Électromagnétisme – contrôle continu 1

Année universitaire 2016-17

Pas de documents - calculatrices collège autorisées et même recommandées - durée 1h30

Le candidat veillera à écrire lisiblement, soigner la rédaction de sa copie, préciser les unités des grandeurs et indiquer les vecteurs par une flèche surmontant leur symbole.

A - Interactions fondamentales

Suivant le modèle de Bohr de l'atome d'hydrogène, l'électron décrit autour du proton une orbite circulaire de rayon $r=53\,\mathrm{pm}=5.3\cdot10^{-11}\,\mathrm{m}$.

- 1. (1 point) Quelle est l'unité de la charge électrique dans le Système International?
- 2. (1 point) Préciser q_p la charge électrique du proton et q_e la charge électrique de l'électron en fonction du quantum de charge $e=1,6\cdot 10^{-19}\,\mathrm{C}.$
- 3. (1 point) Calculer l'énergie potentielle électrostatique $\mathcal{E}_p = \frac{q_e q_p}{4\pi\varepsilon_0 r}$ de l'électron en orbite autour du proton, avec $\frac{1}{4\pi\varepsilon_0} = 9 \cdot 10^9 \, \mathrm{Nm^2/C^2}$ la constante de Coulomb.
- 4. (1 point) Ces deux corps chargés s'attirent-ils ou se repoussent-ils? Faire le lien avec l'énergie potentielle électrostatique.
- 5. (1 point) Quelle quantité d'énergie \mathcal{E} faut-il apporter à l'atome pour contrer la force de Coulomb et libérer l'électron de l'emprise électrostatique du proton?

B - Accélérateur

Une particule alpha est constituée de deux protons et de deux neutrons. Sa masse est de $m_{\alpha} = 6.6 \cdot 10^{-27} \,\mathrm{kg}$.

- 1. (1 point) Donner la charge q_{α} en coulombs d'une particule alpha. On rappelle le quantum de charge $e=1,6\cdot 10^{-19}\,\mathrm{C}.$
- 2. (2 points) Calculer la variation d'énergie cinétique $\Delta \mathcal{E}_p$ d'une particule alpha qui passe du repos à une vitesse de $v=100\,\mathrm{m/s}$.
- 3. (2 points) Quelle différence de potentiel U permet une telle variation d'énergie cinétique?

C - Puissance électrique

Calculer la puissance $p = \vec{F} \cdot \vec{v}$ de la force de Coulomb $\vec{F} = q\vec{E}$ exercée par le champ électrique \vec{E} sur un corps de charge q et de vitesse \vec{v} dans les deux cas suivants :

- 1. (2 points) Le corps a pour charge $q=175\,\mu\text{C}=1,75\cdot10^{-4}\,\text{C}$ et pour vitesse $v=100\,\text{m/s}$ dans un champ électrique d'amplitude $E=20\,\text{V/m}$ et faisant un angle de 45° avec le vecteur vitesse.
- 2. (2 points) Le corps a pour charge $q = 5 \,\mu\text{C}$ et pour vecteur vitesse $\vec{v} = -85\vec{u}_x + 15\vec{u}_y + 25\vec{u}_z \,\text{m/s}$ dans le champ électrique $\vec{E} = 220\vec{u}_x + 220\vec{u}_y \,\text{V/m}$.

D - Vecteur force

On considère dans un sytème de coordonnées cartésiennes (x,y,z) centré sur l'origine O trois particules chargées $q_1=20\,\mathrm{nC}=2\cdot 10^{-8}\,\mathrm{C},\ q_2=-30\,\mathrm{nC}$ et $q_3=+40\,\mathrm{nC}$ localisées respectivement aux points $P_1=(1\,\mathrm{cm},1\,\mathrm{cm},1\,\mathrm{cm}),\ P_2=(5\,\mathrm{cm},0\,\mathrm{cm},3\,\mathrm{cm})$ et $P_3=(7\,\mathrm{cm},1\,\mathrm{cm},-2\,\mathrm{cm}).$

- 1. (2 points) Déterminer les distances $r_{13} = P_1 P_3$ et $r_{23} = P_2 P_3$.
- 2. (2 points) Calculer les composantes des vecteurs unitaires $\vec{\mathbf{u}}_{13}$ de P_1 vers P_3 et $\vec{\mathbf{u}}_{23}$ de P_2 vers P_3 .
- 3. (2 points) En déduire les composantes des forces \vec{F}_{13} exercée par q_1 sur q_3 et \vec{F}_{23} exercée par q_2 sur q_3 .