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Abstract. We introduce a method for computing simple energy-conserving modelT -matrices
intended for use in multiple-scattering formalisms. Our method is to make separable
approximations to the physical scattering potentials. Such a ‘mean-field’ approximation permits
a ready analytic evaluation of theT -matrix for a variety of scatterers, even ‘fuzzy’ scatterers
(e.g. fractal aggregates). In the small-size limit, our method reduces to the point-like resonant
T -matrix introduced by Nieuwenhuizenet al in 1992 thereby demonstrating the intrinsic mean-
field nature of their approximation. We discuss causality in both models and show that the
separable potential model possesses a wider range of applicability than the point-like model
does.

1. Introduction

The off-shell (i.e. momentum dependent)T -matrix of a scatterer [1–4] is of recognized
importance in the study of wave propagation in random media [5]. TheT -matrix, which
solves the one-body problem for a homogeneous scatterer, is the building block of the well
known multiple-scattering description of a composite random medium [4, 6–8]. Multiple-
scattering formalism is a powerful technique permitting the study of coherent and incoherent
energy transfers in a medium built of discrete scatterers randomly dispersed in some
background matrix. Various advances have recently been made in this field, fuelled by
increasing interest in the possibility for localization of classical waves by disorder [4, 9].
The main application of the multiple-scattering formalism is the computation of various
effective transport parameters characterizing the random medium on average.

Adding scatterers to a homogeneous medium amounts to introducing an additional
(microscopic) length scale in the problem of wave propagation: the particle radiusa. This
in turn inducesspatial dispersion, namely momentum dependence, in the various effective
response kernels of interest. In particular, the self-energy kernels of the electromagnetic
problem [10] are momentum dependent and determine, via dispersion relations, the normal
coherent modes which can, theoretically, be excited in the system. Little is known about
spatial dispersion in this context beyond the consequences associated with the fact that the
bare mode (the mode that already propagates in the background homogeneous medium) is
renormalized [9].

Recent theoretical predictions, based on a one-particle coherent potential approximation
with spatial dispersion, nevertheless support the idea that at least two modes might be
present in electromagnetic wave propagation (a successful observation has been reported for
sound wave propagation) [11]. A predominance exchange of two solutions of the transverse
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dispersion relation for the mean electric field (one of which is the renormalized bare solution)
has also been reported for a field theoretical model of continuum disorder [10]. As far as a
multiple-scattering description of the random medium is concerned (e.g. in the research field
of weak localization and enhanced back scattering), the possibility of several propagating
modes is usually ignored (on account of the theoretical complications that it introduces).
One of the problems is the explicit computation of the non-trivial modes. However, if
the zeros of the dispersion relation are the roots of an analytic function of the momentum
variablek, they may all be determined simultaneously in the upper complexk-plane as a
function of the frequency by using a numerical implementation of Cauchy’s theorem [12].
We recently applied such a method to a spatially dispersive dynamic generalization of the
Clausius–Mossoti formula [13].

As far as analytical calculations of multiple scattering are concerned, one can hardly
hope to go beyond a two-particle description of the medium [14]. Spatial dispersion
then originates firstly from the momentum-dependentT -matrix itself and secondly from
the two-point correlation function. All correlation functions must at least incorporate the
exclusion-volume correction, which forbids scatterers to overlap. The exclusion effect and
the momentum dependence of theT -matrix lead to spatially dispersive contributions of the
same order of magnitude, since both are related to the same length scalea.

One of the obstacles to the calculation of the properties of a random medium is that
momentum-dependentT -matrices are difficult to compute and handle. In order to avoid
spatial dispersion in the self-energy at one-body order, but still preserve the physically
important property of resonant scattering on the heterogeneities, Lagendijk and van Tiggelen
[9] and Nieuwenhuizenet al [15] have introduced in the electromagnetic case a point-like
(PL) resonantT -matrix, defined with the help of a momentum cut-off in the Fourier space.
Its spatial support in the direct space is reduced to a point. One pitfall of this useful
model is that one cannot guarantee the geometric consistency (and therefore the frequency
dependence in the scattering regime) of any two-particle model built on it, as a separation
distance still has to be introduced between particles in order to regularize the two-body
integrals [14]. Moreover, as we show below, the PL model violates causality despite the
fact that it obeys the unitarity identity [16] which expresses energy conservation during a
scattering event (and from which one deduces the optical theorem).

In order to investigate more closely spatial dispersion effects in random media, and their
possible connection with scattering, it therefore appears desirable to have at one’s disposal
a modelT -matrix which does not suffer the above limitations, but which still is simple
enough to remain manageable. We present here such a model, built on a separable potential
approximation. We show that it amounts to performing a mean-field approximation on the
inner fields. We furthermore demonstrate the mean-field nature of the PL model by deriving
it in an appropriate small-size limit of the mean-field approximation.

We employ hereafter the(2π)3/2 symmetric convention for space Fourier transforms
and work in the time harmonic regime, where time transforms are performed with weights
and factors dt exp(iωt), [dω exp(−iωt)]/2π . Bold sans serif typefaces are used to denote
dyadics such as the electric field Green function. MKSA units will be employed throughout
this work.

