maps clearly highlight the typical features of a photonic jet: an intense field is
generated outside the sphere and exhibits a longitudinal extent exceeding several micrometers while
its transverse dimensions remain on the order of the incident wavelength along the propagation.
One can notice that Fig. 3.3(a) and Fig. 3.3(b) are slightly different. The linear incident polarization
induces an anisotropy in the intensity distribution, so that the transverse dimension of the photonic
jet is slightly larger along the polarization direction than in the orthogonal plane. It can also be
interesting to notice that the intensity distribution exhibits interferences effects giving rise to local
maxima and minima. These secondary maxima are angularly regularly distributed and highlight
the diffractive and multipolar nature of photonic jets.

To proceed further in the characterization of photonic jets, the intensity sections of the photonic
jet produced in the same conditions as in Fig. 3.3 (λ0 = 633, ns = 1.6, nb = 1.33) are displayed in
Fig. 3.4 along the three Cartesian axis: (a) along the propagation axis z, (b) along the polarization
axis x and (c) along the orthogonal axis y. The transverse sections displayed in Fig. 3.4(b) and
Fig. 3.4(c) are calculated at the local maximum of Fig. 3.4(a), i.e. at z = z Imax = 1.52 µm.

The intensity distribution along the z axis, displayed in Fig. 3.4(a), highlights two different
behaviors. Inside the microsphere (the position of the sphere surface is illustrated by the vertical
green line), the intensity pattern shows oscillations with a local maximum close to the sphere sur-
face. These oscillations are due to internal reflection giving rise to complex interferences pattern
(see Fig. 3.3). In the surrounding medium (z ≥ 1 µm), the field distribution exhibits a smooth
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Figure 3.4: (a) Cross-sections of the intensity enhancement along the z-axis for a photonic jet pro-
duced in the same conditions as in Fig. 3.3 (λ0 = 633, ns = 1.6, nb = 1.33). The green line represents
the edge of the sphere surface located at z = 1 µm. The red line fits a Lorentzian distribution. (b)
Intensity cross-section along the transverse axis x at z = zImax = 1.52 µm and (c) cross-section along
the transverse axis y at z = zImax = 1.52 µm. In (b) and (c) the red lines follow a Gaussian type
distribution.

distribution with a local maximum occuring 500 nm beyond the sphere surface that reveals the
focusing of light in a photonic jet. It must be stressed that contrary to Gaussian beams, the inten-
sity distribution of photonic jets along the z-axis is not symmetric with respect to the maximum
intensity and we have found that the intensity enhancement can be fitted in its decreasing part by
a Lorentzian distribution (red line in Fig. 3.4(a)). Furthermore, the intensity enhancement along
the transverse axis can be fitted as Gaussian distributions (red lines in Fig. 3.4(b) and Fig. 3.4(c)).
These remarks can be of practical interest since well-known Gaussian beams follow similar field
distributions. Therefore, by defining the diffraction length of the photonic jet, zr, as the half width
at the half maximum (HWHM) of the Lorentzian fit, and the width at the diffraction focus, w0, as
the half width at the Imax/e2 of the Gaussian fit, a comparison with well-known focused beams can
be performed.

Table 3.1: Comparison of lengths and widths of the photonic jet with an equivalent Gaussian beam.
beam type Gaussian beam s = 0.32 Photonic jet beam
length zr 0.45 µm 1.00 µm
width w0x 320 nm 310 nm
width w0y 260 nm 260 nm

As an example a quantitative comparison is performed in Table 3.1. We consider a focused
Gaussian-like beam simulated using Davis formulas with an angular opening parameter s = 0.32
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(c.f. chapter 2), and a photonic jet with similar waists w0x = 320 nm and w0y = 260 nm. As a result,
for an equivalent waist, this photonic jet exhibits a twice longer length than its Gaussian beam
counterpart. One could conclude that photonic jets have a greater length than classical Gaussian
beams. However this statement is only valid when photonic jets have a maximal intensity far away
from the surface. It must be reminded that the intensity distribution of photonic jets along the z-axis
is not symmetric with respect to the maximum intensity and this conclusion is not exactly valid. For
instance, when the field is located on the surface or very close to it, the length of the focal volume
can become quite small since a part of the energy is located inside the particle. It thus becomes
essential to establish different ranges of size parameters and dielectric contrasts to clearly define
the suitable conditions for producing photonic jets.

3.2.2 Features of photonic in direct space

Photonic jets are produced by a scattering response of a dielectric microsphere illuminated by opti-
cal plane waves. On contrary to Whispering Gallery modes which are resonant response occuring
at precise frequencies (c.f. chapter 2), photonic jets are non resonant responses occuring over a
large range of illumination frequencies. Nevertheless, the focal properties of the resulting beam de-
pends on several parameters such as the size and the dielectric material of the microsphere as well
as the illumination wavelength and the surrounding background. More precisely, Mie coefficients
show that the scattered field depends on the size parameters kbR = 2πnb/λ0 and ksR as well as the
refractive index contrast ρ = ns/nb.

In order to provide an idea of the photonic jets properties in a compact form, we focus our
attention on two situations where the dielectric contrast between the particle and the surrounding
medium is low index contrast ρ = ns/nb = 1.6/1.33 = 1.2 and for higher index contrast ρ = ns/nb =

1.6/1 = 1.6. The incident wavelength is chosen in the red range of color at λ0 = 633 nm.
The position and the amplitude of the maximum intensity enhancement along the z-axis are

respectively displayed in Fig. 3.5(a)(c) and Fig. 3.5(b)(d) as a function of the particle radius. The
calculations are performed for a polystyrene sphere embedded in a medium of refractive index
nb = 1.33 (refractive index contrast ρ = 1.2) in Fig. 3.5(a), (b) and in vacuum in Fig. 3.5(c), (d)
(refractive index contrast ρ = 1.6).

The focal position (identified with the maximum intensity) is displayed in Fig. 3.5(a)(c) and
exhibits a smooth linear dependence with respect to the microsphere radius. The green line corre-
sponds to the y = x function indicating the position of the edge of the microsphere surface. This
linear behavior is at first surprising but is consistent with the linear dependence of the focal position
in the geometrical optics for thick lenses [31]:

fgeo =
ρR

2(ρ − 1)
(3.1)

However, the proportions of the linear coefficient are slightly different. A linear fit (red line in
Fig. 3.5) shows that for low index contrast situations (ρ = 1.2 in Fig. 3.5(a)), the focal position
increases as zImax = 2.15R while in the case of ρ = 1.6, it varies as zImax = 1.2R. When employing
Eq. (3.1) to calculate the focal position, it gives that for ρ = 1.2 and ρ = 1.6, we respectively obtain
fgeo = 3R and fgeo = 1.33R (dashed lines in Fig. 3.5). It results that the focal position for a 1 µm
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sphere illuminated at λ0 = 633 nm occurs at the surface of the sphere as soon as ns/nb > 1.6 while
in the geometrical framework it occurs for a refractive index ns = 2.

From Fig 3.5(a)(c), we can conclude that the generation of photonic jets having a maximum
intensity far from the surface requires low index contrasts: ρ < 1.6. If the contrast is larger but
less than 2, the size of the microsphere has to be sufficient to detach the focal position from the
microparticle.

Figure 3.5: (a), (c) Calculated zImax position of photonic jets (full black lines) and its linear fit (red
line) as a function of the raius of the microsphe. Ths geometric focal position fgeo (dashed lines)
and the position of the surface (green line y = x) are also displayed. (b), (d) Amplitude Imax of the
maximum intensity enhancement. (a) and (b) The 2 µm polystyrene sphere (ns = 1.6) is immersed
in water nb = 1.33, (c) and (d) the polystyrene sphere is embedded in vacuum nb = 1.

The amplitude enhancement (normalized by the incident intensity I0) at the focal position of
photonic jets displayed Fig. 3.5(b)(d) highlights fundamentally different features according to the
refractive index contrast ρ. While plots in Fig. 3.5(b) show for low index contrasts a smooth in-
creasing distribution of Imax with moderate amplitudes, numerous peaks appear in the plots for
higher contrasts in Fig. 3.5(d) of amplitude enhancement. This behavior are due to the excitation
of Whispering Gallery Modes.

For the sake of completeness, Fig. 3.6(a) and (c) display the waists (half width at Imax/e2) and
Fig. 3.6(a) and (c) the lengths zr (Half Width at Half Maximum) for respectively ρ = 1.2 and ρ = 1.6
for increasing radii of the particle R. These plots exhibit increasing curves with rapid oscillations.
These oscillations are limited in amplitude and a qualitative study can still be undertaken. From
Fig. 3.6(a) and (c), one can notice that the waist of the photonic jet is comprised between 0.25 µm
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< w0 < 0.45 µm for the two contrasts. The waists of photonic jets depend slightly on the contrast
ratio but above all on the size of the nanoparticle (or the incident wavelength)and remains shorter
than the incident wavelength reaching λb/2 for a 1 µm polystyrene particle immersed in vacuum.
It must be stressed that these results are obtained with a simple microsphere straightforwardly
illuminated by a plane wave, thus highlighting the extremely good focusing properties of this simple
optical component.

More interestingly, the length zr of the photonic jet depends strongly on the contrast ratio. For
ρ = 1.6 the length can be extremely short (around 200 nm for R = 1 µm) but is increased up to
1 µm for R > 6 µm. In contrast, for ρ = 1.2 the length of the photonic jet is greater than 1 µm
reaching 3 µm for radii R > 5 µm.

Figure 3.6: (a), (c) Width z0 and (b), (d) length zr of the focal volume exiting the microsphere. (a)
and (b) The 2 µm polystyrene sphere (ns = 1.6) is immersed in water nb = 1.33, (c) and (d) the
polystyrene sphere is embedded in vacuum nb = 1.

This study has highlighted how the generation conditions of photonic jets can influence their
properties such as their focal position, their intensity enhancements as well as the waists and the
lengths of their focal volumes. Plane wave illumination of a microsphere can result in quite narrow
and short focal volumes for high index contrasts and one can question whether the denomination
photonic jets is still relevant in such situations. We thus consider that photonic jets as it is com-
monly defined, are beams of elongated focal volumes extending far from the microsphere. It results
that the conditions for the generation of photonic jets in the optical range lies in a trade-off between
the index contrast ratio and the size of the particle.
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3.3 Optical properties of photonic jets in reciprocal space
Photonic jets are beams which are focused in the near field of the microlens where scattering may
generate evanescent fields. In a general manner, the scattering process redistributes light over all
the directions of the complex space. Real components of the wave vectors correspond to light
propagating in a given angular direction while the complex components remain in the vicinity of
the particle. To estimate the contribution of both propagative and evanescent fields in the photonic
jet morphology, a rigorous angular spectral analysis of the scattered field was undertaken. The
analytical development, which consists in expanding the partial waves on plane waves, has been
fully detailed in Appendix B. A summarize of this study is presented in this chapter in order to
reveal the physical insight introduced by this approach.

3.3.1 Plane waves expansion in the multipole framework

The layout of the angular expansion is displayed in Fig. 3.7. We are interested in the investigation
of the evanescent field contributions of the scattered electric field along the propagation direction z.
Indeed, evanescent waves (i.e. kz is purely imaginary) are associated with high radial components
K defined from the k-vector as kz =

√
kb

2 −K2. Large amplitudes of K produce high spatial
frequency contributions responsible for rapid variations of the field in the plane x0y.

Figure 3.7: Layout of the spectral expansion superposed with the intensity colored map of the
photonic jet investigated in Fig. 3.3, (N = 30).

The multipole development of the scattered field can be expressed as:

−→
E scat(r, θ, φ) = E0

∞∑
n=1

n∑
m=−n

f (h)
n,m
−→
Mn,m(kbr, θ, φ) + f (e)

n,m
−→
Nn,m(kbr, θ, φ) (3.2)

We express the transverse vector K as

K = k// = K cos(φk )̂x + K sin(φk )̂y (3.3)

The multipolar waves functions can be expanded on the plane waves functions in terms of the
Vector Spherical Harmonics (VSHs):
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Mnm(r//, φ, z) =
i−n

2πkb

∫ ∞

K=0

∫ 2π

φk=0
KdKdφk Xnm

(̂
k
) exp

(
i(K · r// + kz|z|)

)
kz

(3.4)

Nnm(r//, φ, z) =
i−n+1

2πkb

∫ ∞

K=0

∫ 2π

φk=0
KdKdφk Znm

(̂
k
) exp

(
i(K · r// + kz|z|)

)
kz

(3.5)

where (r//, θ, φ) are the cylindrical coordinates. One can observe that the VSHs can be considered
as the angular spectrum of the multipolar waves. Full calculations are relegated to Appendix B
and lead to a spectral expansion of the field in terms of cylindrical Bessel functions of the radial
coordinate.
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with

A(
K
kb
, φ, z) =

∞∑
n=0

f (h)
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n + f (e)
n,mA(e)

n (3.7)

B(
K
kb
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f (h)
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n + f (e)
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C(
K
kb
, φ, z) =
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f (h)
n,mC(h)

n + f (e)
n,mC(e)

n (3.9)

(3.10)

The full expression of the weighting functions A(h,e)
n , B(h,e)

n , C(h,e)
n are relegated to Appendix B.

3.3.2 Results and discussions
The amplitude and phase of the weighting functions A, B and C at φ = 0 and z = 1.005 µm have
been plotted respectively in Fig. 3.8(a), (b) and (c) as a function of the radial wave vector K/k0

for a photonic jet produced in water by a 2 µm diameter polystyrene microsphere illuminated by a
plane wave of λ0 = 633 nm. As we have assumed a circularly polarized electric field, one observes
that the A coefficient corresponding to no polarization mixing is predominant weighting a 0th order
Bessel function J0.

This is particularly clear in the low spatial frequency range K/k0 < 0.5 where the polarization
mixing amplitudes of B, and C never exceed 10. All 3 coefficients exhibit an oscillating behavior
with respect to K/k0. We henceforth focus our attention on the predominant coefficient A.

The radial spectrum |A| has the following features: a generally decreasing and oscillating fea-
ture in the region 0 ≤ K/kb ≤ 1 corresponding to propagative fields, a singularity originating from
the pole of the homogeneous background medium Green function at K/kb = 1 and a monotonically
decreasing behavior when K ≥ kb for evanescent field contributions.
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Figure 3.8: Spectral coefficients A, B and C (see Eq. (B.20)) at φ = 0 and z = 1.005 µm of a
photonic jet produced in water by a 2 µm diameter polystyrene microsphere illuminated by a plane
wave at λ0 = 633 nm. Amplitude (full line, left axis) and phase (dashed line, right axis) of (a) A,
(b) B and (c) C.

From the zero-frequency to the first minimum, the spectral distribution can be fitted by a narrow
Gaussian-type distribution. The secondary maxima and minima observed in the higher spatial
propagative frequencies enrich the jet spectrum and result in photonic jets having features that
differ from Gaussian beams in direct space.

3.3.3 Field reconstruction

To understand the role of contributions originating from spatial frequency components, we carried
out a numerical experiment consisting in removing some spectral contributions. Fig. 3.9(a) shows
the intensity colored map fully reconstructed by integrating over all the contributions K/kb from 0 to
∞. This map is simulated in the same conditions as Fig. 3.3 and validates the spectral reconstruction
technique. Due to restrictions in the expansion, the field has been calculated for the half-space of
interest for z > 1 µm only and the white circles represent the edge of the microsphere. Fig. 3.9(b)
displays the field distribution when removing the high spatial frequencies K/kb ≥ 1 corresponding
to the evanescent field contributions. As we expected from Ref. [2, 47], the evanescent field only
slightly contributes to the field distribution. The contributions of low and high propagating spatial
frequencies are more striking. Fig. 3.9(c) shows the intensity colored map obtained when the
low spatial frequencies (K/kb ≤ 0.25) have been removed. The associated intensity map shows a
clear reduction of the longitudinal extent of the photonic jet. This simple numerical experiment
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indicates that low transverse spatial frequencies strongly contribute to the elongated focal volume
of photonic jets. One can remark however that the field intensity reaches similar amplitudes as in
Fig. 3.7 demonstrating that the energy is mainly contained in the higher spatial frequencies.

Figure 3.9: Reconstruction of the field intensity of a photonic jet in the same conditions as in
Fig. 3.7 after filtering of the spectral components. (a) The entire spectrum is taken into account, (b)
only the propagating modes K/kb ≤ 1 are kept, (c) the low spatial frequencies (K/kb ≤ 0.25) have
been removed. (d) Both low (K/kb ≤ 0.25) and high spatial (K/kb ≥ 0.75) frequencies have been
removed.

Fig. 3.9(d) shows the same intensity map as Fig. 3.9(c) but when both low transverse (K/kb ≤

0.25) and high spatial transverse (K/kb ≥ 0.75) frequencies have been removed. The morphology
of the beam remains similar to the previous case. One can notice the relative enhancement of
secondary intense areas off-axis. The amplitude of the focal intensity has dropped significantly
indicating that high transverse angular frequencies importantly contribute to the field intensity.
Furthermore, the absence of high spatial frequencies slightly widens the transversal dimension
while lengthening the longitudinal extent of the beam.

3.4 Axisymmetric system and Bessel beams

A theoretical cylindrical scalar wave solution of Maxwell equations was introduced by Durnin [48]
in 1987 characterized by a single 0th order Bessel function of the radial dependence for a beam
propagating along the z-axis.

E(r//, φ, z) = eikzzJ0(Kr//) (3.11)
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One can readily show using the definition of cylindrical Bessel functions that Eq. (3.11) is indeed
a solution of the radial Helmholtz equation. One can easily verify that the radial distribution of
the Bessel beam does not depend on the propagation distance z. Such beams theoretically prop-
agate over an infinite distance without distortion and have attracted significant interest since their
transverse sections possess a sharp central peak. In contrast to plane waves, which can also be
considered as non-diffractive waves of infinite spatial extent, Bessel beams exhibit a maximum
on the z-axis with several secondary maxima in the transverse direction. The effective width of
the central peak can be extremely narrow (approximately 3λ/4) over large distances which ren-
ders these beams excellent candidates for sensing small objects and accurate positioning of optical
components [49] .

Nevertheless, it is important to notice that J0 Bessel functions decrease as a 1/
√
ρ function [50]

which implies infinite energy content (like plane waves). In other words, non-diffractive beams
are of infinite extent and possess infinite energy. Consequently, Bessel beams, similarly to plane
waves remain theoretical constructs in applications of the necessarily finite sized pupil apertures
of real optical systems. Nevertheless, it remains possible to approximate such ideal beams. The
first implementation of Bessel beams, was carried out by Durnin himself [51] with a simple annular
pupil located in the focal plane of a convergent lens. According to Durning’s predictions based on a
scalar diffraction theory of electromagnetic waves, if such a beam is generated from a pupil aperture
of several centimeters, it should propagate over several meters without significant distortion of its
radial intensity distribution. A reduction of the aperture to several millimeters would nevertheless
produce a beam with a longitudinal extent of several micrometers.

Bessel-like beams have since been produced employing hemispheric and cylindrical lenses [49].
It has also been demonstrated that geometrical aberrations, and spherical aberrations in particular,
can induce Bessel-like beams [49]. The special properties of Bessel beams can be readily un-
derstood from a plane wave expansion. This procedure has been implicitely done in the spectral
expansion in section 3.3 and will lead to further understanding of photonic jets.

3.4.1 Geometrical spherical aberrations and axicon

Axisymmetric systems have been investigated for their ability to concentrate light along a focal
line. So called axicons were at first studied to spread an image point along a focal line and conical
lenses were introduced as an efficient way to achieve this property. The geometrical ray tracing
for a conical lens has been performed using the commercial software ZEMAX and displayed in
Fig. 3.10(a). This plot nicely highlights how each ray crossing the surface at a given height is
focused at different positions along the propagation axis. The superposition of these cones results
in an intense field around the optical z-axis leading to a high longitudinal extent.

In the electromagnetic framework, an expansion on plane waves is convenient. The develop-
ment of the Bessel beams in terms of plane waves can be obtained using an integral expression of
Bessel functions [52]:

∫ 2π

0
exp(ix cos(φk − φ)) exp(inφk)dφk = 2πinJn(x) exp(inφ) (3.12)
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where n is an integer. Taking n = 0, Eq. (3.12) enables the J0 function to be written:∫ 2π

0
exp(ix cos(φk))dφk = 2πJ0(x) (3.13)

Inserting x = Kr// = kb sin θkr// into Eq. (3.13), one sees that J0 beams are a superposition of
plane waves all propagating at an angle θk defined as K/kb = sin θk (the angle θk is illustrated above
in Fig. 3.7) but with azimuthal angles φk varying from 0 to 2π. Thus, it is easy to understand that
axicons are efficient tools for producing Bessel beams.

Figure 3.10: Geometrical ray tracing of a collimated light beam illuminating (a) a conical lens, (b)
a spherical lens.

Fig. 3.10(b) shows a ray tracing of the spherical lens illuminated by a collimated beam. Al-
though the focusing properties and consequently the intensity pattern are not as trivial as the conical
lens, one can easily notice that the field is not focused in a single focal point but rather distributed
along the propagation axis. This is a classical feature of light focusing by spherical lenses which
involves spherical aberrations [31]. In the geometrical optics framework, an intense focal line is
generated with a narrow transverse dimension. One should recall at this step that we have seen that
J0 functions are the principal components of photonic jets field and certain properties of Bessel
beams may have applications to photonic jets.

3.4.2 Discussion
The expansion performed in the previous section has highlighted interesting similarities between
Bessel beams and photonic jets provided by a common Bessel dependence of the radial parameter.
These similarities may lead to a better physical understanding of photonic jets properties and can
provide tools to shape the beam.

For instance, the non diffracting behavior of Bessel beams is said to lie in the non-paraxial
contributions. It results that pure Bessel beams, due to the definition given in Eq. (3.12) should not
be greatly disturbed by an object located on the optical axis. This self-reconstructing behavior can
be easily understood from the ideal case since Bessel beams are created by non-null angular plane
waves which contain energy passing aside the obstacle. In particular this property has been inves-
tigated to simultaneously trap and manipulate several microparticles with a single light beam [53].
To verify the role of the non-paraxial contributions, we simulate a photonic jet with a microsphere



32 Chapter 3. Focusing light with near-field operating microlens

containing an absorbing material preventing the “paraxial” contributions from crossing the micro-
sphere. The electric field intensity map of a classical photonic jet and a photonic jet generated
by a coated sphere containing an absorbing kernel are displayed in Fig. 3.11(a) and Fig. 3.11(b)
respectively.

Figure 3.11: (a) Intensity colored map of a photonic jet in the same conditions as in Fig 3.7. (b)
Same as (a) with an absorbing bulk of diameter 500 nm in the center of the 2 µm polystyrene
sphere.

A straightforward comparison of Fig. 3.11(a) and Fig. 3.11(b) shows that the photonic jet is
almost not disturbed by the presence of the absorbing kernel. The filtering of the paraxial rays
leads to a focal volume closer to the surface, but preserves the elongated nature of the beam. More
generally, it has been recently demonstrated by Kong et al. [54] that graded index microspheres
can increase the longitudinal extent of photonic jets. This property can be readily understood
from the previous study. A layered microsphere permits to address both paraxial and nonparaxial
contributions with a specific optical path allowing non paraxial “rays” to be focused far from the
sphere surface and increase the longitudinal extent of the beam.