2. One-body problem andT -matrix of a scatterer

In this section, we remind the reader of the Green function for the electric field originating
from a point source in the presence of a single scatterer and thereby introduce theT -matrix.
Let φy(r) denote the characteristic function of the scatterer, ‘centred’ at the pointy (centre
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of mass, for instance). The functionφy(r) is by definition equal to 1 ifr lies within the
scatterer and 0 otherwise (we shall see below that such a stiffness assumption may in fact
be relaxed). Its volume integral is equal to the volumeVs of the scatterer. Let alsoεm and
µm be the constitutive parameters of the outer medium, andεs andµs those of the scatterer.
The constitutive parameters of the whole system are then

ε(r) = εm + (εs − εm)φy(r) (2.1a)

1

µ(r)
= 1

µm

+
(

1

µs

− 1

µm

)
φy(r). (2.1b)

The related electric dyadic Green function is the outgoing wave solution of the electric field
equation with a unit dyadic point source (I is the 3× 3 identity matrix)(

∇ × 1

µ(r)
∇ × −

(ω

c

)2
ε(r)

)
G(r|r′) = I δ3(r − r′). (2.2)

Introducing the scattering potentialUy

Uy(r|r′) = δ3(r − r′)
[
∇′ ×

(
1

µm

− 1

µs

)
φy(r′)∇′ × +

(ω

c

)2
(εs − εm) I φy(r′)

]
(2.3)

the propagation equation (2.2) becomes(
1

µm

∇ × ∇ × −
(ω

c

)2
εm

)
G(r|r′) = I δ3(r − r′) +

∫
d3r1 Uy(r|r1)G(r1|r′). (2.4)

We denote the bare electric Green function for the outer medium byG0. In the Fourier
representation it can be writtenG0(k1|k2) = (2π)3/2δ(k1 − k2)G0(k1), whereG0(k1) is a
linear combination of the transverse and longitudinal projectors defined in terms of the unit
vector k̂ = k/k

G0(k) = 1

(2π)3/2

(
µm

k2 − (km + i0)2
[I − k̂k̂] − 1

(ω/c)2εm

k̂k̂

)
. (2.5)

We have setk2
m ≡ (ω/c)2εmµm and added an infinitesimal part tokm in the transverse part

so as to select the outgoing-wave solution. Recasting (2.4) in integral form, we obtain

G(r|r′) = G0(r|r′) +
∫

d3r1 d3r2 G0(r|r1)Uy(r1|r2)G(r2|r′). (2.6)

The translation of (2.6) to the Fourier representation only requires the replacing of the
position variablesr by the momentum coordinatesk. We may therefore use the simpler
symbolic operator notationG = G0 + G0UyG, where we abandon the sans serif typefaces.
In this notation the convolution identityI δ3(r − r′) becomes 1.

In the Fourier representation, the scattering potential is

Uy(k1|k2) = exp[i(k2 − k1)] · y

(2π)3/2

{(
1

µs

− 1

µm

)
k1 × k2 × +

(ω

c

)2
(εs − εm) I

}
×φ0(k1 − k2). (2.7)

This formulation automatically takes into account the boundary conditions on the fields
on the surface of the scatterer [17]. The Fourier transformφ0(k) is proportional to the
volume of the scatterer. It is purely real for bodies with a symmetry centre, whence
U0(k1|k2) = U0(−k1| − k2). For a sphere of finite radiusa, φ0(r) = θ(a − |r|). Here and
in the rest of the paper, the bold-face subscript0 stands fory = 0 (this remark applies to
φy, Uy andTy).
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The T -matrix of the scatterer, namelyTy, is defined by the equation [1]

G = G0 + G0TyG0 (2.8)

which distinguishes between the contributions of the incident and scattered fields to the total
field. Its expression in terms of the scattering potentialU and of the free Green function
G0 follows:

Ty = Uy(1 − G0Uy)−1. (2.9)

The difficult task in this formulation is the inversion of the operator 1− G0Uy. In the
Fourier domain,Ty(k1|k2) = exp[i(k2 − k1) · y]T0(k1|k2). The support ofTy(r1|r2) is
the volume of the scatterer, for each of its two arguments. To see this, we realize that this
property is obeyed byUy(r1|r2) and, in consequence, by each term of the series expansion
of (2.9), since they all begin and end with aUy [7].

According to equation (2.8), knowing the fully momentum-dependentT -matrix of a
given scatterer is equivalent to knowingsimultaneouslythe solutions of the inner, outer and
mixed scattering problems for arbitrary positions of the source and the receiver. Both may
be locatedeither inside or outsidethe scatterer.