The Bessel-like nature of photonic jets has been highlighted in this study. The axisymmetric
focusing system combined with geometric spherical aberrations leads to a Bessel type beam pro-
ducing an elongated focal volume exiting the sphere. The role of non paraxial contributions has
been demonstrated to allow a better understanding of photonic jets properties and possible strate-
gies for tailoring such beams.
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3.5 Conclusion
It has been demonstrated in this chapter that a simple dielectric microsphere can efficiently focus an
incident optical plane wave. The beam produced is highly confined in the transverse direction but
may have a rather large longitudinal extent. An explanation was found in the rich angular spectrum
of the beam invoking 0th order Bessel functions and oscillating high spatial frequencies. Although
photonic jets are highly interesting for laser dry cleaning, nanopatterning or data storage, the large
longitudinal extent is generally undesirable for imaging or spectroscopy technics that require three
dimensional confinement in water-based solutions. Nevertheless, one should recall that photonic
jets result from a plane wave illumination, only consisting of a null transverse spatial frequency.
One can wonder then what would happen if, instead of a plane wave illumination, the microsphere
was illuminated by a focused beam. This possibility will be addressed in the next chapter.
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4.1 Introduction

High numerical aperture microscopes are currently employed to concentrate light in volumes as
small as possible. However, diffraction limits the dimension of the focal area to a volume on the
order of the incident wavelength. It has been demonstrated in the previous chapter that photonic jets
(illumination by a plane wave) can strongly ‘focus’ light despite the presence of diffraction effects.
However, it has also been emphasized that photonic jets are non optimal for imaging techniques due
to their large longitudinal dimensions. Thus, when illuminated by optical plane waves, dielectric
microspheres do not beat the spatial resolution of high numerical aperture microscopes. However,
instead of comparing these two optical systems, one may ask the question whether the combination
of the high numerical aperture beams with microspheres could produce interesting focusing effects.
Indeed, focused beams contain high transverse components which may contribute to reduce the di-
mension of the focal volume exiting the microsphere. The combination first interested the scientific
community for the optical forces involved in such focused beams enabling the trapping and ma-
nipulation of dielectric beads with light. Optical tweezers have been then widely investigated, and
McLeod et al. [46] have recently reported the dynamic nanopatterning of surfaces using optically
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focused beams. The focused beam plays the role of both optical tweezers and focusing tool for
patterning the surface.

Furthermore, we have recently demonstrated in collaboration with the MOSAIC team of the
Fresnel Institute that microspheres illuminated by tightly focused beams can outperform fluores-
cence spectroscopy measurements obtained with the state of art classical microscope objectives [5–
7]. These studies indicate interesting field distributions in the vicinity of the microsphere that re-
quire further investigations. In this chapter, we investigate the case of a microsphere illuminated
by a highly focused beam. It will be demonstrated that the microsphere can confine light in a focal
volume on the order of (λ0/nb)3. We will consequently employ compound dielectric microsphere
in order to focus light in volumes on the order of the wavelength.

4.2 Three-dimensional confinement of light: direct space inves-
tigation

4.2.1 Gaussian beam illumination

The microsphere is now illuminated by a highly focused Gaussian beam. During this study, the
Davis formulation (c.f. chapter 2) has been employed to generate the multipolar expansion of a
focused beam produced by a high N.A. microscope objective. Fig. 4.1(a) displays the intensity
distribution of the incident focused beam. Several theoretical studies have investigated the accurate
modeling of tightly focused beams in the multipole framework [22, 23]. Nevertheless, the Davis
formulation [18] remains a simple approximation that enables fast and simple modeling of focused
beams. Although the Davis formulation is said to be a poor approximation for experimental tightly
focused beams, the good correlations between the experimental measurements and the numerical
simulations will support this choice (c.f. section 4.5).

The focused beam is thus employed to illuminate the 2 µm polystyrene microsphere of refractive
index ns = 1.6 embedded in a water-based solution. Fig. 4.1(b) displays the subsequent intensity
pattern where the incident beam is focused 560 nm beyond the sphere surface. It illustrates an
intense field which is confined at the exit surface of the microsphere. A straightforward comparison
with Fig. 4.1(a) indicates that the microsphere has clearly reduced the dimensions of the incident
focal volume with respect to that of the free high N.A. beam.

This observation is even more apparent in Fig. 4.2 which plots the intensity sections of the
incident (blue lines) and the resulting (red lines) beam along the Cartesian (a) propagation axis
z and (b) transverse axis. The transverse section is plotted at z = 1.56 µm for the incident beam
and z = 1 µm for the resulting beam. The incident field is further confined by the sphere both
longitudinally and transversally. The longitudinal modification of the beam is more spectacular
since the maximum intensity has been both enhanced and displaced towards the sphere surface.
This is quite surprising since it was observed in the chapter 3 that under the same conditions, a
plane wave illumination produces a quite elongated narrow beam. The incident focused beam has
enabled a spectacular reduction of the longitudinal extent that requires further explaination.
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Figure 4.1: Intensity pattern produced by a polystyrene sphere (ns = 1.6), 2 µm in diameter illumi-
nated by a circularly polarized Gaussian beam of numerical aperture N.A. ≈ 1.2 at λ0 = 633 nm.
The Gaussian beam is focused 560 nm beyond the surface of the sphere.

4.2.2 Discussion

A rapid investigation of the effective volume has been undertaken quantifying its reduction. Ta-
ble 4.1 compares the transverse and longitudinal waists defined at Imax/e2, denoted respectively wxy

and wz for the incident beam and the beam focused by the microsphere for d = 1.56 µm. Let us
remark that with the addition of the microsphere, the longitudinal intensity distribution is no longer
symmetric with respect to the Imax position and that the longitudinal waist is calculated outside the
sphere, after the Imax position. The effective volume behind the sphere defined by π3/2w2

xywz/2 (only
the exiting volume is taken into account), is reduced by an order of magnitude, and is approximately
0.6 (λ0/nb)3. It can be reduced down to 0.43 (λ0/nb)3 for a melamine microsphere (refractive index
of 1.68). Let us insist however that the ratio between the refractive index of the microsphere ns

and the surrounding medium nb has to be lower than 1.4 because for higher contrasts (ns ≥ 1.85 in
aqueous solution), the electromagnetic field is fully confined inside the dielectric sphere.

One can first wonder whether this phenomenon is due simply to straightforward focusing ef-
fects or if interference processes are responsible for the longitudinal reduction. One can readily
observe that the intensity distribution observed in Fig.4.2(b) suggests interference effects since at
the incident focal point (z = 1.56 µm), the total field exhibits a strongly reduced intensity with
I/I0 ≈ 0.075.

4.2.3 Interferences and numerical aperture

In order to understand the physical mechanism of this confinement, we have employed a simulation
method that allows the separation of the incident and the scattered field contributions from the total
field. Fig. 4.3 presents the map of (a) the incident, (b) scattered and (c) total field intensity. The
scattered field pattern plotted in Fig. 4.3(b) shows an elongated region with high intensity in the
shadow side of the sphere. This scattered field is close to a classical “photonic nanojet” beam: it
has both narrow lateral and large longitudinal extent. Only the coherent sum of the incident beam
plus the scattered field is able to reach a strong confinement in all three directions (Fig. 4.3(c))
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Figure 4.2: The polystyrene (ns = 1.6) 2 µm in diameter illuminated by a Gaussian beam of
numerical aperture N.A. ≈ 1.2 at λ0 = 633 nm. The Gaussian beam is focused 560 nm beyond
the surface of the sphere (N = 30). Intensity distribution (a) along the propagation axis z and (b)
along the transverse axis x of the incident beam (blue lines) and the confined field (red lines) in the
presence of the microsphere. The transverse section is plotted at z = 1.56 µm for the incident beam
and z = 1 µm for the resulting beam.

which highlights the relation between interferences and the reduction of the effective volume.
The effective volume defined as Veff = π3/2w2

xywz/2 is displayed in Fig. 4.4 as a function of the
numerical aperture. Let us note that, for each numerical aperture value, the distance d between the
center of the sphere and the focus of the incident beam was tuned to optimize the maximum of
intensity, Imax, behind the sphere. The effective volume decreases as a function of the numerical
aperture and a numerical aperture above N.A. ≈ 0.8 is needed to obtain an effective volume below
(λ0/nb)3. We conclude that the three-dimensional confinement directly depends on the high angular
contributions present in the incident highly focused Gaussian beam, and that a confinement below
(λ0/nb)3 can be achieved with a numerical aperture higher than 0.8. Let us emphasized that this
confinement does not bit the diffraction limit since half of the energy is actually focused inside the
particle and not taken into account in the effective volume.

A second numerical experiment is carried out by tuning the distance d between the center of
the sphere and the waist of the incident beam for a numerical aperture equal to 1. Fig. 4.5 displays
the electric field intensity map for decreasing distances (a) d = 7 µm, (b) d = 4 µm, (c) d = 3 µm,
(d) d = 1.6 µm (e) d = 1 µm (f) d = 0 µm. A motion capture is available in Ref. [7]. For large
separation distances, the incident beam is slightly affected by the presence of the sphere. When
the distance is decreased, interferences between the incident beam and the beam emerging from
the microsphere become more visible. One can notice that the apparent beams emerging from the
microsphere in Fig. 4.5(b) and Fig. 4.5(c) are similar to the scattered beam observed in Fig. 4.3(b).
At shorter distances as in Fig. 4.5(d), one can observe a dark spot due to destructive interferences
between incident and scattered fields, which creates the longitudinal confinement. The near field
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Table 4.1: Summary of the characteristic widths at Imax/e2 corresponding to the intensity maps
displayed in Fig. 4.1. The effective volume is defined for the incident beam as V = π3/2w2

xywz, and
for the focused beam by the microsphere V = π3/2w2

xywz/2 (recalling that only the beam exiting the
microsphere is considered here).

Beam type Incident Beam Ratio
Gaussian beam + microsphere to incident beam

Longitudinal waist wz 1.250 µm 420 nm 33%

Transverse waist wxy 300 230 nm 77%

Effective volume V 0.6 µm3 ≈ 6(λ0/nb)3 0.06 µm3 ≈ 0.6(λ0/nb)3 10%

behind the sphere is then highly enhanced. When the sphere is further approached to the focal
area, there is essentially no incident field passing aside the sphere. Only one spot, arising from
the focusing of the incident field by the sphere is then observed, but the maximum of intensity
is located inside the particle and presents little interest for microscopy applications. This study
shows that high angular incident components passing aside the sphere are needed to obtain a strong
three-dimensional subwavelength confinement. It must be emphasized that the three dimensional
confinement investigated here can be extended to other types of focused beams and in particular,
we showed that it could be extended to incident photonic jet beams [8].

4.3 Focusing light with compound microlenses

In low index contrast medium, the longitudinal dimension of photonic jets can be considered as a
disadvantage because it does not provide a better confinement of light than a classical microscope
objective with high numerical aperture. A simple manner to modify the features of the beam that
emerges from the microsphere is to change the illuminating beam. A numerical experiment has
been undertaken to illuminate the microsphere with a highly focused Gaussian type beam and has
evidenced that the microsphere can confine the field at its surface in an intense volume smaller
than 0.6(λ0/nb)3. This phenomenon is due to the interplay of two contributions: the well-known
focusing of the incident field by the microsphere provides the transverse confinement of the field.
The longitudinal reduction is due to interferences between the scattered field and the high angu-
lar components of the excitation beam. In this section, we study a full micrometric microscope
objective made of compound dielectric microlenses in order to confine a plane wave in a three
dimensional intense region of dimension on the order of the wavelength. We assume that the longi-
tudinal confinement observed with a Gaussian beam illumination can be achieved with a photonic
jet as incident beam. Owing to the study performed in the chapter 3, which has demonstrated that
photonic jets have high angular components, we propose to illuminate a second microsphere with
a photonic jet. The aim is to reduce its longitudinal extent and make photonic jets suitable for
applications requiring high transverse and longitudinal resolutions.
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Figure 4.3: Intensity pattern of (a) the incident, (b) scattered and (c) total field.

4.3.1 Reduction of the longitudinal extent of photonic jets

We consider now a 6 µm-diameter polystyrene (ns = 1.6) sphere illuminated by a plane wave at
λ0 = 633 nm. Fig. 4.6(a) presents the electric field intensity maps of the photonic jet propagating
in a water-based solution illustrating, as discussed in the chapter 3, the main features of a typical
photonic jets: a narrow lateral extent and a large longitudinal dimension. Fig. 4.6(b) shows the
electric field intensity pattern when a 2 µm-diameter polystyrene sphere is added in the photonic
jet beam. The two spheres are touching and have the same optical axis. To simplify the study, the

Figure 4.4: Effective volume Veff = π3/2w2
xywz/2 of the confined field as a function of the numerical

aperture of the incident focused beam.
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Figure 4.5: Electric field intensity map in logarithmic scale for d decreasing from d = 7 µm to d =

0 µm and N.A. ≈ 1. The optimal confinement is obtained in (d) when d ≈ 1.6µm

incident plane wave is circularly polarized to preserve the cylindrical symmetry. One can see from
Fig. 4.6(b) that a single and bright spot of small dimensions in the three spatial directions is present
at the surface of the smaller sphere. The photonic jet is further confined by the second sphere both
longitudinally and transversally.

Table 4.2 compares the transverse and longitudinal waists (radii) of the two beams, defined at
Imax/e2 and denoted respectively wxy and wz. The longitudinal intensity distribution is not symmet-
ric with respect to the Imax position and we define two longitudinal waists for the incident photonic
jet beam, wz− and wz+, which are respectively the waists before and after the Imax position. The
effective volume is then defined as π3/2w2

xy(wz− + wz+)/2. The effective volume behind the second
sphere defined by π3/2w2

xywz/2 is reduced by more than one order of magnitude, and is approxi-
mately (λ0/nb)3. Let us remark that the longitudinal waist is calculated outside the sphere. It is
apparent that the longitudinal modification of the beam is more spectacular since the maximum
intensity has been both enhanced and moved toward the sphere surface. It must be stressed that this
strong confinement of light is achieved with a simple non resonant dielectric structure.
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Figure 4.6: Total electric field intensity map in logarithmic scale of (a) a 6 µm-diameter polystyrene
sphere illuminated by a plane wave at λ0 = 633 nm and (b) a 2 µm-diameter polystyrene (ns = 1.6)
sphere is added in the photonic jet beam. The white circles represent the microsphere sections.

We employ the implemented generalized Mie theory to calculate the incident and scattered field
separately. Fig. 4.7 presents the map of the intensity of the field scattered by the second sphere. It
shows an elongated region with high intensity in the shadow side of the sphere. This scattered field
is very close to a classical “photonic nanojet” beam. The coherent sum of the field scattered by the
bigger sphere plus the scattered field by the second one is able to reach the strong confinement in
the three directions (Fig. 4.6(b)).

Figure 4.7: Intensity pattern of the scattered field for the compound microsphere in the same con-
ditions as Fig. 4.6(b).

It can be convenient to pay attention to situations where the second microsphere has a slightly
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Table 4.2: Summary of the characteristic widths at Imax/e2 corresponding to the intensity maps
displayed in Fig. 4.6. The volume is derived for the incident photonic jet as π3/2w2

xy(wz− + wz+)/2,
and for the field focused by the microsphere as π3/2w2

xywz/2 (let us recall that only the beam exiting
the microsphere is considered here).

Beam type photonic photonic jet
jet + second microsphere

Longitudinal waist wz 4.6 µm 795 nm

Transverse waist wxy 370 nm 225 nm

Maximum intensity enhancement 87.5 420

Effective volume V 2.3 µm3 ≈ 21(λ0/nb)3 0.11 µm3 ≈ 1.05(λ0/nb)3

different size. The intensity map of two extreme configurations is displayed in Fig. 4.8 for a sphere
of diameter (a) 1 µm and (b) 3 µm. When the sphere is too small (Fig. 4.8(a)), most of the energy
is passing aside the sphere so that the photonic jet is almost not modified (see also Fig. 3.11 in
section 3.4). When the sphere exceeds a critical size as illustrated in Fig. 4.8(b), the whole beam
penetrates the second sphere and the maximum intensity occurs inside the sphere which is of minor
interest. In addition, an intense field still exist at the exit surface of the sphere but it is no more
confined. The distribution pattern shows a transversal confinement of the field but no destructive
interferences that could have enabled the longitudinal reduction. The effective volume is ten times
larger than in the optimal case.

Figure 4.8: Electric field intensity map. (a) The second sphere R2 = 0.5 µm and (b) R2 = 2 µm.
The incident photonic jet is generated by a polystyrene microsphere 3 µm in diameter.

It could be stressed that the fabrication of this compound set of two dielectric microspheres
is not trivial and should require technically challenging processes. However, this numerical study
permits to better understand the longitudinal confinement of light observed when the microsphere
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is illuminated by a highly focused beam. Moreover, it highlights that microscope objectives of
micrometric sizes can be designed in principle. For instance, the respective index contrasts of the
two microlenses could be tailored to compensate chromatic aberrations analogously to the classical
achromatic doublets.

It must be recalled that self-similar chains of metallic particles were proposed by Stockman
et al. [55] to focus light in small volumes via the excitation of coupled localized plasmon reso-
nances. These systems consisting of several metallic nanoparticles of different sizes has been en-
gineered so that the biggest particle enables large electromagnetic cross-sections whereas a couple
of smaller particles ensure highly localized fields. The investigated compound microlenses follow
similar considerations. The biggest microsphere enables a large electromagnetic cross-section en-
suring the collection of a large amount of energy. The addition of the small particle provides the
three dimensional confinement. However, the non resonant nature of the phenomenon employed in
our compound microlenses provide a broad frequency bandwith without any intrinsec loss.

The potential reduction of the longitudinal dimension of photonic nanojets in water-based solu-
tions has been demonstrated based on the ability of microspheres to confine a focused beam along
the three spatial directions. We evidenced that optical plane waves can be confined in a volume of
order (λ0/nb)3 by a compound set of dielectric microspheres. This could be particularly helpful in
applications where high resolution is required with low index contrasts. The role of non-zero angu-
lar components has also been highlighted and the confined field has resulted in a trade-off between
incident energy passing the particle and the components passing aside.

4.4 Reciprocal space investigation

Similarly to the study undertaken in the chapter 3, the investigation of the reciprocal space will
hold to understand the physical mechanisms involved in the three dimensional confinement. In
particular, the role of the high angular components composing the incident focused beam will be
emphasized. The expansion of the scattered field has been summarized in chapter 3.3 and fully
detailed in appendix B. The analytical plane waves expansion of the regular multipolar waves and
irregular waves expansion are obtained in an analogous manner and enables an investigation of
interference processes in terms of angular frequency contributions.

4.4.1 Spectral expansion

The layout of the field projection undertaken is superposed on the intensity pattern in Fig. 4.9(a).
The resulting polarized spectral component |A| of the incident (blue line), scattered(green line) and
total field (red line) are displayed in Fig. 4.9(b). All the plots are normalized by the amplitude at
K/kb = 0. As it can be expected, the incident spectrum is essentially a Gaussian distribution. The
distribution is monotonously decreasing so that the main spectral contributions lie in the low spatial
frequencies.

The spectral components of the total field (red line) show a quite different distribution. A
straightforward comparison with the incident spectrum highlights a reduction of the lower spatial
frequencies. A maximum appears in the spectral distribution at K/kb = 0.3 revealing a weaker
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influence of the low spatial frequency components. This relative reduction can be also observed
in the scattered spectrum distribution (green line) and can be related to the slight decrease of the
longitudinal dimensions with respect to the incident Gaussian beam (see Fig 4.3(a) and Fig 4.3(b)).
The addition of the microsphere produces a redistribution of the angular spectrum. An interference
between the scattered and incident fields has induced a relative increase of high spatial frequencies
and a decrease of low spatial frequencies.

Figure 4.9: (a) Layout of the field projection undertaken. (b) Amplitude of the spectral component
A as a function of the radial component of the wavevector K/kb.

The reciprocal spectrum analysis is consistent with the observations made in direct space. The
drop of low spatial frequencies is correlated with a higher confinement in the field distribution
while a stronger influence of high spatial frequencies in the spectrum reflects the enhancement of
the local intensity.

4.4.2 Discussion

As we assume that the field observed in Fig. 4.9(a) results from a trade-off between the energy
focused by the particle and the incident energy passing aside, the angular spectrum in the optimal
case can be difficult to analyse. It can be convenient to pay attention to not-optimized situations
where different proccesses can be evidenced separately. Fig. 4.10(a) shows the total field map and
Fig. 4.10(b) the associated spectra (incident, scattered and total) for the same incident beam as
Fig. 4.9 but with a focal position for the incident beam of d = 3 µm. The intensity map highlights
four intense regions in the plane of interest, two of them located along the optical axis z resulting
from the microfocusing effect (i.e. scattered field) and from the residual incident beam. The origin
of the other intense areas can be understood in term of a constructive interferences process.

Fig. 4.10(b) shows the associated spectrum. The incident Gaussian distribution remains identi-
cal to the one displayed in Fig. 4.9(b). Although the scattered spectrum follows a smooth decreasing
distribution, highly contrasted minima and maxima appear in the total spectrum. The most striking
feature of this spectrum is the cancellation of specific spatial frequencies. Let us recall that in di-
rect space, the spatial frequencies (more precisely the A component), correspond to a superposition
of plane waves with the same angular direction θk. The zeros occuring at K/kb = 0.4 coincides
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with conic fringes of destructive interferences that can be observed in direct space in Fig. 4.10(a).
These destructive interferences follow a conical morphology in the three dimensional space, readily
explaining the formation of the four intense field areas. This numerical experiment clearly demon-
strates that destructive interferences occuring at specific spatial frequencies in the reciprocal space
are consistent with destructive interferences pattern drawing a conical shape in direct space as it
has been observed in Fig. 4.10(a).

Figure 4.10: (a) Intensity pattern and (b) spectral component |A| as a function of the normalized
radial component of the wavevector, K/kb. The Gaussian beam produced with a N.A. ≈ 1.2 is
focused 2 µm beyond the sphere surface. (c) Intensity pattern and (d) spectral component |A| as
a function of the radial component of the wavevector K/kb. In that case, the Gaussian beam is
produced by a numerical aperture objective of N.A. ≈ 0.8.

Our second numerical experiment consists in reducing the numerical aperture of the incident
beam from N.A. = 1.2 to N.A. = 0.8. It results in a larger incident focal volume corresponding to
a narrower Gaussian distribution in the incident spectrum (blue line in Fig. 4.10(d)). The focus-
ing distance from the particle has been optimized to minimize the intensity volume as illustrated
with the colored map in Fig. 4.10(c). In that case, the total angular spectrum follows a smooth
distribution. Similarly to Fig. 4.9(b), a more moderate reduction of the low spatial frequencies
is observed. The high spatial frequencies of the total field are slightly enhanced but follow the
scattered field high frequencies distribution. It can be observed that in Fig. 4.9(a) and Fig. 4.10(a)
the high frequencies of the total field overcome the high spatial frequencies of the scattered and
incident field.

In both not-optimal cases investigated above, the angular spectrum shows a balancing between
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a drop of low spatial frequency contributions combined with an enhancement of the high angular
frequencies with respect to the incident spectral distribution.

4.5 Application to Fluorescence Correlation Spectroscopy
(FCS)

Signal detection of fluorescent molecules is a crucial issue in biophotonics. For instance, fluores-
cent markers are widely employed to explore biologic mechanisms occuring at the molecular scale.
A close collaboration with the Mosaic team of the Fresnel Institute has enabled us to apply the
numerical results of the three dimensional confinement to the enhancement of Fluorescent Correla-
tion Spectroscopy signals. A common strategy in fluorescence microscopy consists in using a high
numerical (N.A.) objective microscope to maximize the detected signal. Fig. 4.11 displays a layout
of a state of the art confocal microscope setup. The excitation light source at λ0 = 633 nm is first
focused by the high numerical objective of N.A. = 1.2 illuminating a solution containing Alexa
fluorescent molecules. The strong focusing of the incident light produces an enhancement of the
excitation intensity that leads to an enhancement of the photon absorption rate per molecule as well
as a reduction of the effective illuminating volume reducing by the way the number of molecules
illuminated. In a second step, the excited fluorescent molecules can emit photons at λ0 = 670 nm
(> λ0 = 633 nm) that can be efficiently collected by the same high angular aperture microscope
objective. The fluorescence signal enhancement, γF , of a single-molecule (with respect to a free
space dipolar radiation) can be expressed in the following equation [5]:

γF = κη
|E(rp).np|

2

|E0(rp).np|
2 (4.1)

In this formula, κ is the collection efficiency enhancement. The excitation rate is defined as
the ratio |np.E(rp)|2/|np.E0(rp)|2 where np is the dipole direction and E(rp) and E0(rp) are the local
electric field at the dipole location rp respectively with and without the microsphere. η is the
quantum efficiency of the emission process defined as the ratio between the power radiated in the far
field and the total emitted power η = Prad/Ptot when considering a perfect emitter. This parameter
can be strongly influenced both by resonant and non radiative couplings in absorbing structures
such as metals. As we are now considering only non-absorbing and non resonant structures, this
quantity is assumed to stay close to 1. As a consequence, Eq. (4.1) can be reduced to:

γF = κ
|E.np|

2

|E0.np|
2 (4.2)

The above definition enables an experimental and theoretical distinction of the elementary pro-
cess leading to the enhancement of the detected signal and has been successfully employed to
quantify contributions to the fluorescence signal enhancement in metallic nanoholes and dielecrtic
microsphere (see Fig. 4.11, the interested readers may also refer to Ref. [5, 6, 56] for a detailed
description of the procedure). The presence of the microsphere affects the excitation field and the
collection efficiency of fluorescent molecules. It must be stressed that in Fluorescent Correlation
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Spectroscopy, molecules are diffused in a water-based solution so that a volume density of emitters
has to be considered.