3. The mean-fieldT -matrix

Our model follows from a modification of the constitutive relations (2.1) so that the formal
expansion of theT -matrix T0 = G−1

0

∑
p>1(G0U0)

p deduced from (2.9) reduces to an
algebraic geometrical series. The series is then straightforwardly summed. The modification
resides in a shift from locality to non-locality in the constitutive relations, so that the
scattering potential becomes separable in its two space variables. That is, we replace the
true constitutive relations, equation (2.1), by the approximations

ε(r)δ3(r − r′) → ε(r|r′) = εm

[
δ3(r − r′) + 1ε

1

Vs

φy(r)φy(r′)
]

(3.1a)

1

µ
(r)δ3(r − r′) → µ−1(r|r′) = 1

µm

[
δ3(r − r′) + 1µ

1

Vs

φy(r)φy(r′)
]

(3.1b)

whereVs is the volume of the scatterer,1ε = εs/εm − 1, and1µ = µm/µs − 1.
The electric displacement is obtained from the formulaD(r) = ε0

∫
d3r ′ ε(r|r′)E(r′).

A similar relation holds between the magnetic inductionH and the magnetic fieldB. Hence
if r is outside the scatterer,D(r) = ε0εmE(r) as usual while, forr inside,

D(r) = ε0εm

(
E(r) − 1

Vs

∫
Vs

d3r ′ E(r′)
)

+ ε0εs

1

Vs

∫
Vs

d3r ′ E(r′) (3.2)

instead of beingD(r) = ε0εsE(r). The spatially varying part of the displacement field
inside the scatterer becomes proportional toεm in (3.2). The dielectric mismatch is taken
into account only through volume averages of the inner fields. This relegates the model
to the wide class of mean-field theories. We shall therefore refer to theT -matrix obtained
from the separable potential as themean-field approximation.This approximation, as it
stands, is not able to restore the dynamic behaviour of the fields inside the scatterer when
εs differs appreciably fromεm. Indeed, the inner wavevector modulus is clearly always
pinned atkm. However, since the remaining calculations may in principle be carried out
exactly, the resultingT -matrix automatically obeys energy conservation, in accordance with
the unitarity identity [16]

Ty − T †
y = T †

y (G0 − G
†
0)Ty = Ty(G0 − G

†
0)T

†
y (3.3)
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with the daggers representing Hermitian conjugation. This identity holds provided that
both the inner and the outer media are non-dissipative, i.e. when the scattering potential
is Hermitian: Uy = U †

y. Scatterers for whichy is a symmetry centre obey the property,
inherited fromU0, that T0(−k1| − k2) = T0(k1|k2). The above unitary identity then is

Im [T0(k1|k2)] = π

2
µmkm

∫
d�q T0(k1|kmq̂)

[
I − q̂q̂

]
T∗

0(kmq̂|k2) (3.4)

where
∫

d�q indicates an angular integration carried out over the unit vectorq̂ and the
asterisk represents complex conjugation.

The Fourier transform of the scattering potentialU0 obtained from the separable
approximation to the constitutive relations, equations (3.1) is

U0(k1|k2) = Vs

µm

(
1µ k1 × k2 × + k2

m1ε I
)

ψ0(k1)ψ∗
0(k2) (3.5)

where we have definedψ0 ≡ φ0/Vs , in order to extract the explicit proportionality of
φ(k) to Vs . We remark that, in the direct representation, owing to the double multiplier
ψ0(r1)ψ0(r2), the support of the mean-field scatterer for each of the two variablesr1, r2,
is still the original object (although it is considerably enlarged in the product space of the
variablesr1 andr2). This ensures the correct implementation of geometric exclusion effects
between different scatterers.

In general, except for a sphere,ψ0(q) has no spherical symmetry. For example, it
depends on a scalar combination of the typeq ·Oq for an ellipsoid. Such a lack of spherical
symmetry complicates the evaluation of(G0U)

p by coupling the dielectric and the magnetic
parts. In the mean-field treatment, the couplings vanish in the case of spherical symmetry.
We may therefore further simplify the model (on a heuristic basis) by replacingψ0(q) by
its symmetrized angular averageψ0(q) = ∫

d�q ψ0(q)/4π . We remark in passing that
ψ0(q) is purely real, and that the angular averaging operatorcommutes with the three-
dimensional Fourier transform. We shall term this approximation themean-field spherical
(MFS) approximation.

The averageψ0(r) represents a fuzzy scatterer with soft boundaries instead of the
original anisotropic stiff object. Nevertheless,ψ0(r) still possesses a compact support.
After some easy algebra we find forp > 1, that

(G0U0)
p(k1|k2) = (2π)3/2 Vs

µm

G0(k1)
[
1µ k1 × (1µ M)

p−1 k2 × + k2
m1ε (1ε E)

p−1
]

×ψ0(k1)ψ0(k2) (3.6)

where the dyadicsM andE are defined as

E ≡ (2π)3/2 Vs

µm

k2
m

∫
d3q ψ0

2
(q) G0(q) (3.7a)

M ≡ (2π)3/2 Vs

µm

∫
d3q ψ0

2
(q) q × G0(q) q × . (3.7b)

Summing the geometrical series
∑

p>1(G0U0)
p and pre-multiplying the result byG−1

0 , we
obtain finally

T0(k1|k2) = Vs

µm

{
k1 × 1µ

[
1 − 1µ M

]−1
k2 × + k2

m1ε
[
1 − 1ε E

]−1
}

×ψ0(k1)ψ0(k2). (3.8)

In order to computeE andM, we recall that by definitionVs = ∫
d3r φ0(r) = ∫

d3r φ0(r).