Figure 4.11: (a) Layout of the experimental FCS setup using a high N.A objective. (b) Measured
(dots) and simulated (full line) excitation enhancements as a function of the microsphere diameter.
(c) Measured (dots) and simulated (full line) collection efficiency enhancements as a function of
the microsphere diameter.

To compute the excitation intensity enhancement, we introduce the intensity density ρe as the
total excitation intensity Iv per unit of effective volume Veff [56], where the excitation intensity is
given by:

IV =

∫
V
|E|2dV (4.3)

and the effective volume is defined as:

Veff =

(∫
V
|E|2dV

)2∫
V
|E|4dV

(4.4)

It results that the intensity density can be expressed as

ρe =
IV

Veff

=

∫
V
|E|4dV∫

V
|E|2dV

(4.5)

The numerical integrations of the field in Eq. (4.5) is made over the region outside the micro-
sphere where the intensity is larger than Imax/10. Finally, we obtain the excitation intensity en-
hancement by normalizing the intensity density ρe in presence of the microsphere by the intensity
density without the microsphere (full red lines in Fig 4.11(b) and (c)).
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To numerically compute the gain in collection efficiency due to the microsphere, fluroescent
molecules are considered as dipole point-like sources of light set close to the surface of the sphere,
at the position corresponding to the maximum intensity found in the excitation field distribution.
We compute the average Poynting vector flux over a spherical surface far from the microsphere,
centered at the dipole location and a maximum half-angle of 60◦ corresponding to the numerical
aperture of the objective. The collection efficiency is then obtained as the ratio of this Poynting
vector flux to the one computed over all directions of space (4π sr). Finally, the collection efficiency
enhancement is derived by normalizing the collection efficiency found with the microsphere to the
reference efficiency without the sphere. To reproduce the random dipole orientation, we average
the collection efficiencies obtained for each orientation x, y, and z of the dipole (dots in Fig 4.11(b)
and (c)).

The calculations and the experimental measurements show that both excitation rates and collec-
tion efficiencies have been enhanced owing to the presence of the microsphere. The enhancement
factor lies around 2 for both contributions, demonstrating that a microsphere acts both for increas-
ing the local field intensity and for collecting radiations emitted by the fluorophores. The numerical
simulations are in good agreement with the measured data. Interestingly, the plots indicate a maxi-
mum enhancement for sphere diameters of 1 µm. Nevertheless, this maximum is moderate and one
can conclude that any diameter from 1 µm to 3 µm would result in significant enhancements of the
fluorescence signal.

4.6 Conclusion
This study demonstrated that a three-dimensional volume reduction can be observed when illumi-
nating a microsphere with focused beams. This reduction is due to the interplay of two different
contributions: a collimation of the incident field by the microsphere, combined with interferences
between the field scattered by the dielectric microsphere and the incident field. It has been shown
that a confinement behind the sphere below (λ0/nb)3 requires a tightly focused beam with a numeri-
cal aperture higher than 0.8 together with the appropriate focusing of the incident beam respectively
to the sphere. A further increase of the numerical aperture permits a strong confinement of light
behind the sphere down to (λ0/nb)3. Its utility has already been demonstrated in enhancing the
fluorescence signal of single-molecules [5, 6] and should prove of considerable interest in Raman
spectroscopy, laser nano-patterning and microscopy. It is important to remark that this property
was obtained using only dielectric materials and without invoking resonances phenomena. The
next chapter will now investigate light confinement achieved with resonant metallic structures.
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5.1 Introduction

In the past few years, metallic nanostructured materials such as interfaces and nanoparticles in-
clusions have been extensively investigated for the electromagnetic resonances they exhibit when
illuminated at optical frequencies. These resonances were first pointed out via anormaleous absorp-
tion spectral rays in metallic gratings [57]. Later, metallic surfaces were intensively employed for
Surface Enhanced Raman Spectroscopy (SERS) in the visible frequencies in which the roughness
of the metal surface induces highly confined fields promoting the non-linear processes required
for Raman emission [58]. It has now been widely demonstrated that an illumination in the visible
range induces resonant oscillations of the free electron gas of the metal, known as surface plasmon
resonances. This leads to strong charge density oscillations at the surface of the metal which may
propagate along interfaces and produce highly localized intense fields.

Certain metallic nanoparticles support Localized Surface Plasmon Resonances (LSPRs) at op-
tical frequencies occurring in particles as small as several nanometers, i.e. two orders of magni-
tude smaller than optical wavelengths. Although the size of the particles is much smaller than the
incident wavelength, the excitation of localized plasmons induces enhancements of the particle po-
larizability that strongly increase both scattering and absorption cross-sections. In addition to the
electromagnetic cross-section enhancements, the localized plasmon oscillations generate intense
fields in the vicinity of the nanoparticle. The small size of the plasmonic particles compared to op-
tical wavelengths offers the opportunity to downscale classical optical components to the nanometer
scale giving rise to the recent field of nano-optics.
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LSPRs occurring in chains of nanoparticles have been intensively investigated. Particular at-
tention has been paid to coupled nanoparticles illuminated with an incident electric field polarized
along the chain axis. In that configuration, the coupled LSPRs can generate intense fields localized
in the interparticle regions of nanometer dimensions [55, 59–64].

In this manuscript, particular attention has been devoted to plasmon modes occurring on spher-
ical nanoparticles for precise reasons:

a) A modal solution can be employed to solve Maxwell equations. The analytical solutions
described in chapter 2 limits numerical operations required thus enabling rapid calculations. The
expansion on multipolar waves can bring physical insight about the field distribution and the hy-
bridization of modes couplings. The small size of the nanoparticles with respect to the incident
excitation field, tends to favor lowest orders in a multipole development.

b) Spherical nanoparticles are convenient shapes for nanoscale manufacturing. Several novel
techniques such as DNA templates [65] have demonstrated the potential for structuring the near
field environments using spherical nanoparticles. It must be emphasized that an extension to
anisotropic shape of particles is possible within the multipole framework. Elongated particles have
been widely investigated for the red shifting of the plasmon frequency resonance to domains where
absorption is lower [66, 67].

In this chapter, we first recall some basic results about localized plasmon resonances on a single
spherical nanoparticle. The modes of coupled systems can be understood in terms of hybridization
of the individual nanoparticle plasmon resonances [62, 68]. It will be emphasized that quite simple
components and configurations enable the production of giant field enhancement in nanometer
volumes, and may therefore be considered as efficient and compact lenses [55, 65].

As the number of particles is increased, interactions between the individual plasmon resonances
become more complex. In particular, the response of complex plasmonic systems depend not only
on the incident frequency, but also on the incident electric polarization and the resulting relative
phase of the polarization moments induced in the individual nanoparticles.

5.2 Localized plasmon resonance on a single particle

The Mie theory provides a rigorous solution of the electromagnetic response of spherical particles
of arbitrary size and is supposed to remain valid provided that macroscopic optical constants can
be defined to describe the particle material. For the particles under consideration (from 10 nm to
100 nm), the number of atoms composing the particle are supposed to be sufficient to justify em-
ployment of the dielectric permittivity of the bulk material referenced in literature [69]. We remark
that the Mie expansion was first dedicated to determine the optical mechanisms responsible for the
coloration obtained when adding metallic particles in silica glasses. This technique was secularly
employed to produce stained glasses for windows in medieval cathedrals. Various colorations can
be obtained depending on the metallic material (gold, silver, copper, zinc ...) and on the size, shape
and density of nanoparticles [70, 71].

Fig. 5.1 shows a schematic of a typical process occurring when a metallic nanoparticle is illu-
minated in the optical range. Let us assume an incident natural white light containing a wide range
of wavelengths. These colors are illustrated by the three red, green and blue horizontal arrows
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Figure 5.1: Schematic of light interacting with a plasmonic nanoparticle. Scattering and absorption
processes produce coloration in the far field and intense fields in the vicinity of the nanoparticle.

indicating the direction of propagation of the excitation wave. The vertical arrows indicate the inci-
dent electric field polarization. Around a specific frequency, the incident optical wave can induce a
strong resonance of the polarization field inside the particle (the white arrow indicates the direction
of the dipolar moment which is collinear to the incident electric field). The resonant polarization
produces an enhancement of the scattering process and may also lead to strong dissipations in the
particle.

In a homogeneous medium containing a low density of metallic particles, it can be consid-
ered that each particle is sufficiently separated from its neighbors to radiate independently. Light
reflected by a glass containing metallic nanoparticles will thus essentially contain the resonant
frequency of a single nanoparticle, so that the color perceived in the backscattered region will
correspond to the resonant wavelength (illustrated here as the blue color). The transmitted light
will contain colors which have weakly interacted with the nanoparticle plus the contribution of the
resonant frequency. When the particles are small, the plasmonic resonance induces an enhanced
absorption in the metal. It results that the glass appears stained and the distribution of light wave-
lengths in the reflected and transmitted light differ.

In addition to these far field properties, intense fields are produced in the vicinity of the nanopar-
ticle at the plasmon frequency. This latter property is of crucial importance for applications in nano-
optics since it enables the production of highly confined electromagnetic fields. Nevertheless, the
far field properties can reveal informations on the plasmon excitation and thus provide means for
experimental analysis.

5.2.1 Electromagnetic cross-sections

When the incident field can be approximated by a plane wave, it is convenient to express physical
quantities in terms of cross-sections. These cross-sections have the dimension of area and define
an effective surface of interaction with the incident energy flux required to equalize the energy that
is scattered (or absorbed) by the object. Due to energy conservation, the extinction cross-section is
equal to:

σext = σscat + σabs (5.1)
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where σscat and σabs are respectively the scattering and absorption cross-sections. Appealing to
the far-field approximation of the field, the extinction and scattering cross-sections of a single
particle in the Mie framework can be worked out analytically in terms of the field coefficients and
respectively expressed [1]:
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where the a(h,e)
p and f (h,e)

p are respectively the coefficients of the incident field and the scattered
fields. It is also possible to produce analytical expressions for local field quantities like individual
absorption cross-sections. For lossy scatterers in a lossless host medium, one can obtain individual
particle absorption cross-sections by integrating the Poynting vector on a circumscribing sphere
surrounding the particle to obtain the formula:
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The electromagnetic extinction (black line), scattering (red line) and absorption (green line)
cross-sections of a nanoparticle have been calculated in the framework of Mie theory and displayed
in Fig. 5.2(a) and Fig. 5.2(b) for (a) a 50 nm silver nanoparticle and (b) a 50 nm gold nanoparticle
as functions of the incident vacuum wavelength. The nanoparticles are taken to be embedded in a
polymeric material of refractive index nb = 1.5. In each plot, a single peak appears illustrating the
excitation of a localized plasmon resonance in the particles.

Figure 5.2: Extinction (black line), scattering (red line) and absorption (green line) cross-sections
of (a) a 50 nm silver particle and (b) a 50 nm gold particle. The surrounding background has a
refractive index nb = 1.5.

In these plots, cross-sections are normalized by the geometrical cross-section of the nanoparticle
πR2. It highlights that interactions between the incident light and the metallic nanoparticle can
become one order of magnitude larger than interactions with respect to its geometrical size. One
can notice several important differences according to the material. Plasmon resonances occur at
shorter wavelengths for silver nanoparticles than for gold nanoparticles. Silver nanoparticles at this
size exhibit a narrow resonance and the extinction is roughly equally distributed between scattering
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and absorption. In contrast, gold nanoparticles exhibit broader resonances which are dominated by
absorption process.

It is important to recall that the incident field induces magnetic and electric multipoles in the
particles of increasing orders with respect to their size parameter. Owing to the small size of the
nanoparticle compared with the incident excitation field, only the lowest orders are important. In
particular, for spheres of diameter below 50 nm, the field scattered by the particles can be approxi-
mated by the dipolar term in the Mie expansion tending towards the so-called quasi-static approach.

5.2.2 Quasistatic approach
5.2.2.1 Field generated by a dipolar source

For particles that are small with respect to the incident wavelength, it is convenient to express the
scattered field as a dipolar field generated by an oscillating electric dipole moment p [72]:

E(r) = −
eikbr

4πε0εbr3

{[
1 − ikbr − k2

br2
]

p + [k2
br2 − 3(1 − kbr)]̂r(̂r.p)

}
(5.4)

where r = r̂r is the position in spherical coordinates where the field is calculated.
The asymptotic formulas when kbr � 1 and kbr � 1 are given respectively by Eq. (5.5) and

Eq. (5.6). In the far field region (Eq. (5.5)), the electric field is transverse to r̂ and behaves as a
typical outgoing wave of wavenumber kb. The electric field amplitude is maximum in the equato-
rial plane and falls off as 1/r. The induced dipole at resonance frequency produces an enhanced
scattered field that can be detected in the far field region even for small particles.

Escat,FF(r)→
k2

beikbr

4πε0εbr
(p − r̂(̂r.p)) (5.5)

The electric field contribution in the vicinity of the nanoparticle given by Eq. (5.6) is essentially
the quasi-static dipolar field that is analog to the electrostatic field when omitting the time depen-
dence. The 1/r3 dependence implies that this field is negligible far from the dipole. However,
this field, predominantly statique in nature, remains confined to the vicinity of the particle and its
amplitude is maximum along the polarization vector p.

Escat,NF(r)→
1

4πε0εb

3̂r(̂r.p) − p
r3 (5.6)

5.2.2.2 Dipolar polarizability

Provided that the excitation field is not too intense, the dipolar moment is related linearly to the
excitation field via a complex scalar number α [73]:

p(ω) = ε0εbα(ω)Eexc(ω) (5.7)

where α(ω) is the dipolar polarizability and Eexc is the local electric field. In the static limit:

lim
ω→0

α(ω) −→ 4πa3 εs − εb

εs + 2εb
(5.8)
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One remarks that the term in the denominator of the polarizability goes to zero when
Re[εs(ω)] → −2εb leading to an enhancement of the dipolar moment induced in the particle. This
condition can be approximately fulfilled by metallic materials in the visible range producing the
dipolar LSPRs.

5.2.2.3 Large particles

One must remember that the electrostatic approach only provides a first approximation of the dipo-
lar polarizability. To illustrate the defaults of this model, the electromagnetic cross-sections of a
100 nm silver nanoparticle sphere have been rigorously calculated in the Mie multipole framework
and displayed in Fig. 5.3(a). Two peaks now appear in the spectrum. The broad peak in the large
wavelength range (λ0 = 550 nm) corresponds to the dipolar resonance of the particle. Fig 5.3(c)
illustrates this resonance which exhibits two intense spots in the vicinity of the particle revealing
the excitation of dipolar-type resonance in the particle. Although, electrostatic theory predicts the
existence of this resonance, it describes neither the red shift (see Fig. 5.1(b) and Eq. (5.8)) of the
resonance frequency nor the broadening of the resonance width when the size of the particle is
increased. Nevertheless, all of these effects remain dipolar in nature. Higher order developments
of the dipolar polarizability for spherical objects are required to introduce contributions such as de-
polarization effects [74] or radiation damping [75]. One technique which includes all these effects
is to express the dipolar polarizability in terms of the first electric coefficient in the Mie expansion
T (e)

1 as [3]:

α =
6π
ik3

b

T (e)
1 (5.9)

Furthermore, due to the large size of the particle, a second peak has appeared in the spectrum at
higher frequencies. The electric field intensity map at λ0 = 430 nm displayed in Fig 5.3(b) shows
four high intense spots distributed at the surface of the particle. This distribution corresponds to
a quadrupolar-type resonance that cannot be modeled with a dipolar approximation. It can be
observed that absorption contributes to the quadrupolar resonance. This can be partly explained by
an intrinsic strong absorption of metals in the blue range frequency due to a high imaginary part in
the dielectric constant.

Couplings between closely spaced plasmonic nanoparticles have attracted considerable interest
since in certain configurations, coupled plasmonic particles can induce much larger local field
enhancements than those near isolated nanoparticles.

5.3 Localized plasmon resonances in coupled nanoparticles

We now consider two nanoparticles separated by a distance d of a few nanometers so that the indi-
vidual localized plasmon modes strongly interact. The interaction creates new plasmonic modes in
the coupled system. It has been demonstrated that these modes can be considered as a hybridization
of the individual eigen-modes and must consequently respect the symmetries of the system.
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Figure 5.3: (a) Electromagnetic cross-sections of a 100 nm diameter silver particle. (b) Intensity
colored map of plasmon resonances at λ0 = 430 nm corresponding to the quadrupolar resonance
and (c) λ0 = 550 nm corresponding to the dipolar resonance. The surrounding background has a
refractive index nb = 1.5.

Table 5.1 shows the possible dipolar eigen modes of a dimer resulting from a hybridization
of the individual eigenmodes. Assuming a dipolar behavior of the nanoparticle response, cou-
plings between localized plasmons can occur for individual induced dipoles directed either both
transversally (T1, T2) to the dimer axis or both longitudinally (L1, L2). Although, the dipolar ap-
proximation fails to describe strong plasmonic couplings, the distinction between longitudinal and
transversal interactions can still be convenient. It will be shown below that this distinction can still
be made in the multipole formalism.

Table 5.1: Possible dipolar eigen modes for two coupled plasmonic particles.

Transverse eigenmodes
T1 ↑ ↑ In-phase mode
T2 ↓ ↑ Opposite-phase mode

Longitudinal eigenmodes
L1 → → In-phase mode
L2 ← → Opposite-phase

Longitudinal couplings have been intensively studied for the giant enhancements they produce
in the nanogap formed by the coupled nanoparticles [55, 59–64, 68]. Longitudinal modes can
be optimally coupled when illuminating the dimer at normal incidence with an incident electric



58 Chapter 5. Plasmon based nanolenses

field polarized along the dimer axis. Conversely, transverse modes are optimally excited by waves
propagating along the dimer axis or by evanescent couplings produced by total internal reflection.
Transverse couplings have raised less attention than longitudinal ones since the field amplitudes in
the nanogap between the particles are weak. Longitudinal couplings on the other hand have demon-
strated field enhancements of several orders of magnitude. As we are interested in focusing light
in nanometer scaled volumes, a particular attention will be devoted in this chapter to longitudinal
plasmon couplings.

5.3.1 Longitudinal couplings

Fig. 5.4 displays a schematic of the numerical experiment undertaken in this section. Two identical
gold nanoparticles 50 nm in diameter, embedded in a dielectric background of refractive index
nb = 1.5, are illuminated by a plane wave with the electric field oscillating along the symmetry axis
of the dimer.

Figure 5.4: Schematic of the numerical experiment. Two identical gold nanospheres 50 nm in
diameter, embedded in a dielectric background of refractive index nb = 1.5, are placed along the
z-axis defining a nanogap of dimension d. The system is illuminated by a plane wave with a electric
polarization along the dimer axis z.

We first investigate the far field response of the coupled system in Fig. 5.5(a) by rigorously
calculating the electromagnetic extinction (black line), scattering (red line) and absorption (green
line) cross-sections when illuminating the system at normal incidence. A strong resonance occurs
at wavelengths of 630 nm, corresponding to coupled resonances of longitudinal modes. Compari-
son of this peak with the extinction cross-section of the isolated particle (dashed line in Fig. 5.5(a))
shows that the coupled resonance is red-shifted. This red-shift can be explained using the hy-
bridization model of the individual plasmons [62, 68]. Fig. 5.5(b) displays the energy diagram of
the possible plasmonic longitudinal mode hybridization (the red arrow illustrates the induced dipo-
lar moment in the individual nanoparticle). The longitudinal in-phase interactions is analog to a
bonding atomic hybridization which occur for lower incident energy than the plasmon resonance
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in the isolated particle. It results that the in-phase mode appears at larger wavelengths (i.e in the
red region of the spectrum) [59].

Figure 5.5: (a) Extinction (black line), scattering (red line) and absorption (green line) cross-
sections for the coupled system, and extinction cross-section for the isolated particle (dashed line).
(b) Qualitative energy diagram of the plasmon hybridization. (c) Electric field intensity map for the
two coupled nanoparticles illuminated at normal incidence (c.f. the black arrow in (c)) at λ0 = 630
nm. The 50 nm gold nanoparticles are separated by d = 5 nm and the surrounding background has
a refractive index nb = 1.5.

For this red-shifted coupled mode, the incident electric field parallel to the dimer axis induces
in-phase longitudinal oscillations of the polarization moments of each particle. These oscillations
induce surface charges of opposite sign which are responsible for the strong electric field enhance-
ment in the dielectric inter-particle gap. Fig. 5.5(c) illustrates the strong near field enhancement
between the spheres when the dimer is illuminated at λ0 = 630 nm. We remark that there exists a
weaker secondary peak at higher frequency which is made possible thanks to quadrupolar response
contributions.

We introduce the local induced polarization moment P in the nanoparticle which can be defined
in terms of the internal field:

P(r, ω) = ε0(εs(ω) − εb)Eint(r, ω) (5.10)

where ε0 is the permittivity of vacuum and εs and εb are the relative permittivities of the metal and
the background media respectively.



60 Chapter 5. Plasmon based nanolenses

We are then interested in extracting the longitudinal components of the polarization moment in
the individual particle which are responsible for the creation of surface charges and consequently
for intense fields in the nanogap. Thanks to the numerical approach employing Mie theory and
expansions of the fields on the vector spherical harmonics, the longitudinal components of the
induced polarization moment in the nanoparticle can be extracted in the multipolar framework. In
this study, high multipolar orders are required to accurately reconstruct the field which will be taken
into account by imposing N = 20 in Eq. (??). The dispersion of the dielectric constant of gold is
interpolated from the Palik database [69]. The extraction of the longitudinal components of the
field requires one to pay particular attention on the Scalar Spherical Harmonics that are defined in
in chapter ?? in terms of the associated Legendre polynomials Pm

n (cos θ).

Ynm(θ, φ) ≡ cn,mPm
n (cos θ) exp(imφ) (5.11)

where

cn,m ≡

[
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4π
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] 1
2
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The associated Legendre polynomials Pm
n (cos θ) have the following property:

∀m , 0 Pm
n (±1) = 0 (5.13a)

P0
n(±1) = (±1)n (5.13b)

It results that the electric field distribution close to the z-axis can be relatively well described
by the (n,m) = (n, 0) contributions (c.f. the Scalar Spherical Harmonics in Fig. 2.2). This is
clearly highlighted in Fig. 5.6(a) where the electric field intensity has been reconstructed under
the same conditions as Fig. 5.5(c) but only taking into account the (n,m) = (n, 0) contributions.
One can notice that the intensity maps are identical demonstrating that our approach enables to
essentially describe the longitudinal interactions of the localized plasmon in the individual particle.
By defining the longitudinal polarization moment as:

Plong(r, ω) = ε0(εs(ω) − εb)Eint,(n,0)(r, ω) (5.14)

one gets access to the relative phase of the induced longitudinal polarization components responsi-
ble for the creation of surface charges along the axis of the dimer by projecting the field along the
radial direction:

Plong(r, ω).̂r = ε0(εs(ω) − εb)E(Y)
int,(n,0)Yn,0 (5.15)

where the origin of r̂ lies at the center of the particle. Fig. 5.6(b) displays the phase of the induced
longitudinal polarization moment inside the particle. It is clear that the longitudinal moments
oscillate in phase. It must be stressed that not only the dipolar term has been taken into account
and that higher multipolar order (n ≥ 1) contribute to the field. Nevertheless, the phase of the
longitudinal induced moment Plong(r, ω).̂r highlights “bipolar” oscillations demonstrating that the
distinction made in the dipolar approximation between transversal and longitudinal modes in linear
chains of particles is still relevant in the vectorial multipolar framework.
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Figure 5.6: (a) Reconstructed electric field intensity map when taking only (n,m) = (n, 0) contribu-
tions and (b) phase of the individual induced longitudinal moment. The 50 nm gold nanoparticles
are separated by d = 5 nm and illuminated at normal incidence, at λ0 = 630 nm. The surrounding
background has a refractive index nb = 1.5.