By Parseval’s theorem,
∫

d3q ψ0
2
(q) = ∫

d3r φ
2
(r)/V 2

s . Sinceφ0(r) 6 1, we may write
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d3r φ0

2
(r) = λf

∫
d3r φ0(r) = λf Vs , where 0 < λf 6 1 is a numerical coefficient

which measures the degree of fuzziness (or of anisotropy) of the scatterer. Therefore,∫
d3q ψ0

2
(q) = λf /Vs . For a perfect sphere, the identityφ0(r) = φ2

0(r) entailsλf = 1.
Carrying out the integration over angles first in equations (3.7) amounts to taking the

trace of the dyadics and multiplying by 4π/3. We readily obtain

E = − 1
3Vs

(
λf

Vs

− 2k2
mK

)
I (3.9a)

M = − 2
3Vs

(
λf

Vs

+ k2
mK

)
I (3.9b)

whereK is

K ≡
∫

d3q
ψ0

2
(q)

q2 − (km + i0)2
(3.10a)

=
∫

d3r
eikmr

4πr
p(r). (3.10b)

In the last line we introduced the normalized distribution

p(r) =
∫

d3R ψ0(|r − R|)ψ0(R) (3.11)

interpreted as the probability distribution for finding two points within the scatterer separated
by a distancer (this follows sinceψ0(r) is defined as a symmetrized probability density for
r to belong to the scatterer).

Introducing effective dynamic dielectric and magnetic depolarization coefficients given
by

L̄ε = 1
3

[
λf − 2k2

mVsK
]

(3.12a)

and

L̄µ = 1
3

[
(3 − 2λf ) − 2k2

mVsK
]

(3.12b)

respectively, we find in the MFS approximation that

Ty(k1|k2) = Vs

µm

exp[i(k2 − k1) · y]
{−ᾱµk1 × k2 × + k2

mᾱε I
}

ψ0(k1)ψ0(k2). (3.13)

The effective dynamic polarizabilities̄αε and ᾱµ are

ᾱε = εs − εm

εm + L̄ε(εs − εm)
(3.14a)

ᾱµ = µs − µm

µm + L̄µ(µs − µm)
. (3.14b)

It should be clear that the previous method also applies to intrinsically fuzzy scatterers for
which only a statistical description is availablea priori, e.g. fractal aggregates [18]. Such
objects will fit in a multiple-scattering theory of well separated aggregates each of finite
extension, i.e. being described byψ0(r) functions possessing compact support. In such a
theory, one particular aggregate would be considered as a single scattering unit.

It is interesting to remark that equation (3.14a) has previously surfaced in the literature
[19] as a phenomenological effective static scalar dielectric polarizability formula for
ellipsoids. An effective static depolarization coefficientL̄ was defined by averaging the
eigenvalues of the ellipsoidal dielectric tensor:

εs − εm

εm + L̄(εs − εm)
≡ 1

3

3∑
i=1

εs − εm

εm + Li(εs − εm)
(3.15)
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where theLi are the three eigenvalues of the depolarization tensor for ellipsoids, linked by∑
i Li = 1 [20]. The coefficientL̄ depends in general onεs andεm. Hence, the use of̄L

as a purely geometrical parameter is valid only in limiting cases, such as weak dielectric
contrast and small eccentricity (see [19] for further details). For anisotropic scatterers, it
is clear that the same restrictions apply to our model as well. In the above calculation,
however, L̄ε,µ relates not only to anisotropy but also more generally to the concept of
fuzziness. This may enlarge the number of possible interpretations of experimental results
that might be fitted with the above polarizability formula.

For a stiff sphere with radiusa, one hasψ0(q) = 3(2π)−3/2j1(aq)/(aq), and the mean-
field spherical approximation coincides with the mean-field approximation. TheK integral
can then be directly computed from (3.10a), yielding

L̄ε,µ = 1 − 2i(akm)h
(1)

1 (akm)j1(akm). (3.16)

4. The point-like limit

We may perform an asymptotic evaluation of integral (3.10a) when the size of the scatterer
goes to zero. The distributionp(r), of support twice as large as that ofψ0(r), is
highly peaked atr = 0 when the support ofψ(r) shrinks. We may then expand
exp(ikmr)/r = 1/r + ikm + O(r) under the integral and integrate term by term. Only
the first two terms survive and we find that

K ' 1

4π

(
1

ap

+ ikm

)
(4.1)

where we defined 1/ap ≡ ∫
d3r p(r)/r. This term goes to infinity in the PL limit. As

discussed in [9], this divergence indicates that a point does not scatter waves. For a fuzzy
scatterer, we also define a mean spherical radiusa according toa3 ≡ 3Vs/4π and introduce
a dimensionless coefficientγf = a/ap. The PL scatterer is then characterized by the
depolarization coefficients