In the quasistatic approximation, the internal field is considered as constant over the complete
volume of the particle. It results that the dipolar moment can be expressed as:

p(ω) = Vsε0(εs(ω) − εb)Eint,dip(ω) (5.16)

where Vs is the volume of the sphere and Eint,dip is the dipolar contribution of the electric field.
Nanoparticles dimers have been essentially investigated for the in-phase mode producing in-

tense and highly confined fields in the nanogap defined by the interdistance between the particles.
Due to a weak total polarization moment, longitudinal opposite-phased modes cannot be excited by
a straightforward plane wave illumination on strongly coupled dimer of nanoparticles (typical sep-
aration distance of 5-10 nm). However, It has been demonstrated that interactions of dimers with
an additional particle [9, 76] or localized emitters enables the excitation of asymmetric modes.

5.4 Control of light localization

Metallic nanostructures offer the opportunity to strongly focus light and to enhance light-matter
interactions at the nanometer scale via the excitation of localized surface plasmon resonances. In
2002, Stockman et al. demonstrated the dynamic control of the field enhancement at nanometer
scale in arbitrary nanostructures [77] by adjusting the phase and the polarization of an excitation
pulse. Active control of field localization has been experimentally demonstrated through the use
of an iterative learning algorithm to shape the femtosecond excitation pulse [78]. Deterministic
structures such as arrays of spherical nanoparticles have been investigated by Koenderink et al. [79]
to serve as unique and reproducible lithographic masks for imprinting different near field patterns.
They varied the angle of incidence and polarization of the continuous excitation beam in order to
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produce a variety of patterns in a photosensitive substrate. Aperiodic arrays of coupled localized
plasmonic resonances have also been investigated to provide reproducible nanostructures surfaces
for enhanced Raman spectroscopy. These studies convincingly demonstrated that incident beam
shaping can induce different field distributions in a single metallic nanostructure.

In 2006, Le Perchec et al. controlled the localization of light in coupled slits milled in a metallic
substrate [80]. The slits had a thickness of 200 nm and were separated by a distance of 500 nm.
When illuminated in oblique incidence in the infrared spectrum, they coupled incident propagating
light to both symmetric and anti-symmetric modes. By the use of a second identical frequency
propagating wave in opposite incidence, they could switch the near field enhancement from one
slit to the other via phase adjustments. This simple system provided a means to conceive subwave-
length optical switch components controlled from the far field region. Very recently, Volpe et al.
[76] investigated spatial phase modulations of high order beams such as Laguerre-Gaussian beams
in order to control the near field in plasmonic nanostructures. They considered two 50 nm gaps
formed by three 500 nm aligned gold bars and demonstrated that spatial phase modulation of the
incident beam enables switching light on and off in either of the two sites.

In this section, we theoretically study a linear trimer of identical spherical nanoparticles to tune
the localization of light at the nanometer scale (∼55 nm). In particular, we investigate the near
field enhancement occuring between gold nanospheres 50 nm in diameter. The three spherical
nanoparticles are arranged to form two identical nanogaps in which the near field can be strongly
enhanced. This provides a simple system with two coupled nanogaps separated by a distance of
about a tenth of the incident wavelength. It will be shown that this a priori symmetric system
enables the concentration of light in a single cavity while employing a single illumination plane
wave [9].

Figure 5.7: Schematic of the numerical experiment. Three identical gold nanospheres 50 nm in
diameter, embedded in a dielectric background of refractive index nb = 1.5, are placed along the z-
axis. The system is illuminated by a plane wave with a TM polarization with an angle of incidence
θ between the propagation direction and the z-axis. Calculations are performed using generalized
Mie theory combined with an analytic multiple scattering formulation.

This model system is illuminated by a plane wave with TM polarization (the magnetic field is
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perpendicular to the plane presented in Fig. 6.3) and an angle of incidence, θ, tunable between 0
(propagation along the z-axis) and 90 degrees. The strong contrasts of near field intensities at scales
much smaller than the incident wavelength require a full electromagnetic study based on solving
the Maxwell equations.

We investigate the far field response of the trimer by rigorously calculating the spectral response
of the extinction cross-section for different angles of incidence (Fig. 5.8(a)). For an incident angle
θ = 0◦ (blue line) corresponding to an illumination along the z-axis, only one maximum appears
at the wavelength of 560 nm, which is almost the wavelength of resonance of the isolated sphere
(red line). Assuming an incident electric field along the x-axis, it can be deduced that this res-
onance is due to plasmon oscillations occurring transversally to the chain axis resulting in weak
couplings between the individual nanoparticles resonances. At normal incidence (θ = 90◦: black
line), a stronger resonance occurs at the wavelength of 665 nm, corresponding to the well-known
red-shifted coupled resonance of in-phase longitudinal modes [59]. Fig. 5.8(b) illustrates the strong
near field enhancement between the spheres when the trimer is illuminated at λ0 = 665 nm. When
the chain is illuminated at normal incidence, only in-phase longitudinal oscillations of the polariza-
tion moments are excited. These oscillations induce surface charges of opposite sign in the dielec-
tric inter-particle gap responsible for the strong electric field enhancement. Such modes have been
studied extensively in the context of dimers of metallic spheres and nanoshells [55, 59–64]. We
remark that for the case of normal incidence, there exists a weak second peak at higher frequency
which is made possible thanks to quadrupolar response contributions. At intermediate angles of
incidence (like the case θ = 45◦ displayed in Fig. 5.8(a)), we observe two peaks at frequencies
close to those observed respectively at θ = 0◦ and θ = 90◦.

Figure 5.8: (a) Extinction cross-section of a chain of three gold particles of diameter D = 50 nm
(red line) separated by d = 5 nm in the full electromagnetic approach. The refractive index of the
surrounding is nb=1.5. Different angles of incidence are displayed: θ = 0◦ (blue line), θ = 45◦

(green line) and θ = 90◦ (black line). The isolated sphere extinction cross-section is also displayed
(red line). (b) Electric field intensity ‖E‖2/‖Einc‖

2 map in log scale for a trimer illuminated at λ0 =

665 nm under normal incidence.

Table 5.2 illustrates the dipolar longitudinal eigenmodes that may be excited in a linear trimer.
Although the dipolar approximation fails to describe accurately the resonance when the particles are
strongly coupled, it enables a clear distinction between modes that are perpendicular (transverse)
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and parallel (longitudinal) to the chain axis [81]. From the extinction cross-section displayed in
Fig. 5.8(a), one can observe that only the in-phase modes denoted L1 is clearly visible. This
observation may seem surprising since except for illumination at θ = 0◦ where the symmetries
of the configuration impose in-phase modes, coupling between the incident field and opposite-
phase modes may be possible when illuminating the system at oblique incidence. Inspection of the
opposite-phase modes in Table 5.2 shows however that the total dipolar moment involved in these
modes is weaker than that occurring for in-phase modes. Consequently, the scattering process
remain moderate and these modes may be difficult to observe in extinction cross-section plots.

Table 5.2: Possible longitudinal dipolar eigen modes for a linear chain of three plasmonic particles.

Longitudinal eigenmodes
L1 → → → In-phase mode
L2 ← → → Opposite-phase
L3 ← → ← modes

Let us emphasize that we are interested in the excitation of an opposite-phase mode that would
lead to a vanishing of the field in one of the nanogaps. This purpose requires an excitation via
the far field of modes that are associated with a weak dipolar moment. Fig. 5.9(a) displays the
near field intensity enhancement calculated at the center of the nanogap as a function of the inci-
dent wavelength, when the incident angle θ is equal to 45 degrees. These plots show that the field
intensities in the two nanogaps are quite different, but most interestingly they reveal the counterin-
tuitive occurrence that at λ0 = 595 nm (green line) a rather strong field intensity enhancement in
gap 2 is concurrent with a near vanishing of the field in gap 1 (the ratio is larger than 500). This
phenomenon is even more conspicuous in the near field intensity map displayed in Fig. 5.9(b) in
logarithmic scale that clearly shows that at λ0 = 595 nm, the light intensity is confined in only one
site. This is the most striking result of this study: the sub-wavelength nanogap 1 is turned-off and
the light intensity is almost entirely localized inside nanogap 2 while both nanogaps are separated
by only 55 nm. It appears that this phenomenon cannot be observed from the far field response since
the extinction cross section (green line in Fig. 5.8(a)) does not exhibit any notable feature. We next
move towards the full understanding of the longitudinal eigen modes involved in this phenomenon,
which will require the extraction of longitudinal terms in the multipole formalism.

We now apply the formalism described in the previous section to study the phenomenon ob-
served in Fig. 5.9. Fig. 5.10(a) displays the longitudinal multipole contributions to the field at λ0

= 595 nm and θ = 45◦ obtained by reconstructing the field intensity map with (n,m) = (n, 0). It
highlights that the vanishing of the near field in nanogap 1 associated with the high intensity en-
hancement in nanogap 2 are essentially obtained. It shows that the intensity contrast observed in
Fig. 5.9 is due to the excitation of longitudinal modes in the structure. More precisely, the phase
of the longitudinal electric field displayed in Fig. 5.10(b), obtained under the same conditions as
Fig. 5.10(a), shows that the mode L2 depicted in Table 5.2 is predominantly excited. Let us empha-
size that the electric field oscillations occurring on the particles are principally dipolar in nature.
It means that the oblique incidence permits retardation between the responses of the individual
particles allowing the excitation of an opposite-phase mode at a specific frequency.

Fig. 5.10(c) displays the extinction cross-section for the longitudinal modes obtained by im-
posing m = 0 when reconstructing the field, superposed with the total extinction cross-section as
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Figure 5.9: (a) Intensity enhancement in nanogap 1 (red line) and nanogap 2 (black line) for θ =

45◦. The vertical line indicates the wavelength of 595 nm where the intensity contrast is maximum.
(b) Electric field intensity, ‖E‖2/‖Einc‖

2 , map in log scale at λ0 = 595 nm and θ = 45◦.

calculated in Fig. 5.8(a) (green line). With this technique, the dominating transverse mode can be
filtered and it appears that the excitation of the mode L2 is associated with a peak of the extinction
crosssection. The oblique illumination has enabled the coupling of the incident propagating light
to an opposite-phase mode that is responsible for a vanishing of the field in nanogap 1 while the
field in nanogap 2 is strongly enhanced.

Furthermore, Fig. 5.10(a) evidences a weak longitudinal induced polarization inside sphere
1 indicating that L2 is not the only mode which is excited, but that a combination of the three
longitudinal modes (Table 5.2) is involved. This result shows that it is possible to nearly extinguish
the longitudinal moment of a metallic nanoparticle by simply coupling this particle with a dimer of
identical particles.

A similar vanishing of the polarization moment of metallic nanoparticles has been observed
in the asymmetric dolmen structure by Zhang et al. [82, 83]. They have demonstrated that the
so-called Electromagnetic Induced Transparency (EIT)-like phenomenon was achievable thanks to
couplings between a bright and a dark plasmonic element in a dolmen-like plasmonic molecule.
The bright (radiative) element easily couples to the incident light while the dark element supports
a resonance that cannot be directly excited from the far field area. But this dark resonance can be
excited by near field couplings with the bright atom. A destructive interference between the direct
excitation of the radiative element by the incident field and the indirect excitation via the scattering
of the dark element leads to turn-off the bright atom and produces a transparency window in the
far field. Certain similarities between this EIT-like phenomenon and the phenomenon investigated
here in the symmetric trimer illuminated in oblique incidence can be observed. In particular, the
destructive interference that occurs in the bright element of the dolmen-like structure is similar to
the extinction of the longitudinal dipolar contribution in sphere 1.

Fig. 5.11 presents calculations of (a) the real and (b) imaginary parts of the electric field at the
center of nanogap 1. The vanishing of the electric field inside nanogap 1 is associated with a dip
of the imaginary part of the z-component of the electric field (indicated by the line in fig. 5.11) and
with a strong dispersive behavior of the real part, similar to observations in EIT-like phenomenon
(see for example the figure 2b of Ref. [82]). The investigation of the local electric field in nanogap
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Figure 5.10: (a) Electric field intensity ‖E‖2/‖Einc‖
2 map in log scale of the longitudinal contribu-

tions reconstructed imposing (n,m) = (n, 0) in Eq. (??), (b) phase of the field reconstructed with the
terms E(Y)

n,0(r)Yn,0 in Eq. (??) at λ0 = 595 nm and θ = 45◦ and (c) extinction cross-section at θ = 45◦

for the total field (black line), the longitudinal (red line) and transversal contributions (green line).

1 can be related to an effective polarizability of spheres 1 and 2. However, unlike the investigation
of Zhang et al., the susceptibility of the entire system cannot be deduced from the field occurring
inside the cavity 1 because in our case, the field is not coupled to a dark mode: spheres 2 and 3
have in-phase longitudinal dipoles which are required for the observation of a high contrast of light
intensity between the both nanogaps. More precisely, the global susceptibility of our system can
not be canceled by the couplings to antisymmetric modes. This can be evidenced by the fact that
these modes do not induce any dip in the extinction cross-section plotted in Fig. 5.8(a).

This study demonstrates that antisymmetric modes can be excited by a propagating plane wave
in a linear trimer of identical particles. Furthermore, we show that in a narrow frequency range,
symmetric and antisymmetric mode-balancing extinguishes the dipolar longitudinal moment of
a metallic nanosphere coupled to a dimer composed of identical nanospheres. This nearly zero
longitudinal moment of sphere 1 leads to a near vanishing light intensity in nanogap 1, and the
high longitudinal moment of sphere 3 leads to strong enhancement of light intensity in nanogap 2.
Finally, we wish to emphasize that this phenomenon occurs in a simple fully sub-wavelength system
by employing straightforward far-field control in the harmonic regime. Specifically, it enables
switching of light between two identical nanogaps separated by a λ0/10 distance.
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Figure 5.11: (a) Real and (b) imaginary part of the z-axis component of the electric field calculated
at the center of cavity 1. The vertical line indicates the wavelength of 595 nm where the intensity
contrast is maximum.

5.5 Conclusion
Nanoparticles have been studied in this chapter as efficient tool for increasing the local electric
field and enhance interactions with the surrounding medium. The strong focusing of light obtained
thanks to the excitation of localized plasmon resonances provide confinement unachievable with di-
electric materials. In addition, strong interactions between individual localized plasmon resonance
offer the opportunity to control the position of the field at λ/10 scale. The design of deterministic
structures provides new types of optical lenses where both the dimension of the focal point and the
control of its position reach the nanometer scale. Interestingly, the nanometer scaled confinement
of light opens a way towards straightforward interactions of light with a single emitting molecule.





Chapter 6

Single emitter radiation close to metallic
nanoparticles

6.1 Introduction

In the previous chapters, different optical systems such dielectric lenses or metallic nanoparticles
have been investigated for their ability to focus light in small volumes. A reason invoked for using
such systems was to increase the local EM field in the focal volume enhancing by the way potential
interactions with the surrounding medium. As an example, the enhancement of the local electric
field was discussed in chapter 4, in the context of FCS, as a mean to increase the fluorescence rate
of nearby molecules. In that purpose, a microsphere was introduced in the path of a focused beam
to increase the electric field density (defined as the average intensity per volume unit). The reduc-
tion of the focal volume has enabled a reduction of the number of fluorescent emitting molecules
observed while preserving a sufficient signal/noise ratio for the detected signal. In addition, it must
be recalled that a slight redirection of light has been induced by the microsphere contributing to
increase the collected signal. An underlying aim of such investigations relies into the need for im-
proving interactions of electromagnetic radiations with unique sources of light such as fluorescent
molecules or quantum dots.

Metallic nanostructures are currently considered as key elements for the control of light in-
teractions with quantum emitters (like quantum dots and fluorescent molecules) since plasmon
resonances enable to concentrate light and increase the excitation rates in tiny volumes potentially
containing a reduced numbers of quantum emitters. The increase of the excitation rate is indeed
associated with an increase of the absorption probability for a two-level atomic system.

Reciprocally, it is well admitted, since the work of Purcell, that spontaneous emission of a
single emitter can be strongly perturbated by resonant electromagnetic couplings with its external
environment. Resonant fields such as those achieved in Fabry-Perot cavities can strongly enhance
the spontaneous emission rates and amplify stimulated emission rates for lasing systems. In con-
trast, full photonic bandgaps in photonic crystals or disorders materials would enable an inhibition
of the spontaneous emission since no relaxation channel is available.

Metallic nanostructures also permit to enhance the radiative decay rates of nearby emitters [55,
56, 59, 61, 65, 84–87]. New relaxation channels are provided by the metallic environement near
the single emitter via the excitation of plasmon resonances reducing the lifetime in the excited
state (inversely proportional to the decay rate). It results an increased number of photons emitted
per unit of time and a potential enhancement of the radiated power. The latter property has been
thoroughly investigated in the case of a single emitter coupled to a single nanoparticle [66, 67, 88–
92]. It has been shown that the radiative decay rates strongly depend on the distance between the
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emitter and the metallic nanoparticle. This distance has to be precisely controlled since at very
short distances from the surfaces (a few nanometers), non radiative relaxation dominates and the
quantum efficiency drops. The coupling efficiency between emitters and the metallic structures also
depends on the orientation of the dipolar source with respect to the dipolar modes supported by the
metallic particles. A longitudinal coupling geometry significantly enhances the emission decay
rates while a transverse interaction leads to moderate enhancements [67, 92–94] as explained in the
previous chapter.

In addition to radiative decay rate enhancements, localized plasmon resonances on metal
nanoparticles enable a redirection of the radiated signal. Recently, the ability of nanoparticles
to control the angular emission of single molecules has been investigated [95, 96]. This possibility
is particularly important since a high directivity facilitates both the excitation of a quantum emitter
by a collimated beam as well as the collection of the radiated light.

Nanoparticles act analogously to radiofrequency antennas which convert propagating radiations
into electrical signal (receptor) and vice-versa. The recent concept of optical nanoantennas has
been based on using plasmonic nano-structures to tailor the electromagnetic environment near a
quantum emitter in order to enhance the photoluminescence signal by optimizing: (a) the local
excitation rate, (b) the spontaneous emission rate, and (c) the collection efficiency [97–99]. In
other words, nanoantennas are plasmon based optical transducers employed to increase couplings
between optical radiations and atomic transitions of matter. Nanoantennas are promising tools for
enhancing fluorescent spectroscopy, scaling down lasing systems, decouple quantum dots radiative
emission and optimize single photon sources for quantum physics and integrated optics [100].

In this chapter, we focus our attention on the radiations properties of a single dipolar emit-
ter located close to a single nanoparticle. It will be emphasized that the couplings between the
polarization of the single emitter and the polarization moment induced in the nanoparticle is an
essential parameter to predict radiation rates and directivity. In particular, longitudinal couplings
enable enhancement of the spontaneous decay rates while transverse couplings spoil decay rates
but permits a redistribution of dipolar emission. Consequently, it will result in a simple strategy to
design compact optical nanoantennas employing nanoparticles.

6.2 Spontaneous emission of a single emitter close to a nanopar-
ticle

Nanoparticles have been studied in the previous chapter as efficient tools for increasing the local
electric field intensity. The question arising now is how a single emitting system is influenced by
the presence of a nanoparticle in its near field? This question was partly investigated in Chapter 4,
when a dielectric microsphere was employed for enhancing Fluorescent Correlations Spectroscopy
signal. This enhancement has been attributed to an increase of the excitation density and of the
collection efficiency (c.f. Eq. (4.1)). Let us remind that the quantum efficiency has been assumed
to be close to unity since slightly affected by non-absorbing materials. Metallic materials however
suffer from inherent losses in the visible range that may affect the quantum efficiency. It means
that a part of the emitted light will be absorbed by the metallic material and consequently will
not propagate to the far field domain. The fluorescence detected signal enhancement ΓF/Γ

0
F of a
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single-molecule (with respect to a free-space dipolar radiation) can be expressed in the following
equation:

ΓF

Γ0
F

= κcolη
Γexc

Γ0
exc

(6.1)

where κcol is the collection efficiency enhancement that is defined as the power per solid an-
gle integrated over the objective angular aperture normalized by the collection efficiency when
the dipole radiate in the free space. The excitation rate enhancement Γexc/Γ

0
exc is defined as

|np.E(rp)|2/|np.E0(rp)|2 where np is the dipole direction and E(rp) and E0(rp) are the local electric
field at the dipole location rp respectively with and without the microsphere (in a general manner,
the script 0 refers to the radiation properties in free space). η is the quantum yield of the relaxation
process defined as:

η =
Γrad/Γ0

(Γtot/Γ0 + (1 − ηi)/ηi)
(6.2)

where ηi represents the intrinsic quantum efficiency of the emitter (ηi = 1 for a perfect emitter).
The total and radiative decay rate enhancements are obtained with the respective emitted and radi-
ated power in the presence of the antenna normalized by the power in the homogeneous background
medium:

Γtot

Γ0
=

Ptot

P0
(6.3)

Γrad

Γ0
=

Prad

P0
(6.4)

The quantum yield (or quantum efficiency) is of crucial importance for light emission since it rep-
resents the ratio between the power radiated by the emitter with respect to the total emitted power.
The lost energy is dissipated in the structure and is associated to an increase of the temperature of
the system and may spoil further the emission properties. From Eq. (6.2), one can notice that for
a perfect emitting system, the quantum efficiency can only decrease. However, it is interesting to
remark that the quantum efficiency of poor quantum emitters such as quantum dots can increase
if the radiative decay rates are strongly increased. Metallic nanoantennas thus allow new radiative
channels to poor emitters and increase their spontaneous emission rates.

It must also be stressed that the radiative decay rate enhancements are linearly related to the ex-
citation rate via the reciprocity theorem [99]. It results that for an incident plane wave propagating
along the direction (θ, ϕ) via:

Γrad

Γ0

Dcol(θ, ϕ)
Dcol(θ, ϕ)0 =

Γexc

Γ0
exc

(6.5)

Dcol(θ,ϕ)
Dcol(θ,ϕ)0 is the partial directivity in the direction (θ, ϕ) defined as [99]:

Dcol(θ, ϕ)
Dcol(θ, ϕ)0 = 4π

∣∣∣np.E(r, θ, ϕ)
∣∣∣2∫

Ω

∣∣∣np.E(r, θ, ϕ)
∣∣∣2dΩ

(6.6)
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In most experiments, the incident beam is not a plane wave but rather a focused beam which can be
defined in term of a coherent superposition of incident plane waves with different incident angles
that can be included in the reciprocity theorem. Refering to Eq. (5.6) in chapter 5, one can notice
that the static electric field in the vicinity of a dipolar particle is more intense in the direction of
the dipolar moment. In addition, the electric field polarization is essentially directed along the
induced dipolar moment. Using Eq. (6.5) and the definition of the excitation rate enhancement, it
can be deduced that longitudinal interactions between the driving dipole and the induced dipole in
the nanoparticle lead to high enhancements of the radiative decay rate. In contrast, as it will be
demonstrated later, transverse interactions enable an interesting redistribution of the light radiated
by a dipolar emitter. In that configuration, the partial directivity will tend to unity combined with a
moderate excitation rate leading to weak radiative decay rate enhancements.

6.2.1 Radiative decay rates and quantum efficiency

The single emitter is simulated as a point-like dipolar source modeled by taking the first electric
term in a multipole (Mie) expansion. The generalized Lorentz-Mie calculations are performed with
a truncation order of N = 20 for the individual scatterers. The total emitted power Ptot and the
radiative emitted power Prad can be numerically calculated by integrating the radial component of
the Poynting vector over a spherical surface surrounding the source at respectively small and long
distances. However, in our study, the emitter and total decay rate enhancements will be calculated
in the multipolar framework using the expansion of the Green function on the VSWs (detailed in
Appendix C).

We first consider a dipole oriented perpendicularly to the surface of particle as displayed in
Fig. 6.1(a). The influence of the distance of the dipolar emitter with respect to the plasmonic
nanoparticle on the spontaneous emission efficiency has been displayed in Fig. 6.1(b), (c) in the
case of a so-called longitudinal interaction. Fig. 6.1 shows the spectral dependence of (b) the
quantum yield and (c) the radiative decay rates for d = 10 nm (full line), d = 5 nm (dashed line)
and (c) d = 2 nm (dotted line) for a 60 nm diameter silver nanoparticle embedded in a nb = 1.5
surrounding medium.