L̄ε = λf

3
− 2

9γf (akm)2 − 2
9i(akm)3 (4.2a)

L̄µ = 3 − 2λf

3
− 2

9γf (akm)2 − 2
9i(akm)3. (4.2b)

To summarize, taking the PL limit in this manner amounts to truncating the series
expansion ofL̄ε,µ at third order. The justification for a truncation at precisely third order is
provided by our focusing on the electromagnetic integrals alone in (3.7), leaving aside the
pre-factorVs of geometrical nature. In this way, we are able to isolate the terms physically
relevant (i.e. the non-zero terms) to electrodynamics in the PL limit; these are the first three
terms in a wavevector expansion of (3.7), the first two terms being divergent and shape-
dependent (i.e. involvingλf andγf ), and the third being finite and purely imaginary. Then,
multiplying by the pre-factorVs to obtain the final results, we implicitly revert to a finite-
sized description, thereby ‘stopping the shrinking process’, in order to ensure a dynamic
coupling of the object to the incident wave. In this sense, the surviving terms in (4.1) are
minimal-coupling terms. We notice that the purely imaginary term in the PL limit, i(akm)3

possesses a somewhat universal character since it does not depend on the precise shape of
the scatterer (because the definition ofa involves only the volume of the scatterer).

Note that, in the PL limit, one also hasψ0(k1)ψ0(k2) ≡ (2π)−3 in equation (3.13). Then
Ty(r1|r2) ∝ δ3(r1 −y)δ3(r2 −y) and justifies the term ‘point-like’. We may equally verify
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that this limit preserves the unitarity identity, equation (3.4). For the mean-field spherical
model, this identity is easily shown to be equivalent to

Im ᾱε,µ = 2(2π)3

9
(akm)3

∣∣ᾱε,µ

∣∣2 ψ0(km)2 (4.3)

which reduces to

Im L̄ε,µ = − 2
9(akm)3(2π)3ψ0

2
(km). (4.4)

Since in the PL limit we find that Im̄Lε,µ = − 2
9(akm)3, equation (4.4) impliesψ0(k) ≡

(2π)−3/2 in order to satisfy energy conservation. In this limit, equation (4.3) reduces to the
familiar optical theorem relation applied to scalar polarizabilities [9].

Similar (although less precise) conclusions were arrived at in an earlier version of
this work [21] by settingφ(k) ≡ (2π)−3/2Vs from the start, namely equation (2.7),
and applying a well known device of statistical field theory [22] which is to regularize
the now ultraviolet-diverging Fourier integrals (3.7) with a large cut-off3 on the inner
momentumq. This was actually the original method used in [15]. Through an identification∫
q63

d3q = (2π)3/Vs , this faster ‘trick’ leads to (4.2) with the specific shape parameters

λf = 1 andγf = 9(9π/2)−2/3 ' 1.54. We have clearly demonstrated above that the cut-off
method belongs to the class of mean-field calculations, a fact which is not apparent in [15].

For real dielectric and magnetic constitutive parameters in the PL approximation, we
find that resonant dielectric and magnetic scattering occur for the frequencies satisfying

(akm)2
ε = 3

2γf

λf εs + (3 − λf )εm

εs − εm

(4.5a)

(akm)2
µ = 3

2γf

(3 − 2λf )µs + 2λf µm

µs − µm

. (4.5b)

respectively. We may define resonance widths forᾱε and ᾱµ of order 2
9(akm)3

ε(εs − εm)

and 2
9(akm)3

µ(µs −µm), respectively. Assuming positive constitutive parameters, this model
displays resonant behaviour only ifεs > εm andµs > µm.

In the separable potential treatment for a sphere, and expansion of (3.16) to third order
in akm again yields (4.2) with shape parametersλf = 1 andγf = 6

5 ' 1.2 (this value of the
shape parameterγf , is consistent with that of the cut-off prescription). These values will be
assumed from now on whenever we refer to the PL model. Accordingly, further discussion
of the MFS model will henceforth be understood to correspond to the hard-sphere case.

5. Remarks and discussion

The main differences between the MFS model and exact results for a sphere [1, 23] are that

(i) the MFS matrix is of purely dipolar nature, while the exact matrix is not,
(ii) when µs = µm, the MFST -matrix is proportional to the identity matrix, while the exact

one distinguishes between longitudinal and transverse parts with respect to bothk1 and
k2; and

(iii) there is no dielectric-magnetic coupling between the dielectric and the magnetic
polarizabilities (in consequence the MFST -matrix cannot for example account for the
eddy currents in a metal sphere).