Whatever the distance considered, the radiative decay rate enhancement plots show a peak at
the same frequency. It can be deduced that a plasmon resonance has been excited in the nanopar-
ticle that produces this peak. Similarly to chapter 5, one can consider in a first approximation
that the dipolar moment induced in the nanoparticle occurs colinearly to the driving dipole ori-
entation. It can be easily demonstrated (similarly to the phenomenon observed in chapter 5) that
an in-phase mode has been excited leading to an increasing of the initial dipolar moment and en-
hancing the radiative emission. When gradually decreasing the separation distance, the radiative
decay rate enhancements increase of several orders of magnitude. However, the radiative decay
rates enhancement is useless if the quantum efficiency is weak. One can remark that the quantum
efficiency plotted in Fig. 6.1 exhibits a maximum value approximatively at the plasmon resonance.
However, for separation distances smaller than d = 5 nm, the quantum efficiency drops below 50
% reaching only 10 % for a distance of d = 2 nm. As the fluorescence emission rate is defined as
the product between the quantum efficiency and the radiative decay rate, one can realize that when
the dipole is too close from the sphere surface, the fluorescence emission rate tends to zero giving
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rise to so-called quenching effect [89]: most of the emitted power by the dipolar active source is
coupled to non-radiative channels and the far field signal vanishes.

Figure 6.1: (a) Layout of the longitudinal interaction between the emitting dipole and the induced
polarization moment inside the particle. The arrow designates the orientation of the driving dipole.
(b) Radiative decay rate enhancement and (c) quantum efficiency of the spontaneous emission for
different separation distances d: d = 10 nm (full line), d = 5 nm (dashed line), d = 2 nm (dotted
line) as a function of the emission wavelength.

The transverse interactions (the layout is displayed in Fig. 6.2(a)) lead to different emitting
properties of the dipolar spontaneous emission. The radiative decay rate enhancement also exhibits
a peak at the plasmon frequency (equal to the frequency observed in Fig. 6.1(a)) but its amplitude is
on the order of unity. The transverse interaction does not provide any enhancements of the radiative
decay and the associated quantum efficiency displayed in Fig. 6.2(b) is extremelly weak (below 0.5
even for seperations d = 10 nm)

Both the quantum efficiency and the radiative decay rates are extremely different according to
the dipole orientation. Transverse interactions induce weak quantum yields and radiative decay
rates. In contrast, longitudinal interactions produce high enhancements of the radiative decay rates.
It must also be noticed that the 2 configurations, quantum efficiency drops for wavelength between
300 nm and 400 nm. This was attributed to couplings to the interface plasmon mode of the an-
tenna [92, 101] while radiative decay are associated with the excitation of a dipolar mode in the
nanoparticle. Furthermore, the quantum yield remains limited over the entire frequency range when
the distance is reduced to several nanometers. We pay now a particular attention on transverse in-
teractions which will exhibit great abilities to modify the direction of propagation of the radiated
field.

6.2.2 Emission patterns of single emitters interacting with metallic particles
The ability of nanoantennas to control the angular emission of single molecules has recently been
investigated [96, 102, 103]. This possibility is particularly important since a high directivity facili-
tates both the excitation of a quantum emitter by a collimated beam as well as the collection of the
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Figure 6.2: (a) Layout of the transverse interaction between the emitting dipole and the induced
polarization moment inside the particle. The arrow refers to the orientation of the driving dipole.
(b) Radiative decay rate enhancement and (c) quantum efficiency of the spontaneous emission for
different separation distances d: d = 10 nm (full line), d = 5 nm (dashed line), d = 2 nm (dotted
line) as a function of the emission wavelength.

radiated light [11].
It has been demonstrated that nanoparticles could either act as reflector or director elements ??.

This latter property has been related to the phase of the dipolar polarizability of the particle which
is equal to π/2 at the plasmon resonance. By tailoring the polarizability of the particle and by the
way the spectral position of the plasmon resonance, one can then control the reflective or a direc-
tive behavior of the particle at a given driving frequency. The particle polarizability is generally
controlled by tuning the size of the nanoparticles or the thickness of nanoshells [104, 105].

A dipolar emitter can be coupled longitudinally to the antenna by utilizing a nanoparticle lo-
cated near the reflector element [106]. In this configuration, the emitter is off-axis. For an on-
axis emitter, the weak transverse coupling with the chain of particles can be reinforced by em-
ploying the so-called ‘super emitter ’consisting of a dimer of nanoparticles perpendicular to chain
axis [88, 100]. Pakizeh et al. have recently proposed an ultracompact antenna made of two iden-
tical metallic particles [106]. The dipolar emitter can be coupled to a dark mode characterized by
opposite phase dipolar modes induced in the two neighboring particles. In that case, it has been
shown that the emitter radiates predominantly in only one half space and can thus be characterized
as unidirectional.

This section is dedicated to studying how nearby spherical nanoparticles modify the angular
distribution of light emitted by an oscillating dipole. In particular, we provide a thorough study of
the phase differences between the dipolar source and the dipolar mode induced in the particle. We
emphasize that these phase differences must take into account the optical path between the emitter
and the particle in addition to the polarizability of the particle. We show that by tuning the position
of a single emitter from a single nanoparticle by a few tens of nanometers, we can sufficiently
modify the dephasing to control the reflective or collective properties of the particle at a given
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frequency. When the phase difference between the exciting and induced dipoles is strictly equal to
π, an equal part of the energy is radiated into each of the half spaces surrounding the emitter (the
separation plane being perpendicular to the axis containing the dipoles). We then apply these results
to the design of highly unidirectional antennas composed of two nanospheres separated by a mere
50 or 60 nm. The basic concept is similar to the idea underlying the design of Yagi-Uda optical
antennas, which associate the collective and reflective properties of nanoparticles [104, 105], but
at much smaller interparticle distances and in simpler geometries. Taking into account the phase
lag induced by the distance between the emitter and the nanoparticle, highly directional antennas
can be designed with only two nanoparticles. We will first emphasize the role of the distance
between the emitter and the nanoparticles by designing a directional antenna composed of identical
particles, i.e. with strictly identical polarizabilities. Furthermore, by tuning the relative size of the
two particles, it is possible to design an antenna smaller than λ0/2 that channels light radiated by a
single emitter in the angular aperture of commercial microscope objectives [10].

6.2.3 Radiation properties of a dipolar emitter coupled to a single nanopar-
ticle

We first investigate the radiation pattern of a single emitter located near a single 90 nm silver par-
ticle. The dipolar emitter is polarized along the z-axis in order to provide a transverse coupling
with the nanoparticle as sketched in Fig. 6.3. The emission properties of the dipolar emitter are cal-
culated in the framework of rigorous Lorentz-Mie theory, and combined with multiple scattering
theory in configurations where more than one silver particle is present [1, 107, 108]. This ana-
lytical method is particularly well suited to tackle light scattering by an ensemble of nanospheres.
In order to insure an accurate modeling of the short range couplings, the calculations presented in
this study are carried out with 30 multipole orders. Nevertheless, let us emphasize that the electro-
magnetic response of the metallic particles under consideration is predominately dipolar in nature,
resulting in a rapid multipole convergence. Consequently, a dipole approximation (1st order) would
qualitatively exhibit all the underlying physics observed in this work.

The radiation patterns are obtained from the radial component of the Poynting vector in the
far field. In order to estimate how much light is collected or reflected by the metallic particle, we
define the reflection coefficient R as the ratio of the power emitted in the x ≥ 0 hemisphere with
respect to the total radiated power.

In this section, we pay particular attention to the dephasing between the emitting and induced
dipoles. When the dipole approximation dominates (as it does here), it is sufficient to calculate the
(nearly constant) electric field anywhere inside the metallic particle. The induced dipole moment of
the nanoparticle is then obtained by multiplying the total electric field by Vsε0(εs − εb) where Vs is
the volume of the sphere, ε0 the permittivity of vacuum and εs and εb are the relative permittivities
of the metal and the background media respectively. For small particles, the quasi-static approxima-
tion applies and we can express the resulting phase differences as the sum of the phase differences
due to the optical path difference field from the emitter and the polarizability of the particle. It must
be stressed that in previous works, attention was focused on the phase difference of a nanoparticle
polarizability with respect to its local excitation fields, while we emphasize importance of taking
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Figure 6.3: (a) Sketch of a dipolar emitter oriented along the z-axis and located at a distance d from
the surface of a silver nanosphere. The refractive index of silver is taken from Ref. [69]. Silver
nanospheres are embedded in a polymer of refractive index 1.5. (b) The spherical coordinates used
in the analytical expressions.

into account the additional phase difference induced by the (small but non-negligible) optical path
between the emitter and the nanoparticle. We point out that we chose the common convention of
the phase differences defined to lie in the range from -π to π.

The phase differences ∆φ between the emitter and dipole moment of a (D = 90 nm) silver
nanoparticle are displayed in Fig. 6.4 (circles) as a function of the emission wavelength. The
emitting and induced dipoles are precisely in opposing phase at λr = 600 nm, ∆φ = π, and remain
roughly in opposite phase for longer wavelengths. For wavelengths smaller than λr = 600 nm,
∆φ varies as a function of λ0, and the induced dipole is generally out-of-phase with respect to the
emitter. The phase of the polarizability of the nanoparticle is also displayed (squares) and the phase
value of π/2 at λ0 = 500 nm indicates the plasmon resonance. Let us now investigate the radiation
properties of the coupled system in terms of the reflection efficiency of the nanosphere. We present
in Fig. 6.4 the reflection efficiency, R, of the nanoparticle (i.e. defined as the power emitted in the
x ≥ 0 half space over the total emitted power) as a function of the emission wavelength λ0. When
the reflection efficiency is lower than 0.5, the dipole preferentially radiates towards the x ≤ 0 half
space and the nanoparticle behaves as a collector (c.f. Fig. 6.3: the nanoparticle is located on the
negative x-axis). The full line in Fig. 6.4 clearly indicates that depending on the phase differences
between the emitting and induced dipoles, a metallic nanoparticle can either collect or reflect light
radiated by a single emitter. Let us mention that the dipolar approximation (triangles) exhibits
almost all the features of the radiation properties, meaning that the coupling between the single
emitter and the metallic particle is almost perfectly dipolar for λ0 > 450 nm. For wavelengths
λ0 > λr, the emitting and induced dipoles are nearly opposite in phase and the emitter radiates
preferentially towards the metallic nanoparticle with R dropping down to 0.4 at λ0 = 665 nm. For
λ0 < λr, the emitting and induced dipoles are out-of-phase and the nanoparticle reflects with a
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Figure 6.4: (a) A dipolar emitter oriented along the z-axis is located at a distance d = 30 nm from
a silver sphere of diameter 90 nm. The phase difference between the emitting and induced dipoles
(circles, left scale) and reflection efficiency (right scale. Full line: complete calculation, triangles:
dipolar approximation) as a function of the emission wavelength. Emission patterns of the oscil-
lating dipole at (b) λ0 = 510 nm and (c) λ0 = 600 nm in the xOz plane, (d = 30 nm) calculated by
plotting the radial component of the Poynting vector normalized by the forward emitted value as a
function of the polar angle.

rather high efficiency the radiated light since R reaches 90% at λ0 = 510 nm.

The emission pattern of the light radiated by the exciting dipole at λ0 = 510 nm is reconstructed
in Fig. 6.4(b) by plotting the radial component of the Poynting vector normalized by the forward
emission value as a function of the polar angle (in the plane xOz). This result demonstrates the good
unidirectionality offered by a single nanoparticle. The angular width of the emission pattern defined
as the angle between the on-axis maximum value and the direction of half maximum value is of
the order of ±40 degrees. Finally, it is interesting to note that for λ0 = λr, the ratio of the radiated
energy in both half spaces is precisely equal to 1. It may seem surprising that a highly asymmetric
environment (a single particle at the left of the emitter) results in perfectly symmetric radiation (see
the radiation pattern in Fig. 6.4(c)). To fully understand this counter-intuitive result, let us consider
the analytic expression of the emission of two dipoles with moments denoted p1 and p2. They are
placed along the x-axis with separation d + a, and oriented along the z-axis (see Fig. 6.3(a)). Let us
note x1 = −(d + a)/2 and x2 = (d + a)/2 the positions of the dipoles along the x-axis. We consider
that in the far-field limit (r � λ0), |r − x j| − r =

√
(x − x j)2 + y2 + z2 − r ≈ −x j sin(θ) cos(ϕ). The
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electric and magnetic fields produced in the far field by p1 and p2 then write :

E j(r, θ, ϕ) =

(
ω

c

)2 1
4πrε0

eik|r−x j |[(̂r×p j) × r̂] (6.7)

=

(
ω

c

)2 1
4πrε0

eikre−ikx j sin(θ) cos(ϕ) p j sin(θ)(−̂θ) (6.8)

H j(r, θ, ϕ) =
kω
4πr

eikre−ikx j sin(θ) cos(ϕ) p j sin(θ)(−ϕ̂) (6.9)

with r̂, θ̂, and ϕ̂ the unit vectors of the spherical basis (Fig. 6.3(b)). The resulting far-field, time-
averaged Poynting vector of the sum of these fields writes :

P(r, θ, ϕ) =
1
2

Re[(E1 + E2)∗ × (H1 + H2)] (6.10)

=
ω3k

32π2ε0c2r2 (p∗1e−ikreikx1 sin(θ) cos(ϕ) + p∗2e−ikreikx2 sin(θ) cos(ϕ)) (6.11)

(p1eikre−ikx1 sin(θ) cos(ϕ) + p2eikre−ikx2 sin(θ) cos(ϕ)) sin2(θ) r̂

=
ω3k

32π2ε0c2r2

[
|p1|

2 + |p2|
2 + 2 Re(p1 p∗2eik(d+a) sin(θ) cos(ϕ))

]
sin2(θ) r̂ (6.12)

To study the symmetry of the radiation pattern, we compute the sum of the Poynting vectors in one
direction and in the opposite direction :

∆P(r, θ, ϕ) = P(r, θ, ϕ) + P(r, π − θ, ϕ + π) (6.13)

=
ω3k

16π2ε0c2r2 Re{2ip1 p∗2 sin[k(d + a) sin(θ) cos(ϕ)]} sin2(θ) r̂ (6.14)

In our case, we are interested by the evolution of ∆P with respect to the relative phase φ = φ1 − φ2

between p1 = |p1|eiφ1 and p2 = |p2|eiφ2 :

∆P(r, θ, ϕ) =
ω3k

16π2ε0c2r2 {−2|p1||p2| sin(φ) sin[k(d + a) sin(θ) cos(ϕ)]} sin2(θ) r̂ (6.15)

Hence when φ = kπ with k ∈ N, ∆P = 0 for any value of the dipolar amplitudes |p1| and |p2|.
This calculation demonstrates that when the emitted and induced dipoles are in phase or in opposite
phase, the emission from the two dipoles is perfectly symmetric with respect to the origin, while
the electromagnetic environment of the emitter can be highly asymmetric. This confirms that the
wavelength of the plasmonic resonance (λ0 = 500 nm) taken alone cannot predict the directionality
of the emission and that the distance between the emitter and the nanoparticle plays a crucial role.
Moreover, this model exhibits a very interesting property: in a given direction defined by θ and
φ, the change of the sign of sin(φ) will change the sign of ∆P, for every distance d. In order to
confirm this assumption, phase differences (Fig. 6.5(a)) and reflection efficiencies (Fig. 6.5(b)) are
now displayed as a function of distance d and λ0.

These graphs confirm the clear correlation between reflection efficiency and the phase differ-
ences of the emitting and induced dipoles. The isoefficiency line is plotted in Fig. 6.5(b) when
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Figure 6.5: Phase differences between the dipolar emitter and the induced dipolar moment of the
nanoparticle (a) and reflection efficiency (b) as a function of the wavelength of emission and the
distance d between the emitter and the metallic surface of a 90 nm silver sphere. Figs. (c) and (d)
show similar results as (a) and (b) respectively but for a 60 nm sphere.

the directionality is null and it matches the isodephasing line (see Fig. 6.5(a)) plotted for ∆φ = π.
Calculations performed for a 60 nm silver particle (Fig. 6.5(c)-(d)) show that a similar behavior is
obtained, but that the opposite-phase wavelength, λr, is shifted towards shorter wavelengths. These
graphs evidence that in the 500 nm - 600 nm range (with d = 30nm), the smaller particles (60 nm)
mostly collect electromagnetic radiation while larger particles (90 nm) act as reflectors. This prop-
erty allows the design of Yagi Uda antennas with a reflector made of slightly larger particles and
a collector made of an array of identical smaller particles [100, 104, 105, 109, 110]. More impor-
tantly, these calculations show that at a given frequency, a single sphere can act as a reflector or a
collector depending on its distance from the emitter, and that this behavior can be controlled inside
a very small range of distances (a few tens of nm). For example, we can observe in Fig. 6.5(d) that
at λ0 = 550 nm, the nanoparticle behaves as a collector when it is at a distance of 40 nm from the
emitter while it behaves as a reflector when this distance is reduced to 10 nm. Consequently, it is
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possible to design unidirectional antennas by assembling two identical particles, i.e. with identi-
cal polarizabilities and by tuning the distances between the emitter and both particles. However,
Fig. 6.5 suggests that a stronger directionality can be achieved by assembling two particles of dif-
ferent diameters with minimum and maximum reflection efficiencies at the emission wavelength,
property that cannot be achieved with equal diameters. We can thus design an ultracompact antenna
made of 90 nm and 60 nm particles at an equal 30 nm distance from the emitter, geometry chosen
to optimize the dephasing between the dipolar moments of the nanospheres and the emitter.

6.3 Ultracompact and unidirectional nanoantenna
Before discussing antennas with non equal diameters, let us begin this section by designing an ul-
tracompact antenna composed of two identical nanoparticles of diameters 60 nm closely separated
by a distance of only 50 nm. The emitter is located at 10 nm from the first particle (which thus acts
as the reflector) and 40 nm from the second particle (the collector) (see Fig. 6.6a). Fig. 6.6b shows
the reflection efficiency as a function of the wavelength of emission. A good directivity can thus be
achieved with strictly identical particles since 70% of the emitted energy is radiated in the positive
x half space. Let us note that both distances, respectively 10 nm and 40 nm are much smaller than
the emitting wavelength and achievable with biological linkers [65, 111].

Figure 6.6: (a) The nanoantenna is composed of two identical silver nanoparticles of diameter 60
nm. The emitter is located at 10 nm from the left particle, and at 40 nm from the right particle. (b)
Reflection efficiency as a function of the emitted wavelength. (c) Emission pattern of the oscillating
dipole at λ0 = 550 nm in the xOz plane.

Let us now design an asymmetric antenna made of two silver particles with different diameters
to optimize their reflective and collective properties. The antenna, consisting of 60 nm and 90 nm
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Figure 6.7: (a) The nanoantenna is composed of silver particles of diameter 60 nm and 90 nm.
The emitter is located at 30 nm from both particles. (b) Full line, right scale: Reflection efficiency
as a function of the emitted wavelength; Dotted and dashed lines, left scale: dephasing of the
emitting and induced dipoles supported by spheres of diameter 90 nm (dashed line) and 60 nm
(dotted line). (c) Emission pattern of the oscillating dipole at λ0 =550 nm in the xOz plane. (d) Full
and dashed lines, left scale: radiative (dashed line) and total (full line) decay rates enhancements
as a function of the wavelength emission. Full line+squares, right scale: quantum efficiency (the
intrinsic quantum efficiency is equal to 1)

diameter silver spheres, was optimized with respect to the particle sizes while keeping d equal to
30 nm (see Fig. 6.7(a)). In a first step, we compute the phase differences between the emitter and
the two induced dipolar modes supported by the particles. The wavelength range in which one
particle acts as a collector while the other reflects radiation exceeds 100 nm, which is larger than
the width of a typical fluorescent emitter. Fig. 6.7(b) shows that this antenna geometry fulfills these
conditions for wavelengths ranging from 475 nm to 600 nm. As expected, the ratio of the radiated
power towards the x ≥0 half space is maximum when the phases are of opposite sign, and it can
reach more than 97% at λ0 = 520 nm. The emission pattern is reconstructed in Fig. 6.7(c) at λ0 =

520 nm as a function of the polar angle (in the plane xOz). It confirms the high unidirectionality
of this antenna since the emitted power towards the left half plane is unobservable at this scale.
Moreover, this antenna narrows the angular redistribution of emitted light compared to a single
nanoparticle since the angular width of the emission cone is less than ±30 degrees. Such angular
openings are easily achievable with commercial microscope objectives [112]. In practice, this



82 Chapter 6. Single emitter radiation close to metallic nanoparticles

asymmetric nanoantenna, although much smaller than the vacuum emission wavelength of the
oscillating dipole, is almost perfectly unidirectional.

Figure 6.8: (a) Sketch of the ultracompact nanoantenna + super emitter: the dipolar source is longi-
tudinally coupled with two 60 nm silver particles on the z axis, with an emitter-particle distance of 8
nm. The emitter-particle distances on the x axis are equal to Fig. 6.7(a) at 30 nm. (b) Radiative and
total decay rate enhancements as a function of the emission wavelength. (c) Quantum efficiency as
a function of the emission wavelength. (d) Emission pattern of the oscillating dipole at λ0 =610 nm
in the xOz plane.

For the sake of completeness, the evolution of the radiative and total decay rates and the quan-
tum efficiency of the emitter in the vicinity of the optical antenna are displayed in Fig. 6.7(d). For
that purpose, the total emitted power, Ptot, and the radiated power, P, are calculated by integrating
the radial component of the Poynting vector over a spherical surface surrounding the source, at
respective distances of 1 nm and 50 µm. The total (Γtot) and radiative (Γrad) decay rate enhance-
ments are then obtained by normalizing the emitted power in the presence of the antenna by the
emitted power (P0) in the homogeneous background medium: Γtot = Ptot/P0 and Γrad = Prad/P0.
The quantum efficiency is then defined as η = Γrad/(Γtot + (1 − ηi)/ηi) where ηi is the intrinsic
quantum efficiency. We consider a perfect emitter (ηi = 1). Fig. 6.7(d) shows that the high direc-
tionality achieved at λ0 = 520 nm is not associated with a drop of the radiative decay rates which
confirms that it relies on the association of the reflective and collective features of nanoparticles
rather than on opposing phases between the induced dipoles of the nanoparticles [10, 106]. The
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radiative decay rates obtained are comparable with those observed when dealing with Yagi-Uda
antennas [100, 109] and they are significantly enhanced by coupling the source dipole to a "super-
emitter" as shown in Fig. 6.8(a). In this last case, we consider a more complex antenna geometry
to combine unidirectionality and strong radiative rate enhancements by introducing two dipolar
particles coupled longitudinally to the emitter. Fig. 6.8(b) shows that a super emitter can strongly
enhance the radiative decay rates by up to 3 orders of magnitude. In particular, at λ0 = 610 nm,
the quantum yield is maximum, the radiative decay rate is enhanced by more than 500 and the
unidirectionality is preserved as shown on Fig. 6.8(d).

6.4 Conclusion
The reflection or collection behavior of the nanoparticle depends on the total phase difference be-
tween the emitting and induced dipoles which includes both the polarizability of the metallic par-
ticle and the optical path between the emitter and the nanoparticle. We showed the importance of
the role of the optical path between the emitter and a metallic particle on the redistribution of light
for distances smaller than λ0/30. One consequence of this observation was to remark that when the
emitting and induced dipoles are exactly in opposing phase, the ratio between the radiated powers
in the backward and forward directions is precisely equal to unity. We unveiled the importance of
the optical path by designing a directional antenna composed of two identical nanoparticles [10].
The reflective and collective properties were tuned by controlling the distance between the emitter
and the nanoparticles at a scale of λ0/10. We also presented a means to design highly directive and
ultracompact nanoantenna by tuning the relative sizes of the silver particles (while still keeping the
overall size much smaller than the vacuum emission wavelength). While angular openings obtained
with single plarticles are around 40 degrees, the dimer nanoantennas narrow the angular opening
of emitted radiation to around 30 degrees, rendering the radiation readily collectible by commer-
cial microscope objectives. Finally, we showed that the radiative decay rate of an emitter can be
increased by three orders of magnitude by introducing a dimer antenna longitudinally coupled to
the emitter while preserving a high directivity.
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7.1 Introduction

Recent papers have addressed the important issue of the angular redistribution of radiated power
induced by the structured local environment. A single nanoparticle can be considered as the most
simple optical antenna enabling a redirection of the dipolar emission into a single half space and
the addition of a second nanoparticle can further improve the directionality.

Recently, linear arrays of particles analog of the radiofrequency Yagi-Uda antenna have
been successfully downscaled to the optical range to obtain high directionality of light radiation
[100, 104, 109, 110, 113]. A large number of nanoparticles is employed in these structures en-
abling high directionality of the radiated signals but at the price of more complex structures. The
design of an optical antenna based on a fully plasmonic approach remains challenging since high
directionality can suffer from ohmic losses inherent to metallic structures and requires precise man-
ufacturing techniques to align several particles. Dielectric materials have usually been disregarded
in this context because their extinction cross-sections are comparable in size to their geometrical
cross-sections, thus producing weak excitation rates. However, it has been demonstrated that high
refractive index dielectric materials can induce a redirection of the dipolar emission [5, 114, 115].
Arrays of dielectric nanoparticles have also shown their ability to redirect light [116]. The con-
siderable advantage of transparent (lossless) dielectric materials is that they preserve the quantum
efficiency.

This work demonstrates that a judicious combination of dielectric and metallic materials can
produce highly directional compact optical antennas which strongly enhance both local field excita-
tion and radiation rate of a dipolar emitter. We will see that desirable properties occur in conjunction
with a large quantum efficiency thereby ensuring a high fluorescence emission rate.
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7.2 Scaling down Yagi-Uda antennas

In the radiofrequency regime, phased arrays are well known as an efficient means for inducing high
directionality of emissions. The key idea consists in producing coherent oscillations of the resonant
induced dipole moment of each element of the antenna producing a constructive interference pattern
in the direction of interest. The scale of the elements in the radiofrequency domain allows each
element to be actively driven leading to various potential antennas design.

Yagi-Uda antennas have been successfully introduced at optical frequencies [104, 105] and their
high angular directivity has been confirmed experimentally [110, 113]. As illustrated in Fig. 7.1(a),
Yagi-Uda antennas are typically made of three elements: (i) a feed element which can be the emit-
ting dipole itself or a plasmonic element to couple the source to the antenna, (ii) a director element
that orientates radiations in the direction of interest, and (iii) a reflector element that prevents radi-
ations from propagating in the opposing half space.

The director elements of optical Yagi-Uda antennas consist of several aligned nanoparticles.
The ability for a single metallic nanoparticle to act as a director element has been discussed in
the previous chapter in the design of ultracompact plasmon-based antennas. This behavior was
explained by invoking the relative phase of the induced dipolar moment in the nanoparticle with
respect to the driving excitation dipole, resulting in an asymmetric radiation pattern in the far field
region. It was also demonstrated however that a single nanoparticle could reflect rather than collect
the dipolar radiations.

Fig. 7.1(b) displays the collection angle (defined as the half angle at half maximum) when a
dipolar emitter is located at an extremity of a finite linear chain of 8 silver nanoparticles of 100 nm
in diameter (dashed lines) as a function of the excitation wavelength. The plots also show the same
calculations with the addition of a reflector element (full line) consisting in a single slightly larger
particle (D = 120 nm). Both plots show an abrupt drop in the collection angle around λ0 = 600
nm signifying a strong directive regime of the antenna. Since the plots with and without a reflector
element are nearly identical, it can be deduced that the directivity is almost entirely provided by
the linear array of particles. These plots do not reveal the total emitted power in the direction of
interest. The radiation pattern of a dipolar emitter oscillating at λ0 = 650 nm, enclosed in the Yagi-
Uda antenna is displayed in Fig. 7.1(c) demonstrating that the power emitted is mostly radiated
in the direction of the interest with almost no light propagating in the opposite direction. It must
be stressed that the radiation pattern with and without the reflector element are both displayed in
Fig. 7.1(c) and are almost identical. One can thus wonder what are the subsequent benefits of using
an additional particle as a reflector element, particularly considering that this particle can further
spoil the spontaneous emission rate.

Fig. 7.2(a), (b) and (c) display respectively the radiative decay rate enhancements, (b) quantum
efficiency and (c) angular openings for a Yagi-Uda antenna consisting of eight spherical nanopar-
ticles as the director element. The radiative decay rates (Fig. 7.2(a)) remains below unity over the
whole optical frequency range. In addition, a drop in the quantum efficiency is clearly observed
in Fig. 7.2(b) when the directivity (Fig. 7.2(c)) is maximal. These plots show that the addition of
the reflector element (full line) reduces both the radiative decay rates and the quantum efficiency
without providing any benefits on the directionality. It can be concluded that the linear chain of
nanoparticles is sufficient to collect light emission and the additional reflector element is not nec-
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Figure 7.1: (a) Schematic of the Yagi-Uda antenna. An oscillating dipole is located in a linear
chain of eight gold nanoparticles. (b) Collection angle of the antenna as the function of the oscil-
lating wavelength. The collection angle is defined as the half angular width at half maximum. (c)
Radiation pattern of the antenna at λ0 = 650 nm.

essary in the optical domain. Nevertheless, it is rather unfortunate that decay rates and quantum
efficiency are weak in all basic Yagi-Uda configurations.

Figure 7.2: (a) Radiative decay rate enhancement, (b) quantum efficiency and (c) angular openings
of the Yagi-Uda antenna with (solid lines) and without (dashed lines) the reflector element.
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The dipolar moments of each particle displayed in Fig. 7.3, show that successive dipole induced
moments oscillate transversally with respect to the chain axis with opposing phase between succes-
sive particles. This configuration reduces significantly the spontaneous decay rates, but enables the
propagation of a guided mode in the linear chain. Linear chains of nanoparticles were previously
investigated as waveguiding arrays to transport optical electromagnetic signals over large distances
[117, 118]. For specific illumination wavevectors, one-dimensional arrays can support guided plas-
mon modes mediated by coherent dipole couplings between the resonant particles. Elements of
plasmonic linear chains are passive so that the dipolar moment is induced in each particle by the
couplings between the resonant elements. Consequently, the operating wavelength of the antenna
(i.e. the spectral position of the guided mode) depends directly on the resonant propagative modes
of the array and in this manner on the dispersion relation of this optical waveguide [75, 100, 119].
The guided mode hinders light couplings to the far field domain and has been proposed as a single
plasmon source [100]. To efficiently radiate to the far field domain, the linear arrays must operate at
slightly lower frequencies where a trade-off can be found between high directivity and acceptable
quantum efficiency.

Figure 7.3: (a) phase of the dipolar induced moment in the antenna at λ0 = 600nm.

To provide high radiative enhancements, a solution could consist in adding a feeder particle.
It can be judicious to employ an elongated particle such as a plasmonic rod or a pair of coupled
particles [88, 100] that have may exhibit larger resonances and fulfill this role.

It must be stressed that to obtain high directivity, the typical length of Yagi-Uda optical antenna
have to be on the order of the wavelength. Thus, plasmonic antennas do not provide as much
scale reduction as hoped for when employing metallic nanoparticles. Furthermore, the design of
Yagi-Uda antenna requires challenging nanofabrication techniques since several nanoparticles have
to be accurately aligned and the fabrication of such as antenna has only been recently performed
with a reduced number of nanoparticles [110, 113]. In addition to a complex structure, the antenna
operate in the substrate plane so that the radiated field may be useful for integrated optics or energy
transport but may be difficult to observe from the far field.

For these reasons, dielectric materials may be more appropriate in the design of highly directive
antennas with acceptable decay rates. We have recently proposed the use of a high refractive index
dielectric microsphere to replace the multiple particle director. Due to the high refractive index of
TiO2, a high directivity can be achieved with a 500 nm diameter sphere.
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7.3 Metallo dielectric nanoantennas
The schematic of the antenna being considered is displayed in Fig. 7.4(a). The optical antenna
consists of a TiO2 dielectric microsphere [115, 120] (D = 500 nm) and two silver nanospheres
(D = 60 nm separated by 8 nm) embedded in a dielectric background of refractive index nb = 1.3.
A dipolar-like source oriented along the x-axis is placed 30 nm from the dielectric microsphere and
centered equidistantly along the axis joining the silver spheres.

Figure 7.4: a) Antenna schematic: a dielectric microsphere (D = 500 nm, nTio2 taken from
Ref. [120]) and two silver nanoparticles separated by 8 nm (D = 60 nm and nAg taken from Pa-
lik [69]) are embedded in a dielectric background of refractive index nb = 1.3. A dipolar emitter
is placed equidistantly from the silver spheres along their axis of separation. b) Radiation diagram
at λ0 = 525 nm, c) collection angle (3db half width), d) total (dashed line) and radiative (full
line) decay rate enhancements and e) quantum efficiency for a perfect emitter (red line) and a poor
emitter, ηi = 0.1 (black line).

Fig. 7.4(b) displays the radiation pattern of the antenna (polar plot of the radiated power per
angle unit) for a dipole oscillating at λ0 = 525 nm (λ0 is the wavelength in vacuum). Contrary
to free space radiation, Fig. 7.4(b) exhibits a highly directional emission with an angular aperture
(3dB half-width) ' 15◦. Calculations displayed in Fig. 7.4(c) show that the collection angle re-
mains below 25◦ for a wavelength range from 400 nm to 700 nm. More interestingly, this highly
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directive radiation is concurrent with a strong enhancement of the radiative decay rate. The radia-
tive decay rate enhancement (full line) displayed in Fig. 7.4(d) surpasses two orders of magnitude
over the entire optical frequency range. Moreover, the spectral feature of Γrad shows several peaks
higher than 103 revealing electromagnetic structural resonances that will be attributed later to the
excitation of cavity resonances occuring in the high refractive index microsphere. In other words,
this optical antenna does not require an optimization of the electromagnetic resonances in order to
be efficient, but an optimization of the electromagnetic couplings between the dipolar emitter and
electromagnetic resonances permits radiative decay factors Γrad as high as 103. The high quality
of the antenna is confirmed in Fig. 7.4(e) which shows a quantum efficiency greater than 0.5 for
λ0 > 450 nm. Even more spectacularly, we remark that the quantum efficiency of a poor emitter
(black line in Fig. 7.4(e)) is essentially the same as the quantum efficiency of a perfect emitter (red
line). Further calculations show that this property is fulfilled for any intrinsic quantum efficiency
higher than 10−3. This behavior is mainly due to the giant decay rates enhancements which render
the term (1 − ηi)/ηi in 6.2 negligible compared to Γtot.

In summary, this simple and compact system turns out to be a highly performant antenna over
the entire optical spectrum and is characterized by a high directionality, strong decay rate enhance-
ments, and a high quantum efficiency. In the remainder of this work, we investigate the properties
of the dielectric and metallic components separately in order to better understand the unique per-
formance of this optical antenna.

7.3.1 High refractive index dielectric microsphere

We first investigate the properties of a single high refractive index dielectric microsphere. Recent
studies have demonstrated that dielectric microspheres operate as efficient near field “lenses” with
performances comparable to the state of art of high numerical aperture microscopes such as im-
mersion lenses [5–7, 115, 121]. Fig. 7.5(b) displays the angular 3dB half width of the emerging
propagative beam produced by a dipole located at 30 nm from the sphere surface (the dipole is
oriented along the x-axis). It clearly demonstrates that a single TiO2 microsphere 500 nm in di-
ameter can redirect dipolar radiated power into a narrow beam of 3dB half width below 25◦ over
a large frequency bandwidth covering almost all the optical range. Furthermore, the radiative de-
cay rate enhancement displayed in Fig. 7.5(c) shows several peaks in the spectrum with moderated
amplitudes. This behavior feature might seem surprising at first since dielectric materials generally
exhibit low enhancement of the radiative decay rates. However, let us recall that the high refractive
index of TiO2 enables the well-known electromagnetic resonances in the dielectric microsphere
called Whispering Gallery Modes (WGMs) [24, 30]. This assertion is clearly demonstrated in
Fig. 7.5(d) which displays the electric field intensity in the vicinity of a dielectric microsphere
dipole illuminated at λ0 = 440 nm corresponding to the narrowest peak in Fig. 7.5(c). Fur-
thermore, the far-field radiation pattern of emitted light at λ0 = 440 nm (displayed in 7.5(e))
demonstrates that the excitation of WGMs does not significantly deteriorate the strong directional
properties of the TiO2 microsphere illuminated by a dipole. The WGM resonances do however
have the ability to slightly enhance the radiative decay rates of a dipolar emitter. In summary, high
refractive dielectric spheres can serve as simple and compact optical antennas in a very wide range
of frequencies. Nevertheless, the huge decay rates enhancements observed in Fig. 7.4(d) cannot be
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Figure 7.5: Characterization of a TiO2 microsphere as an optical antenna. a) The microsphere is
embedded in a background medium of refractive index index nb = 1.3. The refractive index of TiO2

is taken from Ref. [120]. b) collection angle (3db half width), c) radiative decay rate, d) quantum
efficiency as a function of the wavelength and e) radiation diagram at λ0 = 440 nm.

explained by the coupling of a dipolar emitter with WGMs resonances. One concludes therefore
that the bulk of the decay rate enhancements of the metallo-dielectric antenna is due to the metallic
materials in the near field of the emitting dipole.

7.3.2 Enhancing spontaneous emission

Coupled nanoparticles have been widely studied in the context of nanodimers [87, 94] and bowtie
nanoantennas [66, 86] to enhance the radiative decay rate of a single emitter. Fig. 7.6(b) displays
the total (dashed line) and radiative (full line) decay rate enhancements when a dipole oriented
along the x-axis is set in the center of the cavity formed by two silver nanoparticles 60 nm in
diameter separated by 8 nm. A broad peak appears corresponding to the well-known red-shifted
plasmon resonance of two coupled metallic particles [59]. Comparison between Fig. 7.4(c) and
Fig. 7.5(b) shows that the so-called superemitter [88] does not significantly modify the radiation
directionality when it is combined with a microsphere. As illustrated in Fig. 7.6(c), the presence of
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Figure 7.6: Characterization of the two silver nanoparticles (D = 60 nm) embedded in a dielectric
background of refractive index nb = 1.3. The dipolar light source is set midway between the two
metallic elements separated by 8 nm and is assumed to be oriented along the separation axis. Re-
fractive index of silver is taken from Ref. [69]. b) Total (dashed line) and radiative (full line) decay
rate enhancements, c) quantum efficiency for a perfect emitter (red line) and a poor emitter, ηi = 0.1
(black line) as a function of the wavelength.

metallic losses induces a drop of the quantum efficiency of a perfect emitter (red line), particularly
strong near ultraviolet frequencies. Consequently, although the efficiency of a perfect emitter is
decreased due to relaxation via non radiative channels, the quantum efficiency of a poor emitter is
increased several-fold (c.f. Fig. 7.6(c) with ηi = 0.1).

The design of optical antennas has been widely inspired by their analogs in the radiofrequency
range, the Yagi-Uda antenna in particular [100, 104, 109, 110]. This antenna is typically made
of three elements: the feed, the collector and the reflector. The feed element role is to improve
couplings between the emitter and the antenna. The optical analogue of the collector generally
consists of several coupled metal particles acting as a guide for plasmon waves, while the reflector
can be made from a slightly larger single metallic particle. In our proposed metallo-dielectric
antenna, the two coupled metallic particles act as the feed element, and the chain of guiding metallic
particles and reflector are simply replaced by a single dielectric sphere. The lack of a reflector in
the proposed metallo-dielectric antenna seem surprising, but it should be mentioned that optical
reflector elements so far have not provided clear benefits either in the decay rate enhancements nor
in the emission directionality. Moreover, as illustrated in Fig. 7.5, the dielectric collector element
is sufficiently performant to channel most of the emitted power without the need for an additional
element contributing to the compactness of the antenna. Let us also emphasize that the several
nanofabrication techniques can potentially perform the challenging manufacturing of the proposed
hybrid antenna [65, 110, 122].

For the sake of completeness, we investigate the fluorescence enhancement of a molecule lo-
cated in the vicinity of the nanoantenna. The enhancement of the electric field intensity is displayed
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Figure 7.7: a) Colored map of the electric field intensity enhancement at λ0 = 500 nm, b) excitation
rate enhancement, c) emission rate enhancement as a function of the wavelength.

in Fig. 7.7(a) when the antenna is illuminated at λ0 = 500 nm by a plane wave propagating along the
z-axis. One observes a huge enhancement of light intensity in a nanometer sized volume delimited
by the metallic spheres due to the combination of light focusing by the dielectric spheres with the
excitation of coupled plasmons in the metallic dimer. This result was expected from Fig. 7.4(d) and
reciprocity [101, 123] between the excitation and the radiative decay rates. Fig. 7.7(b) displays very
high excitation rates that can be strengthened by the excitation of WGM. This result stems from
the high extinction cross section of the dielectric sphere, 10 times greater than the extinction cross
section of the dimmer of metallic nanoparticles at the plasmon resonance frequency. Consequently,
this antenna presents all the required properties for single molecular detection since both Γexc, and
η are highly enhanced and concurrent with a high directivity. This supposition is confirmed by a
calculation of the fluorescence rate enhancement displayed in Fig. 7.7(c) as a function of the ex-
citation wavelength λ0, where the excitation rates and quantum efficiencies are calculated with a
wavelength shift of 20 nm, representative of common fluorophores, and Alexa dye in particular.
One observes that fluorescence enhancements as high as 104 are achieved.

This study demonstrates that appropriately designed metallo-dielectric systems can serve as
compact, highly directive and ultra radiative antennas. Let us emphasize that contrary to fully
metallic antennas, the high directivity of this antenna does not result from a plasmonic effect, and
that it is efficient over a wide range of frequencies. In consequence, the high directivity does com-
promise the high radiative decay rate enhancement offered by two coupled metallic particles and it
is possible to exploit whispering gallery modes to further enhance the radiative decay rates. This
work paves the way towards the design of compact, simple and highly efficient optical antennas.
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7.4 Conclusion
Highly directive optical antennas have been investigated in this chapter. The design of these anten-
nas has resulted from two differents strategies. Linear chains of nanoparticles have been recently
proposed as optical analogue of antennas operating in radiofrequency domain. These fully plas-
monic antennas are highly directive but suffer from an intrinsec drop of the quantum efficiency
at the directional regime. Furthermore, a large number of nanoparticles is required to perform
high directionality which render its implementation a challenging task. Nevertheless, the Yagi-
Uda antenna is optimal for integrated optics requiring planar components since their transversal
dimensions are imposed by the diameter of the particles.

Another strategy constists in using high refractive index material to channel the emitted signal
in the appropriate direction and exploit whispering gallery modes to further enhance the sponta-
neous emission. In both antennas, a plasmonic element has been employed to strongly enhance the
radiative decay rates highlighting the major role of metallic nanoparticles for designing compact
and efficient optical antennas.



Chapter 8

Conclusions and perspectives

A major goal of nanosciences is to transpose macroscopic engineered systems to the nanometer
scale. Advances in nanofabrication techniques have encouraged investigations of the optical prop-
erties of structures with dimensions on the order of the optical wavelength and smaller. In particular,
small particles have attracted a growing interest as cost-effective optical components.

In this manuscript, particles have been mainly investigated for their ability to concentrate light
in their vicinity in order to enhance and localize light/matter interactions. An important distinction
was made concerning the particle materials. Focusing of light with dielectric particles requires
large geometrical cross-sections to achieve field enhancements. The simple dielectric components
studied here manifest a variety of properties according to the illumination beam employed. When
illuminated by plane waves, elongated intense volumes can be produced near the particle surface.
In contrast, 3D confinements are achieved when illuminating the same particles with highly focused
beams containing highly non-paraxial components. Dielectric particles offer the advantage of be-
ing lossless and can be readily manipulated by optical tweezers. Nevertheless, light focusing is
limited by diffraction effects since the propagative nature of the electromagnetic radiation remains
unchanged.

Metallic particles of dimensions far smaller than the optical wavelength have, on the other hand,
demonstrated their ability to focus light into sub-wavelength volumes due to the large electromag-
netic cross-sections provided by the couplings of light with localized surface plasmon resonances.
In particular, the coherent couplings between the individual plasmonic particles allow the excitation
of in-phase modes producing enormous field enhancements in nanometers scaled volumes.

More interestingly, interactions between localized plasmon resonances have shown that mode
hybridizations can occur as soon as the separation distance reaches λ/10 opening the way towards
a futher downscaling of classical optical elements. Control of light localization has been evidenced
in the harmonic regime at λ/10 scale with a simple plane wave illumination propagating at oblique
incidence with respect to the main axis of the linear antenna. By extension, arrays of particles are
promising tools for high spatial resolution imaging systems, reproducible nanopatterning templates
and Raman scattering enhancements.

Furthermore, the small dimensions of the focal volumes enable interactions with unique emit-
ters such as single fluorescent molecules or quantum dots. From reciprocity considerations, it can
be understood that the strong confinement of light is readily related to large enhancements of the
spontaneous emission rates. These couplings between propagating light and localized states of
matter are strongly similar to macroscopic radio frequency antennas and metallic nanoparticles are
consequently currently considered as optical nanoantennas.

Analogously to their radiofrequency counterparts, optical nanoantennas can be designed to redi-
rect light radiations towards a direction of interest. It results that the enhancement of spontaneous
emission rates together with high directionality of the radiated field require a judicious design of
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the antenna since these two properties are associated with different types dipoleinteractions. We
have proposed the design of an antenna employing not only metallic structures, but instead a judi-
cious combination of dielectric and metallic materials. This antenna, due to its large decay rates
and high directivity should be appropriate for signal propagation towards the far field domain, but
could also enable strong couplings between unique emitters.



Appendix A

Multiple scattering in the multipolar
framework

A.1 Multipolar representation of the multiple scattering prob-
lem

A.1.1 Excitation field applied on a scatterer
The excitation field applied on a scatterer can be expressed as the superposition of the incident field
with all the fields scattered by the neighboored objects composing the system:

−→
E ( j)

exc(
−→r ) ≡

−→
E ( j)

inc(
−→r ) +

N∑
l=1,l, j

−→
E (l)

di f f (
−→r ) (A.1)

−→
E ( j)

exc(
−→r ) ≡ ERg{Ψt(−→r )}a +

N∑
l=1,l, j

EΨt(−→rl ) f (l) (A.2)

A.1.2 Translation theorem
Translation operators can be employed to expand a single field refering to different origins.

Let M be a point of a spherical coordinate system. Let a 2nd spherical coordinate system be
centrered in : −→r , =

−→r − −→r 0.

The translation theorem expresses the multipolar waves in the original referenciel in terms of
multipolar waves centered in −→r 0 :

Ψt(k−→r ) = Ψt(k−→r ,)J(k−→r 0) si r,>r0 (A.3)

Ψt(k−→r ) = Rg{Ψt(k−→r ,)}H(k−→r 0) si r,<r0 (A.4)

Rg{Ψt(k−→r )} = Rg{Ψt(k−→r ,)}J(k−→r 0) ∀|r0| (A.5)

with
J(k−→r ) ≡ Rg{H(k−→r )} (A.6)

Thanks to the Translation theorem, one can write:

−→
E ( j)

exc(
−→r j) = ERg{Ψt(−→r j)}J( j,0)a +

N∑
l=1,l, j

ERg{Ψt(−→r j)}H( j,l) f (l) (A.7)
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A.1.3 Foldy-Lax equations of the multiple scattering
Utilizing (2.20), we obtain

e( j) = J( j,0)a +

N∑
l=1,l, j

H( j,l) f (l) (A.8)

or

e( j) = J( j,0)a +

N∑
l=1,l, j

H( j,l)t(l)e(l) (A.9)

This Foldy-Lax type equation is a fundamental equation of the multiple scattering. This equa-
tion expresses the excitation field perceived by an object j as a function of the field scattered by the
other objects or via the use of the T-matrix, as a function of the excitation fields percieved by each
object of the system. If the incident field is known, one can numerically obtain the field scattered
by the entire system by iteration technic.

However as soon as the incident field is modified, the solution has to be entierly recalculated.
We are looking for a T-matrix of the entire sytem in order to avoid this problem.

A.1.4 T-matrix of the entire system
A.1.4.1 Foldy-Lax equation of the system

We multiply equation Eq. A.8 by t( j) by the left and we define the equation T( j) so that:

f ( j) ≡ T( j)J( j,0)a (A.10)

We get :

T( j)J( j,0)a = t( j)J( j,0)a + t( j)
N∑

l=1,l, j

H( j,l)T(l)J(l,0)a (A.11)

On can notice that thanks to the presence of the translation matrix J( j,0) in Eq. A.10, T ( j) is
independent from the choice of the system origin. Furthermore, the equation Eq. A.11 is valid for
any incident field. One can thus write Eq. A.11 by removing the a and by multiplying on the right
by J(0, j). The properties of the J(0, j) give us:

T( j) = t( j) + t( j)
N∑

l=1,l, j

H( j,l)T(l)J(l, j) (A.12)

A.1.4.2 Solution of multiple scattering problem by direct inversion

We solve the equation Eq. ?? with the matricial form:


e(1)

e(2)

...

e(N)

 =


I −H(1,2)t(2) · · · −H(1,N)t(N)

−H(2,1)t(1) I · · · −H(2,N)t(N)

...
...