Let us briefly examine causality. The PL model is not causal, as we can demonstrate
via a simple example whereεm = 1 andεs = 2. On physical grounds, the polarizabilityᾱε

should be a causal response function but, in the PL limit, one may readily verify thatᾱε



T -matrix of finite-size spheres and fuzzy scatterers 185

possesses a spurious pole atakm = 2.32i in the upper complexω half-plane (ω-UHP). This
precludes the fulfilment of the Kramers–Kronig (KK) causality rules on this polarizability.
For comparison, the physical resonance in this PL example is at(akm)ε = 2.24, i.e. with a
modulus comparable with that of the spurious pole.

In order to illustrate the above point numerically, we have plotted in figure 1 the quantity
Reᾱε againstaω/c for both the PL and the MFS model. The curves labelled (anal.) are
obtained by directly computing Rēαε from the expression for̄αε. The curves labelled (KK)
are obtained via the KK formula

Re [ᾱε(ω)] = lim
ω→∞

{
Re [ᾱε(ω)]

} + 2

π
P

∫ ∞

0

ω′ Im [ᾱε(ω
′)]

ω′2 − ω2
dω′. (5.1)

For frequency-dependent permittivities, realistic over the whole frequency range, the term
limω→∞{Re [ᾱε(ω)]} is necessarily zero (since physics requires that bothεs and εm tend
to the common limit 1). This limit can, however, be non-zero in general ifεs and εm are
assumed to be model values whose physical relevance is limited to a restricted frequency
range.

Figure 1. Tests of the KK relations carried out on the MFS and PL approximations for the
dynamic polarizabilities of dielectric spheres,εs = 5, embedded in a homogeneous background
medium,εm = 1. The curves MFS (anal.) and PL (anal.) are the real parts of the polarizabilities
(equations (3.14)) calculated using equation (3.16) (MFS) and equation (4.2a) (PL), respectively.
The curves MFS (KK) and PL (KK) for the real polarizabilities are calculated by applying the
KK relation (5.1) to the imaginary parts of the polarizabilities.

Irrespective of the physical content of the models used for the constitutive parameters,
equation (5.1) should always be satisfied. In the PL model, limω→∞{Re [ᾱε(ω)]} is 0
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while, in the MFS model, limω→∞{Re [ᾱε(ω)]} = (εs − εm)/εs . Integral (5.1) has been
numerically computed by combining the Cauchy principal value integration routine, and
that for integration over a semi-infinite interval provided in the IMSL library package.
In figure 1, we have usedεm = 1, µm = 1 and εs = 5. Both the direct and the KK
calculations lead to the same result in the MFS case, except for a small deviation observable
at aω/c ' 0.675 that is due to a breakdown of the integration method, but of no physical
relevance (a different choice of the frequency step makes this discrepancy disappear). In
contrast, the direct and KK curves fail to match in the PL model.

It is difficult to discuss the question of the poles in the polarizability in full generality
for arbitrary frequency-dependent complex values ofεm and εs . We therefore restrict the
following analytic discussion to the case where these quantities are real. This assumption
implies that they should also be frequency independent and greater than 1 [20]. A purely
imaginary pole in theω-UHP exists whenever the (real) equation

εs

εm

=
(

1 − 1

L̄

)∣∣∣∣
ω=ix

(5.2)

admits a real solutionx. This is always the case in the PL model, but it never happens in
the MFS model provided thatεs/εm > 0, which is consistent with our above stated working
hypothesis. Graphical investigations show that there is no other possibility for a pole in the
ω-UHP in the MFS model as long as Re(akm) > 0 (Im L̄ = Re(akm)× a purely positive
function of akm).

We have also checked the KK rules numerically for several frequency-dependent models
of permittivities (Drude metal models). In all cases under consideration, the plots of the
direct and KK expressions for Reᾱε were nearly indistinguishable to the eye as in the
frequency-independent case above.

We emphasize the fact that theT -matrix itself, T(k1|k2), properly normalized (its
dielectric part has to be divided by(ω/c)2) obeys a similar KK formula when the
Fourier momentum variablesk1 andk2 are real frequency-independent quantities, but not if
k1 = k2 = km (on-shell values) for instance. Owing to the oscillatory shape factorψ0(km)2,
T(km|km) is singular atω = i∞, and Jordan’s lemma does not apply. This does not mean
that causality is violated, but merely that the derivation of the KK formula, relying on
contour integration, is no longer valid. The KK formula applied toT(km|km) has to be
modified (via a transformation of the integrand) in order to yield correct results.

We now discuss the possibility of enriching the MFS model so as to account
for dielectric-magnetic coupling. Quite interestingly, it turns out that under the
‘renormalization’ substitutions (the functionQ1 is defined in the appendix)

1

εs

→ Q1(aks)
1

εs

+ (1 − Q1(akm))
1

εm

1

µs

→ Q1(aks)
1

µs

+ (1 − Q1(akm))
1

µm

(5.3)

the transverse–transverse ZZ and XX components (A9) of the vector spherical harmonics
(VSH) expansion of the MFST -matrix (cf. appendix) evaluated on shell, i.e. atk1 = k2 =
km, match theexacton-shelll = 1 ZZ and XX components (A10) for a hard sphere [23].
Note that the substitutions preserve the unitarity identity, equation (3.4), since they involve
only real quantities in the non-dissipative case. These substitutions somewhat generalize to
arbitrary media and frequencies those proposed in [24, 25] in a slightly different context,
which are