. . .
...

−H(N,1)t(1) −H(N,2)t(2) · · · I


−1 

J(1,0)a
J(2,0)a
...

J(N,0)a

 (A.13)
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We multiply on the right by the t( j) bloc matrix.


t(1) 0 · · · 0
0 t(2) · · · 0
...

...
. . .

...

0 0 · · · t(N)

 We then get the scattered

field as a function of the incident field.
f (1)

f (2)

...

f (N)

 ≡


T (1,1) T (1,2) · · · T (1,N)

T (2,1) T (2,2) · · · T (2,N)

...
...

. . .
...

T (N,1) T (N,2) · · · T (N,N)




J(1,0)a
J(2,0)a
...

J(N,0)a

 (A.14)

Or also

f ( j) =

N∑
k=1

T ( j,k)J(k,0)a





Appendix B

Spectral expansion of multipolar waves

B.1 Plane wave expansion of Hankel and Bessel functions
Hankel et 0th order Bessel functions

h(+)
0 (z) = −

i
z
eiz (B.1)

The Weyl identity can then be expressed :

h(+)
0 (kbr) =

1
2πkb

∞"
−∞

dkxdky
eikx x+ikyy+ikz |z|

kz
(B.2)

h(−)
0 (z) =

sin z
z

+ i
cos z

z
=

i
z
(cos z − i sin z) =

i
z
e−iz = h(+)

0 (−z)

For any z ∈ C,
h(−)

0 (z) =
[
h(+)

0 (z∗)
]∗

We assume in a first time that z ∈ R

h(−)
n (z) =

[
h(+)

n (z)
]∗

h(−)
0 (kbr) =

[
h(+)

0 (z)
]∗

=
1

2πkb

∞"
−∞

dkxdky
e−ikx x−ikyy−ik∗z |z|

k∗z

j0 (kbr) =
1
2

[h+
0 (kbr) + h(−)

0 (kbr)]

j0 (kbr) =
1

2πkb

∫ 1

0
KdK

cos(K.r + kz |z|)
kz

+
1

2πkb

∫ ∞

1
KdK

e−k′z |z| sin K.r
k′z

nth order Hankel et Bessel functions

h(+)
n (x) = i−n

∫ ∞

0

K
kb

Pn (kz/kb)
exp

[
i (kz/kb) x

]
kz/kb

d
(

K
kb

)
(B.3)

h(−)
n (x) = (−i)−n

∫ ∞

0

K
kb

P∗n (kz/kb)
exp

[
−i

(
k∗z/kb

)
x
]

k∗z/kb
d
(

K
kb

)
(B.4)

jn(x) = i−n
∫ 1

0

[
K
kb

Pn (kz/kb) (
exp

[
i (kz/kb) x

]
kz/kb

+ (−1)n exp
[
−i (kz/kb) x

]
kz/kb

)
]

d
(

K
kb

)
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B.2 Regular and irregular vectorial multipolar waves

B.2.1 Irregular outgoing waves

M(+)
nm(kbr) ≡ h(+)

n (kbr) Xnm(θ, φ)

N(+)
nm(kbr) ≡

1
kbr

{ √
n (n + 1)h(+)

n (kbr) Ynm(θ, φ) +
[
kbrh(+)

n (kbr)
]′

Znm(θ, φ)
}

(B.5)

B.2.1.1 Direct expansion via Clebsch Gordon coefficients:

In order to derive two relations between vector spherical harmonics, it is useful to invoke another set
of vector spherical harmonics, denoted Ym

n,n+1, Ym
n,n and Ym

n,n−1 as introduced by quantum mechanic
theoreticians who worked on the angular momentum coupling formalism[[? ]]. We first recall the
definition of the Cartesian spherical unit vectors :

χ1 = −
1
√

2
(̂x + îy), χ0 = ẑ, χ−1 =

1
√

2
(̂x − îy) (B.6)

where x̂, ŷ, ẑ are the unit vectors of the Cartesian coordinate system. Making use of the Clebsch-
Gordan coefficients[[? ]], the new set of vector spherical harmonics is then defined as :

Ym
n,l =

1∑
µ=−1

(l,m − µ; 1, µ | n,m)Yl,m−µχµ (B.7)

with l = n − 1, n, n + 1.
Using the conversion from spherical to Cartesian coordinates, and the expressions of our

Ynm,Xnm,Znm vector spherical harmonics in a spherical coordinate system, we can painstakingly
verify that our Ynm, Xnm and Znm VSHs can be expressed in terms of the Ym

n,n+1, Ym
n,n, Ym

n,n−1 spherical
harmonics via the relations :

Xnm =
Ym

n,n

i
(B.8)

Znm =

(
n + 1

2n + 1

)1/2

Ym
n,n−1 −

( n
2n + 1

)1/2
Ym

n,n+1 (B.9)

Ynm =

( n
2n + 1

)1/2
Ym

n,n−1 +

(
n + 1
2n + 1

)1/2

Ym
n,n+1 (B.10)

Combining with

h(+)
n (kbr) Ynm(̂r) =

1
2πinkb

∫
dK Ynm

(̂
k
) exp (±ik · r)

kz
z ≷ 0

One could conclude that:

M(+)
nm(kbr) =

i−n

2πk

∫
dK Xnm

(̂
k
) exp (±ik · r)

kz
z ≷ 0 (B.11)
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N(+)
nm(kbr) =

1
kb
∇r ×Mnm(kr) =

i−n+1

2πkb

∫
dK Znm

(̂
k
) exp (±ik · r)

kz
z ≷ 0

However, we employ the Cartesian base of spherical harmonics to expand the field. We start
form the following equation without simplifying as above.

M(+)
nm(kbr) =

1
2π(i)nkb

∫
dK

1∑
µ=−1

(n,m − µ; 1, µ | n,m)
Ynm−µ

(̂
k
)

i
χµ

exp (±ik · r)
kz

N(+)
nm(kbr) =

i−n+1

2πkb

∫
dK

1∑
µ=−1

 ( n + 1
2n + 1

)1/2

(n − 1,m − µ; 1, µ | n,m)Yn−1,m−µ

−

( n
2n + 1

)1/2
(n + 1,m − µ; 1, µ | n,m)Yn+1,m−µ

]
χµ

exp (±ik · r)
kz

z ≷ 0

Irregular ougoing magnetic waves

M(+)
nm(kbr) =

1
2π(i)nkb

∫
dK

1∑
µ=−1

(n,m − µ; 1, µ | n,m)
Ynm−µ

(̂
k
)

i
χµ

exp (±ik · r)
kz

We assume m = 1

M(+)
n1 (kbr) =

1
2π(i)nkb

∫ ∞

0

∫ 2π

0
KdKdφk

exp (±ik · r)
kz

×


(n, 2; 1,−1 | n, 1)

Yn2
(̂
k
)

i χ−1

(n, 1; 1, 0 | n, 1)
Yn1

(̂
k
)

i χ0

(n, 0; 1, 1 | n, 1)
Yn0

(̂
k
)

i χ1


Yn,m(θ, φ) ≡ cn,mPm

n (cos θ)eimφ

cn,m =

[
2n + 1

4π
(n − m)!
(n + m)!

] 1
2

M(+)
n1 (kbr) =

1
2π(i)nkb

∫ ∞

0

∫ 2π

0
KdKdφk

exp
(
iK.r// cos(φk − φ) + ikz|z|

)
kz

×


(n, 2; 1,−1 | n, 1) cn,2P2

n(cos θk)ei2φk

i χ−1

(n, 1; 1, 0 | n, 1) cn,1P1
n(cos θk)eiφk

i χ0

(n, 0; 1, 1 | n, 1) cn,0P0
n(cos θk)

i χ1


We know that [52] (p. 395)∫ 2π

0
exp(ix cos(φk − φ)) exp(inφk)dφk = 2πinJn(x) exp(inφ) (B.12)
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M(+)
n1 (kbr) =

1
(i)nkb

∫ ∞

0
KdK

exp (ikz|z|)
kz

×


−J2(K.r//)(n, 2; 1,−1 | n, 1) cn,2P2

n(cos θk)ei2φ

i
√

2
{̂x − îy}

iJ1(K.r//)(n, 1; 1, 0 | n, 1) cn,1P1
n(cos θk)eiφ

i ẑ
−J0(K.r//)(n, 0; 1, 1 | n, 1) cn,0P0

n(cos θk)
i
√

2
{̂x + îy}


assuming m = −1

M(+)
n,−1(kbr) =

1
2π(i)nkb

∫
dK

1∑
µ=−1

(n,m − µ; 1, µ | n,m)
Ynm−µ

(̂
k
)

i
χµ

exp (±ik · r)
kz

M(+)
n−1(kbr) =

1
2π(i)nkb

∫ ∞

0

∫ 2π

0
KdKdφk

exp (±ik · r)
kz

×


(n, 0; 1,−1 | n,−1)

Yn0
(̂
k
)

i χ−1

(n,−1; 1, 0 | n,−1)
Yn−1

(̂
k
)

i χ0

(n,−2; 1, 1 | n,−1)
Yn−2

(̂
k
)

i χ1


Yn,m(θ, φ) ≡ cn,mPm

n (cos θ)eimφ

cn,m =

[
2n + 1

4π
(n − m)!
(n + m)!

] 1
2

M(+)
n−1(kbr) =

1
2π(i)nkb

∫ ∞

0

∫ 2π

0
KdKdφk

exp
(
iK.r// cos(φk − φ) + ikz|z|

)
kz

×


(n, 0; 1,−1 | n,−1) cn,0P0

n(cos θk)
i χ−1

(n,−1; 1, 0 | n,−1) cn,−1P−1
n (cos θk)e−iφk

i χ0

(n,−2; 1, 1 | n,−1) cn,−2P−2
n (cos θk)e−i2φk

i χ1


We know that (Ref. 52, p395)∫ 2π

0
exp(ix cos(φk − φ)) exp(inφk)dφk = 2πinJn(x) exp(inφ) (B.13)

M(+)
n−1(kbr) =

1
(i)nkb

∫ ∞

0
KdK

exp (ikz|z|)
kz

×


−J0(K.r//)(n, 0; 1,−1 | n,−1) cn,0P0

n(cos θk)
i
√

2
{̂x − îy}

−iJ1(K.r//)(n, 1;−1, 0 | n,−1) cn,−1P−1
n (cos θk)e−iφ

i ẑ
−J2(K.r//)(n,−2; 1, 1 | n,−1) cn,2P−2

n (cos θk)e−i2φ

i
√

2
{̂x + îy}
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Irregular outgoing electric waves

N(+)
nm(kbr) ≡

1
kbr

{ √
n (n + 1)h(+)

n (kbr) Ynm(θ, φ) +
[
kbrh(+)

n (kbr)
]′

Znm(θ, φ)
}

[
xh(+)

n (x)
]′

= h(+)
n (x) + xh(+)′

n (x) = (n + 1)h(+)
n (x) − xh(+)

n+1(x)

N(+)
nm(kbr) ≡

1
kbr

{ √
n (n + 1)h(+)

n (kbr) Ynm(θ, φ) +
[
(n + 1)h(+)

n (kbr) − kbrh(+)
n+1(kbr)

]
Znm(θ, φ)

}
We get

Znm =

(
n + 1

2n + 1

)1/2

Ym
n,n−1 −

( n
2n + 1

)1/2
Ym

n,n+1 (B.14)

Ynm =

( n
2n + 1

)1/2
Ym

n,n−1 +

(
n + 1
2n + 1

)1/2

Ym
n,n+1 (B.15)

N(+)
nm(kbr) =

1
kbr

√
n (n + 1)h(+)

n (kbr)
( n

2n + 1

)1/2
Ym

n,n−1 +

(
n + 1

2n + 1

)1/2

Ym
n,n+1

 (B.16)

+
[
(n + 1)h(+)

n (kbr) − kbrh(+)
n+1(kbr)

] ( n + 1
2n + 1

)1/2

Ym
n,n−1 −

( n
2n + 1

)1/2
Ym

n,n+1

 (B.17)

N(+)
nm(kbr) =

1
kbr
{N(+),1

nm (kbr) + N(+),2
nm (kbr)}

N(+),1
nm (kbr) =

√
n (n + 1)h(+)

n (kbr)
( n

2n + 1

)1/2
Ym

n,n−1 +

(
n + 1

2n + 1

)1/2

Ym
n,n+1


N(+),2

nm (kbr) = (n + 1)h(+)
n (kbr)

( n + 1
2n + 1

)1/2

Ym
n,n−1 −

( n
2n + 1

)1/2
Ym

n,n+1


− kbrh(+)

n+1(kbr)
( n + 1

2n + 1

)1/2

Ym
n,n−1 −

( n
2n + 1

)1/2
Ym

n,n+1


N(+),1

nm (kbr) + N(+),2
nm (kbr) = h(+)

n (kbr) Ym
n,n−1

 √n (n + 1)
( n
2n + 1

)1/2
+ (n + 1)

(
n + 1
2n + 1

)1/2
+ h(+)

n (kbr) Ym
n,n+1

 √n (n + 1)
(

n + 1
2n + 1

)1/2

− (n + 1)
( n
2n + 1

)1/2


− kbrh(+)
n+1(kbr)

( n + 1
2n + 1

)1/2

Ym
n,n−1 −

( n
2n + 1

)1/2
Ym

n,n+1
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N(+),1
nm (kbr) + N(+),2

nm (kbr) =
√

(2n + 1) (n + 1)h(+)
n (kbr) Ym

n,n−1

− kbrh(+)
n+1(kbr)

( n + 1
2n + 1

)1/2

Ym
n,n−1 −

( n
2n + 1

)1/2
Ym

n,n+1



N(+),1
nm (kbr) + N(+),2

nm (kbr) =
√

(2n + 1) (n + 1)h(+)
n (kbr) Ym

n,n−1

− kbrh(+)
n+1(kbr)

(
n + 1

2n + 1

)1/2

Ym
n,n−1

+ kbrh(+)
n+1(kbr)

( n
2n + 1

)1/2
Ym

n,n+1

h(+)
n+1(kbr) =

2n + 1
kbr

h(+)
n (kbr) − h(+)

n−1(kbr)

N(+),1
nm (kbr) + N(+),2

nm (kbr) =
√

(2n + 1) (n + 1)h(+)
n (kbr) Ym

n,n−1

− kbr
[
2n + 1

kbr
h(+)

n (kbr) − h(+)
n−1(kbr)

] (
n + 1

2n + 1

)1/2

Ym
n,n−1

+ kbrh(+)
n+1(kbr)

( n
2n + 1

)1/2
Ym

n,n+1

N(+),1
nm (kbr) + N(+),2

nm (kbr) =

 √(2n + 1) (n + 1) − (2n + 1)
(

n + 1
2n + 1

)1/2 h(+)
n (kbr)Ym

n,n−1

+ kbrh(+)
n−1(kbr)

(
n + 1

2n + 1

)1/2

Ym
n,n−1 + kbrh(+)

n+1(kbr)
( n
2n + 1

)1/2
Ym

n,n+1

N(+),1
nm (kbr) + N(+),2

nm (kbr) = kbrh(+)
n−1(kbr)

(
n + 1

2n + 1

)1/2

Ym
n,n−1 + kbrh(+)

n+1(kbr)
( n
2n + 1

)1/2
Ym

n,n+1

N(+)
nm(kbr) =

1
kbr
{N(+),1

nm (kbr)+N(+),2
nm (kbr)} = h(+)

n−1(kbr)
(

n + 1
2n + 1

)1/2

Ym
n,n−1 +h(+)

n+1(kbr)
( n
2n + 1

)1/2
Ym

n,n+1

Ym
n,l =

1∑
µ=−1

(l,m − µ; 1, µ | n,m)Yl,m−µχµ
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N(+)
nm(kbr) =

1∑
µ=−1

( n + 1
2n + 1

)1/2

(n − 1,m − µ; 1, µ | n,m)h(+)
n−1(kbr)Yn−1,m−µ

+

( n
2n + 1

)1/2
(n + 1,m − µ; 1, µ | n,m)h(+)

n+1(kbr)Yn+1,m−µ

+

( n
2n + 1

)1/2
(n + 1,m − µ; 1, µ | n,m)h(+)

n+1(kbr)Yn+1,m−µ

]
χµ

h(+)
n (kbr) Ynm(̂r) =

1
2πinkb

∫
dK Ynm

(̂
k
) exp (±ik · r)

kz
z ≷ 0

N(+)
nm(kbr) =

1
2πin−1kb

∫
dK

1∑
µ=−1

( n + 1
2n + 1

)1/2

(n − 1,m − µ; 1, µ | n,m)Yn−1,m−µ

(̂
k
)

−

( n
2n + 1

)1/2
(n + 1,m − µ; 1, µ | n,m) Yn+1m−µ

(̂
k
)] exp (±ik · r)

kz
χµ

We get

N(+)
nm(kbr) =

i−n+1

2πkb

∫
dK Znm

(̂
k
) exp (±ik · r)

kz
z ≷ 0

Yn,m(θ, φ) ≡ cn,mPm
n (cos θ)eimφ

cn,m =

[
2n + 1

4π
(n − m)!
(n + m)!

] 1
2

N(+)
n1 (kbr) =

i−n+1

2πkb

∫
dK

exp (±ik · r)
kz

×



[ (
n+1
2n+1

)1/2
(n − 1, 2; 1,−1 | n, 1)Yn−1,2 −

(
n

2n+1

)1/2
(n + 1, 2; 1,−1 | n, 1)Yn+1,2

]
χ−1[ (

n+1
2n+1

)1/2
(n − 1, 1; 1, 0 | n, 1)Yn−1,1 −

(
n

2n+1

)1/2
(n + 1, 1; 1, 0 | n, 1)Yn+1,1

]
χ0[ (

n+1
2n+1

)1/2
(n − 1, 0; 1, 1 | n, 1)Yn−1,0 −

(
n

2n+1

)1/2
(n + 1, 0; 1, 1 | n, 1)Yn+1,0

]
χ1

 z ≷ 0
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N(+)
n1 (kbr) =

i−n+1

2πkb

∫ ∫
KdKdφk

exp
(
iK.r// cos(φk − φ) + ikz|z|

)
kz

×



1
√

2


(

n+1
2n+1

)1/2
(n − 1, 2; 1,−1 | n, 1)cn−1,2P2

n−1(cos θk)

−
(

n
2n+1

)1/2
(n + 1, 2; 1,−1 | n, 1)cn+1,2P2

n+1(cos θk)

 ei2φk {̂x − îy}
(

n+1
2n+1

)1/2
(n − 1, 1; 1, 0 | n, 1)cn−1,1P1

n−1(cos θk)

−
(

n
2n+1

)1/2
(n + 1, 1; 1, 0 | n, 1)cn+1,1P1

n+1(cos θk)

 eiφk̂z

−1
√

2


(

n+1
2n+1

)1/2
(n − 1, 0; 1, 1 | n, 1)cn−1,0P0

n−1(cos θk)

−
(

n
2n+1

)1/2
(n + 1, 0; 1, 1 | n, 1)cn−1,0P0

n+1(cos θk)

 {̂x + îy}


z ≷ 0

We know that [52] (p. 395)∫ 2π

0
exp(ix cos(φk − φ)) exp(inφk)dφk = 2πinJn(x) exp(inφ) (B.18)

N(+)
n1 (kbr) =

i−n+1

kb

∫
KdK

exp (ikz|z|)
kz

×



−1
√

2
J2(K.r//)


(

n+1
2n+1

)1/2
(n − 1, 2; 1,−1 | n, 1)cn−1,2P2

n−1(cos θk)

−
(

n
2n+1

)1/2
(n + 1, 2; 1,−1 | n, 1)cn+1,2P2

n+1(cos θk)

 e2iφ{̂x − îy}

iJ1(K.r//)


(

n+1
2n+1

)1/2
(n − 1, 1; 1, 0 | n, 1)cn−1,1P1

n−1(cos θk)

−
(

n
2n+1

)1/2
(n + 1, 1; 1, 0 | n, 1)cn+1,1P1

n+1(cos θk)

 eiφẑ

−1
√

2
J0(K.r//)


(

n+1
2n+1

)1/2
(n − 1, 0; 1, 1 | n, 1)cn−1,0P0

n−1(cos θk)

−
(

n
2n+1

)1/2
(n + 1, 0; 1, 1 | n, 1)cn+1,0P0

n+1(cos θk)

 {̂x + îy}


z ≷ 0

Assuming m = -1

N(+)
nm(kbr) =

1
2πin−1kb

∫
dK

1∑
µ=−1

( n + 1
2n + 1

)1/2

(n − 1,m − µ; 1, µ | n,m)Yn−1,m−µ

(̂
k
)

−

( n
2n + 1

)1/2
(n + 1,m − µ; 1, µ | n,m) Yn+1m−µ

(̂
k
)] exp (±ik · r)

kz
χµ

N(+)
n−1(kbr) =

i−n+1

2πkb

∫
dK

exp (±ik · r)
kz

×



[ (
n+1
2n+1

)1/2
(n − 1,−2; 1, 1 | n,−1)Yn−1,−2 −

(
n

2n+1

)1/2
(n + 1,−2; 1, 1 | n,−1)Yn+1,−2

]
χ1[ (

n+1
2n+1

)1/2
(n − 1,−1; 1, 0 | n,−1)Yn−1,−1 −

(
n

2n+1

)1/2
(n + 1,−1; 1, 0 | n,−1)Yn+1,−1

]
χ0[ (

n+1
2n+1

)1/2
(n − 1, 0; 1,−1 | n,−1)Yn−1,0 −

(
n

2n+1

)1/2
(n + 1, 0; 1,−1 | n,−1)Yn+1,0

]
χ−1

 z ≷ 0
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We know that [52] (p. 395)

∫ 2π

0
exp(ix cos(φk − φ)) exp(inφk)dφk = 2πinJn(x) exp(inφ) (B.19)

N(+)
n−1(kbr) =

i−n+1

kb

∫
KdK

exp (ikz|z|)
kz

×



−1
√

2
J2(K.r//)


(

n+1
2n+1

)1/2
(n − 1,−2; 1,−1 | n,−1)cn−1,−2P−2

n−1(cos θk)

−
(

n
2n+1

)1/2
(n + 1,−2; 1,−1 | n,−1)cn+1,−2P−2

n+1(cos θk)

 e−2iφ{̂x + îy}

iJ1(K.r//)


(

n+1
2n+1

)1/2
(n − 1,−1; 1, 0 | n,−1)cn−1,−1P−1

n−1(cos θk)

−
(

n
2n+1

)1/2
(n + 1,−1; 1, 0 | n,−1)cn+1,−1P−1

n+1(cos θk)

 e−iφẑ

−1
√

2
J0(K.r//)


(

n+1
2n+1

)1/2
(n − 1, 0; 1,−1 | n, 1)cn−1,0P0

n−1(cos θk)

−
(

n
2n+1

)1/2
(n + 1, 0; 1,−1 | n, 1)cn+1,0P0

n+1(cos θk)

 {̂x − îy}


z ≷ 0

B.2.2 Scattered field

For a circularly right polarized incident beam, the scattered field can be expressed as:

−→
E scat(r//, φ, z) = E0

∫ ∞

0

K
kb

d
K
kb


A( K

kb
, φ, z)J0(Kr//)

{̂x+îy}
√

2
B( K

kb
, φ, z)J1(Kr//)̂z

C( K
kb
, φ, z)J2(Kr//)

{̂x−îy}
√

2

 (B.20)

Escat(r//, φ, z) = E0

∫ ∞

0

K
kb

d
K
kb


A( K

kb
, φ, z)J0(Kr//)

{x̂+iŷ}
√

2
B( K

kb
, φ, z)J1(Kr//)ẑ

C( K
kb
, φ, z)J2(Kr//)

{x̂−iŷ}
√

2

with

A =
∞∑

n=0
f (h)
n A(h)

n + f (e)
n A(e)

n

B =
∞∑

n=0
f (h)
n B(h)

n + f (e)
n B(e)

n

C =
∞∑

n=0
f (h)
n C(h)

n + f (e)
n C(e)

n

A(h)
n = −1

in+1 (n, 0; 1, 1|n, 1)cn,0P0
n(

√
1 − K

kb
) e

ikb |z|
√

1− K
kb√

1− K
kb

B(h)
n = 1

in (n, 1; 1, 0|n, 1)cn,1P1
n(

√
1 − K

kb
)eiφ e

ikb |z|
√

1− K
kb√

1− K
kb

C(h)
n = −1

in+1 (n, 2; 1,−1|n, 1)cn,2P2
n(

√
1 − K

kb
)e2iφ e

ikb |z|
√

1− K
kb√

1− K
kb
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A(e)
n = −1

in−1


√

n+1
2n+1 (n − 1, 0; 1, 1|n, 1)cn−1,0P0

n−1(
√

1 − K
kb

)

+
√ n

2n+1 (n + 1, 0; 1, 1|n, 1)cn+1,0P0
n+1(

√
1 − K

kb
)

 e
ikb |z|

√
1− K

kb√
1− K

kb

B(e)
n = i

in−1


√

n+1
2n+1 (n − 1, 1; 1, 0|n, 1)cn−1,1P1

n−1(
√

1 − K
kb

)

+
√ n

2n+1 (n + 1, 1; 1, 0|n, 1)cn+1,1P1
n+1(

√
1 − K

kb
)

 eiφ e
ikb |z|

√
1− K

kb√
1− K

kb

C(e)
n = −1

in−1


√

n+1
2n+1 (n − 1, 2; 1,−1|n, 1)cn−1,2P2

n−1(
√

1 − K
kb

)

+
√ n

2n+1 (n + 1, 2; 1,−1|n, 1)cn+1,2P2
n+1(

√
1 − K

kb
)

 e2iφ e
ikb |z|

√
1− K

kb√
1− K

kb

B.2.3 Ingoing irregular waves
B.2.3.1 Direct expansion via Clebsch Gordon coefficients:

Irregular ingoing magnetic waves We suppose that:

M(−)
nm(kbr) ≡ h(−)

n (kbr) Xnm(θ, φ)

Similarly to outgoing waves, one can expand Xnm on the Cartesian base of spherical harmonics.