εs → εs

Q1(aks)
µs → µs

Q1(aks)
. (5.4)

The function Q1(aks) accounts for the spatial distribution of the inner fields and is
responsible for the induced diamagnetic susceptibility due to eddy Foucault currents at
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the surface of a metallic sphere at low frequencies. For a metallic sphere in a dielectric
medium, provided thatakm � 1 � aks , one obtainsᾱµ 6= 0 even if µs = µm. In this
circumstance, equation (5.3) then reduces to equation (5.4). We remark that equation (5.4)
may be directly obtained by solving the inner problem [20, 24, 25].

The problem with equation (5.3) or equation (5.4) is that neither substitution can be
consistently performed in the MFS model whenk1 and k2 are arbitrary. For instance, in
order to recover the vanishing of certain terms whenεs = εm or µm = µs , displayed by the
exact momentum-dependentT -matrix of a magnetic and dielectric sphere atk1 = k2 = 0
(values of particular interest for defining the effective constitutive parameters of a random
medium [23]). Moreover, the MFS model does not distinguish between the longitudinal and
the transverse electric components of theT -matrix, so that a renormalization of the inner
dielectric constant applies to all elements at once. In exact results, the dynamic behaviours
of the transverse and longitudinal components are different. This cannot be corrected in the
context of the present model because anyT -matrix here has to be proportional toI when
k1 = k2 = 0.

In spite of its weaknesses, the MFS compares fairly well with the exactl = 1 on-
shell formula (A10a), especially in the dissipative case: in figures 2(a) and 2(b), we
plotted the real and imaginary parts of the MFS model, the PL model and equation (A10a)
(normalized so as to yield the value ofᾱε when ω = 0), as a function of the reduced
frequency. Figure 2(a) is a non-dissipative case:εs = 5, εm = 1, µs = µm = 1. We
see that the MFS model reproduces the exact dipolar formula up to the resonance region.
The PL model, although overestimating the resonance height, yields a somewhat better
overall shape. In the dissipative Drude case of figure 2(b), where we have arbitrarily put
εs = 6− 20/{(aω/c)[(aω/c)+ 0.035i]}, the MFS model is much closer to the exact dipolar
result than is the PL model.

6. Conclusion

The mean-field sphericalT -matrix that we introduced has several attractive features; it
permits the consistent implementation of excluded volume effects in multiple-scattering
models because of its separable structure, it obeys the unitarity identity, and finally it
preserves causality for a wide class of physical constitutive parameters. The magnetic–
dielectric coupling responsible for induced effective magnetism is, however, beyond its
intrinsic abilities. A phenomenological renormalization of the inner dielectric constant
corrects the situation whenk1 = k2 = km, but cannot apply to the general off-shell case.
The MFS model does not truly distinguish between transverse and longitudinal components.
A simple and more physical model which would exhibit such a distinction seems hard to
obtain without entering into the complications of the full problem. We believe, however, that
the MFS model incorporates sufficient phenomenology to be useful in multiple-scattering
applications.
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Figure 2. Comparison between the dynamic dielectric polarizabilities in the MFS and PL models
compared with the exact dipolar on-shell polarizabilities deduced from the exactT -matrix values
T ZZ

1 (km|km)(see equation A10a): (a) non-dispersive scatterer,εs = 5, εm = 1, µs = µm = 1;
(b) dissipative Drude sphere,εm = 1, εs = 6 − 20/[(aω/c)(aω/c + 0.035i)], µs = µm = 1.
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Appendix. Vector spherical harmonics

In this work, we used orthonormalized spherical harmonics∫
d� Ylm(�)Y ∗

l′n′(�) = δl,l′δn,n′ . (A1)

The vector spherical harmonics (VSHs) are the generalization for vector fields of the
spherical harmonics for scalar fields. They are defined so as to provide an orthonormalized
trihedral basis of definite angular momentum statesl > 0, n = −l, . . . , l on which any
vector field may be expanded, they are given by

Nln(�k) ≡ Y (0)
ln (k̂) ≡ k̂ Yln(�k) (l > 0) (A2a)

Zln(�k) ≡ Y (e)
ln (k̂) ≡ 1√

l(l + 1)
∇�k

Yln(�k) (l > 1) (A2b)

Xln(�k) ≡ Y (m)
ln (k̂) ≡ 1√

l(l + 1)
k̂ × ∇�k

Yln(�k) (l > 1) (A2c)

where the operator∇�k
denotes the angular part of the operator∇ = k̂ ∂/∂k + (1/k)∇�k

in spherical coordinates. The more standard notation for the VSHs isY (0),(e),(m)
ln , as used by

Newton [27]. In the following, we employ the alternative VSH symbolsNln, Zln andXln

as found in the book by Cohen-Tannoudjiet al [26]. This alternative notation generalizes
that of Jackson [28] and has the merit of rendering our formulae more readable by alleviating
the need for superscripts.