M(−)
nm(kbr) = h(−)

n (kbr)
Ym

n,n

i

=
1
i

1∑
µ=−1

(n,m − µ; 1, µ | n,m)h(−)
n Yn,m−µχµ

But

h(−)
n (kbr) Ynm(̂r) =

(−1)m

2π(−i)nkb

∞"
−∞

dkxdky Y∗nm

(̂
k
) exp (∓ik∗·r)

k∗z

Thus

M(−)
nm(kbr) =

1
2π(−i)nkb

∞"
−∞

dkxdky

1∑
µ=−1

(n,m − µ; 1, µ | n,m)
(−1)m−µY∗nm−µ

(̂
k
)

i
χµ

exp (∓ik∗·r)
k∗z

M(−)
nm(kbr) =

1
2π(−i)nkb

∞"
−∞

dkxdky
exp (∓ik∗·r)

k∗z

×


(n,m + 1; 1,−1 | n,m)

(−1)m+1Y∗nm+1

(̂
k
)

i χ−1

(n,m; 1, 0 | n,m)
(−1)mY∗nm−1

(̂
k
)

i χ0

(n,m − 1; 1, 1 | n,m)
(−1)m−1Y∗nm−1

(̂
k
)

i χ1
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We suppose that m = 1

M(−)
n1 (kbr) =

1
2π(−i)nkb

∫ ∞

0

∫ 2π

0
KdKdφk

exp
(
−iK.r// cos(φk − φ) − ik∗z |z|

)
k∗z

×


−(n, 2; 1,−1 | n, 1)

Y∗n2

(̂
k
)

i
√

2
{̂x + îy}

−(n, 1; 1, 0 | n, 1)
Y∗n1

(̂
k
)

i ẑ

(n, 0; 1, 1 | n, 1)
Y∗n0

(̂
k
)

i
√

2
{̂x − îy}


Yn,m(θ, φ) ≡ cn,mPm

n (cos θ)eimφ

with

cn,m =

[
2n + 1

4π
(n − m)!
(n + m)!

] 1
2

and
Y∗n,m(θ, φ) = cn,mPm

n ([cos θ]∗)e−imφ

M(−)
n1 (kbr) =

1
2π(−i)nkb

∫ ∞

0

∫ 2π

0
KdKdφk

exp
(
−iK.r// cos(φk − φ) − ik∗z |z|

)
k∗z

×


−(n, 2; 1,−1 | n, 1)

cn,2P2
n(

k∗z
kb

)e−2iφk

i
√

2
{̂x + îy}

−(n, 1; 1, 0 | n, 1)
cn,1P1

n(
k∗z
kb

)e−iφk

i ẑ

(n, 0; 1, 1 | n, 1)
cn,0P0

n(
k∗z
kb

)

i
√

2
{̂x − îy}


We know that [52] (p. 395))

i−n

2π

∫ 2π

0
exp(ix cos(α)) exp(inα)dα = Jn(x) (B.21)

By conjugating, as Jn(x) is a real number, we get:

(−i)−n

2π

∫ 2π

0
exp(−ix cos(α)) exp(−inα)dα = Jn(x)

(−i)−n

2π

∫ 2π

0
exp(−ix cos(φk − φ)) exp(−in(φk − φ))d(φk − φ) = Jn(x)

∫ 2π

0
exp(−ix cos(φk − φ)) exp(−inφk)dφk = 2π(−i)nJn(x) exp(−inφ)
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M(−)
n1 (kbr) =

1
(−i)nkb

∫ ∞

0
KdK

exp
(
−ik∗z |z|

)
k∗z

×


(n, 2; 1,−1 | n, 1)J2(K.r//)

cn,2P2
n(

k∗z
kb

)e−2iφ

i
√

2
{̂x + îy}

(n, 1; 1, 0 | n, 1)J1(K.r//)cn,1P1
n( k∗z

kb
)e−iφẑ

(n, 0; 1, 1 | n, 1)J0(K.r//)
cn,0P0

n(
k∗z
kb

)

i
√

2
{̂x − îy}


Irregular ingoing electric waves

N(−)
nm(kbr) ≡

1
kbr

{ √
n (n + 1)h(−)

n (kbr) Ynm(θ, φ) +
[
kbrh(−)

n (kbr)
]′

Znm(θ, φ)
}

[
xh(−)

n (x)
]′

= h(−)
n (x) + xh(−)′

n (x) = hn (x) + x
[
−hn+1 (x) +

nhn (x)
x

]
= (n + 1)h(−)

n (x) − xh(−)
n+1(x)

N(−)
nm(kbr) ≡

1
kbr

{ √
n (n + 1)h(−)

n (kbr) Ynm(θ, φ) +
[
(n + 1)h(−)

n (kbr) − kbrh(−)
n+1(kbr)

]
Znm(θ, φ)

}
we obtain

Znm =

(
n + 1

2n + 1

)1/2

Ym
n,n−1 −

( n
2n + 1

)1/2
Ym

n,n+1 (B.22)

Ynm =

( n
2n + 1

)1/2
Ym

n,n−1 +

(
n + 1
2n + 1

)1/2

Ym
n,n+1 (B.23)

and

Ym
n,l =

1∑
µ=−1

(l,m − µ; 1, µ | n,m)Yl,m−µχµ

N(−)
nm(kbr) =

1
kbr

√
n (n + 1)h(−)

n (kbr)
( n

2n + 1

)1/2
Ym

n,n−1 +

(
n + 1
2n + 1

)1/2

Ym
n,n+1


+

[
(n + 1)h(−)

n (kbr) − kbrh(−)
n+1(kbr)

] ( n + 1
2n + 1

)1/2

Ym
n,n−1 −

( n
2n + 1

)1/2
Ym

n,n+1


=

1
kbr

{
N(−),1

n,m + N(−),2
n,m

}

N(−),1
n,m =

√
n (n + 1)h(−)

n (kbr)
( n

2n + 1

)1/2
Ym

n,n−1 +

(
n + 1

2n + 1

)1/2

Ym
n,n+1
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N(−),2
n,m =

[
(n + 1)h(−)

n (kbr) − kbrh(−)
n+1(kbr)

] ( n + 1
2n + 1

)1/2

Ym
n,n−1 −

( n
2n + 1

)1/2
Ym

n,n+1


N(−),2

n,m = (n + 1)h(−)
n (kbr)

( n + 1
2n + 1

)1/2

Ym
n,n−1 −

( n
2n + 1

)1/2
Ym

n,n+1


− kbrh(−)

n+1(kbr)
( n + 1

2n + 1

)1/2

Ym
n,n−1 −

( n
2n + 1

)1/2
Ym

n,n+1


N(−),1

n,m + N(−),2
n,m = h(−)

n (kbr) Ym
n,n−1

 √n (n + 1)
( n
2n + 1

)1/2
+ (n + 1)

(
n + 1

2n + 1

)1/2
+ h(−)

n (kbr) Ym
n,n+1

 √n (n + 1)
(

n + 1
2n + 1

)1/2

− (n + 1)
( n
2n + 1

)1/2


− kbrh(−)
n+1(kbr)

( n + 1
2n + 1

)1/2

Ym
n,n−1 −

( n
2n + 1

)1/2
Ym

n,n+1


N(−),1

n,m +N(−),2
n,m = h(−)

n (kbr) Ym
n,n−1

√
(n + 1) (2n + 1)−kbrh(−)

n+1(kbr)
( n + 1

2n + 1

)1/2

Ym
n,n−1 −

( n
2n + 1

)1/2
Ym

n,n+1


N(−),1

n,m +N(−),2
n,m = h(−)

n (kbr) Ym
n,n−1

√
(n + 1) (2n + 1)−kbrh(−)

n+1(kbr)
(

n + 1
2n + 1

)1/2

Ym
n,n−1+kbrh(−)

n+1(kbr)
( n
2n + 1

)1/2
Ym

n,n+1

h(−)
n+1(kbr) =

2n + 1
kbr

h(−)
n (kbr) − h(−)

n−1(kbr)

N(−),1
n,m + N(−),2

n,m = h(−)
n (kbr) Ym

n,n−1

√
(n + 1) (2n + 1)

− kbr
[
2n + 1

kbr
h(−)

n (kbr) − h(−)
n−1(kbr)

] (
n + 1

2n + 1

)1/2

Ym
n,n−1 + kbrh(−)

n+1(kbr)
( n
2n + 1

)1/2
Ym

n,n+1

N(−),1
n,m + N(−),2

n,m = kbrh(−)
n−1(kbr)

(
n + 1
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)1/2

Ym
n,n−1 + kbrh(−)

n+1(kbr)
( n
2n + 1

)1/2
Ym
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N(−)
nm(kbr) =

1
kbr

{
N(−),1

n,m + N(−),2
n,m

}
= h(−)

n−1(kbr)
(

n + 1
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)1/2

Ym
n,n−1 + h(−)

n+1(kbr)
( n
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)1/2
Ym
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N(−)
nm(kbr) =

1∑
µ=−1

h(−)
n−1(kbr)

(
n + 1

2n + 1

)1/2

(n − 1,m − µ; 1, µ | n,m)Yn−1,m−µ

+h(−)
n+1(kbr)

( n
2n + 1

)1/2
(n + 1,m − µ; 1, µ | n,m)Yn+1,m−µ

]
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but

h(−)
n (kbr) Ynm(̂r) =

(−1)m

2π(−i)nkb

∞"
−∞

dkxdky Y∗nm

(̂
k
) exp (∓ik∗·r)

k∗z

Assuming m = 1, we get

N(−)
n1 (kbr) =

i−n

2π(−1)n+1kb

∞"
−∞

dkxdky
exp (∓ik∗·r)

k∗z

×



 i
(

n+1
2n+1

)1/2
(n − 1, 2; 1,−1 | n, 1) Y∗n−1,2

(̂
k
)

−i
(

n
2n+1

)1/2
(n + 1, 2; 1,−1 | n, 1) Y∗n+1,2

(̂
k
) χ−1

−

 i
(

n+1
2n+1

)1/2
(n − 1, 1; 1, 0 | n, 1)Y∗n−1,1

(̂
k
)

−i
(

n
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)1/2
(n + 1, 1; 1, 0 | n, 1) Y∗n+1,1

(̂
k
) χ0 i
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)1/2
(n − 1, 0; 1, 1 | n, 1) Y∗n−1,1

(̂
k
)

−i
(

n
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)1/2
(n + 1, 0; 1, 1 | n, 1) Y∗n+1,0

(̂
k
) χ1



N(−)
n1 (kbr) =

1
2π(−i)n+1kb

∫ ∞

0

∫ 2π

0
KdKdφk

exp
(
−iK.r// cos(φk − φ) − ik∗z |z|

)
k∗z

×



 −
(

n+1
2n+1

)1/2
(n − 1, 2; 1,−1 | n, 1) Y∗n−1,2

(̂
k
)

+
(

n
2n+1

)1/2
(n + 1, 2; 1,−1 | n, 1) Y∗n+1,2

(̂
k
) χ−1

−

 −
(

n+1
2n+1

)1/2
(n − 1, 1; 1, 0 | n, 1)Y∗n−1,1

(̂
k
)

+
(

n
2n+1

)1/2
(n + 1, 1; 1, 0 | n, 1) Y∗n+1,1

(̂
k
) χ0 −

(
n+1
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)1/2
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(̂
k
)

+
(

n
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)1/2
(n + 1, 0; 1, 1 | n, 1) Y∗n+1,0

(̂
k
) χ1


Y∗n,m(θ, φ) = cn,mPm

n ([cos θ]∗)e−imφ

N(−)
n1 (kbr) =

1
2π(−i)n+1kb

∫ ∞

0

∫ 2π

0
KdKdφk

exp
(
−iK.r// cos(φk − φ) − ik∗z |z|

)
k∗z

×



 −
(

n+1
2n+1

)1/2
(n − 1, 2; 1,−1 | n, 1) cn−1,2P2

n−1([cos θk]∗)

+
(

n
2n+1

)1/2
(n + 1, 2; 1,−1 | n, 1) cn+1,2P2

n+1([cos θk]∗)

 e−i2φkχ−1

−

 −
(

n+1
2n+1

)1/2
(n − 1, 1; 1, 0 | n, 1)cn−1,1P1

n−1([cos θk]∗)

+
(

n
2n+1

)1/2
(n + 1, 1; 1, 0 | n, 1) cn+1,1P1

n+1([cos θk]∗)

 e−iφkχ0 −
(

n+1
2n+1

)1/2
(n − 1, 0; 1, 1 | n, 1)cn−1,0P0

n−1([cos θk]∗)

+
(

n
2n+1

)1/2
(n + 1, 0; 1, 1 | n, 1) cn+1,0P0

n+1([cos θk]∗)

χ1
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∫ 2π

0
exp(−ix cos(φk − φ)) exp(−inφk)dφk = 2π(−i)nJn(x) exp(−inφ)

N(−)
n1 (kbr) =

1
(−i)n+1kb

∫ ∞

0
KdK

exp
(
−ik∗z |z|

)
k∗z

×



−J2(K.r//)

 −
(

n+1
2n+1

)1/2
(n − 1, 2; 1,−1 | n, 1) cn−1,2P2

n−1( kz
kb

∗
)

+
(

n
2n+1

)1/2
(n + 1, 2; 1,−1 | n, 1) cn+1,2P2

n+1( kz
kb

∗
)

 e−i2φ
√

2
{̂x − îy}

iJ1(K.r//)

 −
(

n+1
2n+1

)1/2
(n − 1, 1; 1, 0 | n, 1)cn−1,1P1

n−1( kz
kb

∗
)

+
(

n
2n+1

)1/2
(n + 1, 1; 1, 0 | n, 1) cn+1,1P1

n+1( kz
kb

∗
)

 e−iφẑ

−J0(K.r//)

 −
(

n+1
2n+1

)1/2
(n − 1, 0; 1, 1 | n, 1)cn−1,0P0

n−1( kz
kb

∗
)

+
(

n
2n+1

)1/2
(n + 1, 0; 1, 1 | n, 1) cn+1,0P0

n+1( kz
kb

∗
)

 1
√

2
{̂x + îy}


B.2.4 Regular waves

B.2.4.1 Magnetic regular waves

Rg{Mn,1(kbr)} =
1
2

[
M(+)

n1 (kbr) + M(−)
n1 (kbr)

]
B.2.4.2 Electric regular waves

Rg{Nn,1(kbr)} =
1
2

[
N(+)

n1 (kbr) + N(−)
n1 (kbr)

]





Appendix C

Spontaneous emission in the multipolar
framework

C.1 Introduction
The nanoscale structuration of the near field of a single emitter such as fluorescent molecules or
quantum dots can strongly modify its radiation properties i) the total decay rate enhancement Γtot,
ii) the radiative decay rate enhancement Γtot iii) the quantum efficiency η iv) the directionality.
This quantities are related to the emitted power and the radiative power. A basic way to acces this
physical quantities is to integrate the Poynting vector over a surface surrounding the isolated dipole
to obtain the total emitted power and the whole structure to calculate the electromagnetic power
radiated in the far field. In the case of spherical particles, the decay rates enhancements and the
quantum efficiency can be analytically calculated by a matricial approach. In this appendix, we
demonstrate a multipole formalism for the direct calculation of the radiative properties of a single
dipolar emitter. This approach enables fast calculations of dipolar emission for different positions
in the aggregate.

C.2 Power emitted by a point dipole source

The time average power emitted by a point dipole is

〈Pe〉ω =
ω

2
Im{E0(x j).p∗0(x j)} (C.1)

For a homogeneous medium decribed by a dielectric constant εb,we have:

∇ × (∇ × E) − k2
bE = iωµ0jsrc (C.2)

where kb = 2πεb
λ0

is the wavevector in the homogeneous background medium.
We can solve the equation for any arbitrary source current

∇ × (∇ ×
←→
G 0(r, r′)) − k2

b
←→
G 0(r, r′) = δ3(r − r′)

←→
I (C.3)

The solution electric field created by a source current in a homogeneous medium can be readily
formulated in terms of the Green function

E0(r) = iωµ0

∫
dr′
←→
G 0(r, r′)jsrc(r′) (C.4)
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For our point source
j j(r′) = −iωpδ3(r′ − r j) (C.5)

we have
E0(r) = ω2µ0

←→
G 0(r j, r j).p(r j) (C.6)

The power emitted by a dipole source is

〈Pe〉ω =
ω

2
Im{p∗(r j).E(r j)} (C.7)

〈Pe〉ω =
ω3µ0

2
Im{p∗(r j).

←→
G (r j, r j).p(r j)} (C.8)

C.3 Green function in the multipole framework

The Green function can be expressed in terms of multipole waves

←→
G 0(r, r′) = ikb

∞∑
n=1

n∑
m=−n

Mn,m(kbr)Rg{M̃n,m(kbr′)} + Nn,m(kbr)Rg{Ñn,m(kbr′)} −
rr
k2

0

δ3(r − r′) (C.9)

Where we supposed that |r′|2 < |r|2 and M̃n,m and Ñn,m are defined as:

M̃n,m ≡
1
kr
{
√

2 jn(kr)̂rY∗n,m(̂r) + [kr jn(kr)]′Z∗n,m(̂r)} (C.10)

Ñn,m ≡ jn(kr)X∗n,m(̂r)

We chose that the origin lies at r’

←→
G 0(r, 0) = ikb

∞∑
n=1

n∑
m=−n

Mn,m(kbr)Rg{M̃n,m(kb, 0)} + Nn,m(kbr)Rg{Ñn,m(kb; 0)} −
rr
k2

0

δ3(r) (C.11)

= ikb

n∑
m=−n

N1,m(kbr)Rg{Ñ1,m(kb; 0)} (C.12)

E0(r) = ω2µ0
←→
G 0(r j, r j).p(r j) (C.13)

E0(r) = ω2µ0ikb

1∑
m=−1

N1,m(kbr)Rg{Ñ1,m(kb; 0)}.̂n.p (C.14)

f1,m = ω2µ0ikbRg{Ñ1,m(kb; 0)}.̂n (C.15)

In spherical coordinates, we get
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Rg{Ñ1,0(0)} =
1
√

6π
r̂ (C.16)

Rg{Ñ1,1(0)} =
1

2
√

3π
(−̂θ + îφ) (C.17)

Rg{Ñ1,−1(0)} =
1

2
√

3π
(̂θ + îφ) (C.18)

E0(r) = p
1∑

m=−1

N1,m(kbr). f1,m (C.19)

C.3.1 Multipole formulation for the emitted power

〈Pe〉ω =
ω

2
Im{p∗(r j).E(r j)} (C.20)

lim
kr→0+

N1,0(kr) =
1
√

6π
r̂ (C.21)

lim
kr→0+

N1,1(kr) =
1

4
√

3π
(̂θ + îφ) (C.22)

lim
kr→0+

N1,−1(kr) =
1

4
√

3π
(̂θ − îφ) (C.23)

The power emitted in the homogeneous medium is

〈
Pe,0

〉
ω =

ω

2
Im{p∗(r j).E0(r j)} (C.24)

〈
Pe,0

〉
ω =

ω3µ0

2
|p|2 Re{kb

1∑
m=−1

N1,m(0+). f1,m} (C.25)

〈
Pe,0

〉
ω =

ω3µ0

12π
|p|2 Re {kb} (C.26)

The power emitted in presence of the nanoparticles is

〈Pe〉ω =
〈
Pe,0

〉
ω +

ω3µ0

2
|p|2 Re

kb

Np∑
j,l=1

f †H(0, j)T ( j,l)H( j,0) f

 (C.27)

where H( j,0)and H(0, j) are the irregular translation/addition martix and T =
[
T (i, j)

]
is the transfert

matrix of the agregate of particles.
The radiative decay rate enhancement is then

〈Γe〉ω〈
Γe,0

〉
ω

= 1 +
6π

Re{kb}
Re

kb

Np∑
j,l=1

f †H(0, j)T ( j,l)H( j,0) f

 (C.28)



120 Appendix C. Spontaneous emission in the multipolar framework

C.4 Multipole formulation for the radiated power
In the far field domain, the Poynting vector S can be expressed

lim
kr→∞

S =
1
2

kb

ωµ0
Re

{̂
r.(E.E∗)

}
(C.29)

lim
kr→∞

Mn,m(kr) = in exp(ikr)
ikr

X∗n,m(̂k) (C.30)

lim
kr→∞

Nn,m(kr) = in−1 exp(ikr)
ikr

Z∗n,m(̂k) (C.31)

One finds the radiated power in free space as

〈
Pr,0

〉
ω =

1
2

kb

ωµ0

∫
E0.E∗0dΩ (C.32)

E0(r) = p
1∑

m=−1

N1,m(kbr). f1,m = p
exp(ikr)

ikr

1∑
m=−1

Z∗1,m(̂k) f1,m (C.33)

〈
Pr,0

〉
ω =

1
2

kb

ωµ0

∫
p

exp(ikr)
ikr

1∑
m=−1

Z∗1,m(̂k) f1,m.

p
exp(ikr)

ikr

1∑
m=−1

Z∗1,m(̂k) f1,m

∗ dΩ (C.34)

=
1
2

kb

ωµ0
|p|2

∫
ω4µ2

0

r2

1∑
m=−1

Z∗1,m(̂k)Rg{Ñ1,m(kb; 0)}.̂n.
 1∑

m=−1

Z∗1,m(̂k)Rg{Ñ1,m(kb; 0)}.̂n.
∗ dΩ(C.35)

〈
Pr,0

〉
ω = |p|2

ω3µ0

12π
kb (C.36)

The total electric field is given as the sum of the dipole field E0 and the scattered field Es

E(r) = E0 + Es (C.37)

= p
1∑

m=−1

N1,m(kbr). f1,m + E0(r) (C.38)

= p
1∑

m=−1

N1,m(kbr). f1,m + p
1∑

m=−1

Np∑
j,l=1

[
N1,m(kbr j),M1,m(kbr j)

]
.T ( j,l)H(l,0) f1,m (C.39)

Es = p
1∑

m=−1

Np∑
j,l=1

[
N1,m(kb0),M1,m(kb0)

]
J(0, j).T ( j,l)H(l,0) f1,m (C.40)

〈Γr〉ω〈
Γr,0

〉
ω

=


1 + 6π

Np∑
i, j,k,l=1

[
T (i, j).H(i,0). f

]†
.J( j,k).T (k,l).H(l,0). f

+12πRe


Np∑

j,k=1

f †.J(0,k).T (k, j).H( j,k). f




(C.41)
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