The above VSHs comply with the orthonormalization conditions∫
d�k A∗

ln(�k) · Bl′n′(�k) = δA,Bδl,l′δn,n′ (A3)

whereA, B representN , X or Z indifferently and satisfy the closure relation∑
ln

{|Nln〉〈Nln| + |Xln〉〈Xln| + |Zln〉〈Zln|
} = 1. (A4)

Of use are the sums which follow from the identity∑
n

Yln(�k1)Y
∗
ln(�k2) = 2l + 1

4π
Pl(u) (A5)

whereu = k̂1 · k̂2 andPl is the Legendre polynomial given by

Pl(x) = 1

2l l!

dl

dxl
(x2 − 1)l . (A6)

One finds that∑
n

Nln(�k1)N
∗
ln(�k2) = 2l + 1

4π
Pl(u) k̂1k̂2 (A7a)

∑
n

Nln(�k1)Z
∗
ln(�k2) = 2l + 1

4π
√

l(l + 1)
P ′

l (u) k̂1 [k̂1 − uk̂2] (A7b)

∑
n

Zln(�k1)N
∗
ln(�k2) = 2l + 1

4π
√

l(l + 1)
P ′

l (u) [k̂2 − uk̂1] k̂2 (A7c)

∑
n

Zln(�k1)Z
∗
ln(�k2) = 2l + 1

4πl(l + 1)
P ′′

l (u) [k̂2 − uk̂1] [ k̂1 − uk̂2]
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+ 2l + 1

4πl(l + 1)
P ′

l (u)[I − k̂1k̂1 − k̂2k̂2 + uk̂1k̂2] (A7d)∑
n

Xln(�k1)X
∗
ln(�k2) = 2l + 1

4πl(l + 1)
P ′′

l (u)(k̂1 × k̂2)(k̂2 × k̂1)

+ 2l + 1

4πl(l + 1)
P ′

l (u) [u I − k̂2k̂1]. (A7e)

These formulae permit us to deduce the representations

I = 4π

3

∑
n

[
N1n(�k1)N

∗
1n(�k2) +

√
2N1n(�k1)Z

∗
1n(�k2)

+
√

2Z1n(�k1)N
∗
1n(�k2) + 2Z1n(�k1)Z

∗
1n(�k2)

]
, (A7f)

−k̂1 × k̂2 × = 8π

3

∑
n

X1n(�k1)X
∗
1n(�k2). (A7g)

The expansion of the MFST -matrix over the vector spherical harmonics basis is

T0(k1|k2) =
∑

l,n

A,B=N ,Z,X

T AB
l (k1|k2)Aln(�k1)B

∗
ln(�k2) (A8)

with

T NX
l (k1|k2) = T XN

l (k1|k2) = T ZX
l (k1|k2) = T XZ

l (k1|k2) = 0 (A9a)

T ZZ
l (k1|k2) = δl,1

8π

3
Vs

k2
m

µm

ᾱεψ0(k1)ψ0(k2) (A9b)

= 2T NN
l (k1|k2) =

√
2T NZ

l (k1|k2) =
√

2T ZN
l (k1|k2)

T XX
l (k1|k2) = δl,1

8π

3
Vs

k1k2

µm

ᾱµψ0(k1)ψ0(k2) (A9c)

thus illustrating its dipolar nature.
For comparison, the exact on-shell (k1 = k2 = km) transverse–transverse elements ZZ

and XX for a sphere are (l > 1) [23]

(2π)3

Vs

µm

k2
m

T ZZ
l (km|km) = 4π(l + 1)

εsQl(akm) − εmQl(aks)

lεsQ
(1)
l (akm) + (l + 1)εmQl(aks)

3jl(akm)

i(akm)3h
(1)
l (akm)

(A10a)

(2π)3

Vs

µm

k2
m

T XX
l (km|km) = 4π(l + 1)

µsQl(akm) − µmQl(aks)

lµsQ
(1)
l (akm) + (l + 1)µmQl(aks)

3jl(akm)

i(akm)3h
(1)
l (akm)

(A10b)

whereVs = 4πa3/3 is the volume of the sphere. These are simply the well known Mie
coefficients deduced from the solution of the outer problem [29].

The functionsQl andQ
(1)
l given by

Ql(x) = 1

l + 1

[xjl(x)]′

jl(x)
(A11a)

Q
(1)
l (x) = − 1

l

[xh
(1)
l (x)]′

h
(1)
l (x)

(A11b)
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are defined in terms of the spherical Bessel and Hankel functionsjl and h
(1)
l so that they

go to 1 in the limitx → 0. They obey the Wronskian identity

lQ
(1)
l (x) + (l + 1)Ql(x) = 1

ixjl(x)h
(1)
l (x)

. (A12)

For l = 1 we find that

Q1(x) = 1
2

[
−1 + x2

1 − x cot(x)

]
(A13a)

Q
(1)

1 (x) = 1 − x2

1 − ix
. (A13b)
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