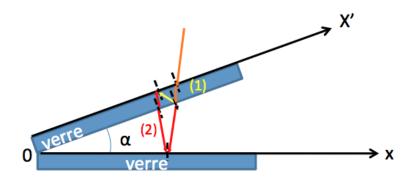


Année universitaire 2015/2016

Site: Luminy	\square St-Charles \boxtimes	ßt-Jérôme □ Cl	nt-Gombert	\boxtimes Aix-Montperrin	☐ Aubagne-SATIS
Sujet session de : $\boxtimes 1^{er}$ s	semestre $\Box 2^{eme}$	semestre Session	on 2	Durée de l'épreuve	e: 2h
Examen de : \square L1 \boxtimes L2 \square	□ L3 □ M1 □ M2 □	\square LP \square DU Nom	diplôme :	Licence Chimie	
Code Apogée du module :	SPC3U2TJ L	ibellé du module :	Electromag	gnétisme pour la	chimie (UE32C)
Documents autorisés :	□ OUI ⋈ NON	Calc	ulatrices autor	risées : 🛛 OUI 🏻 🖺	□ NON
	Partie	I : Électrom	agnétism	ie	
	i ai iic	i . Licculoiii	~811C01511		

1 Onde plane


On considère un champ électrique, assimilé à une onde plane monochromatique de fréquence $f=3\,\mathrm{GHz}$, se propageant dans le vide. Ce champ s'exprime par l'expression : $\vec{E}=E_0\cos(k\,y-\omega\,t)\,\vec{e_x}$.

- 1. Exprimer le vecteur d'onde \vec{k} et calculer la valeur de sa norme.
- 2. Selon quelle direction se propage ce champ électrique? (justifier)
- 3. A quoi correspond la grandeur ω ? Calculer sa valeur numérique?
- 4. Comment est polarisé ce champ électrique? (justifier)

Partie II : Optique physique

2 Interférences produites par un coin d'air

On considère un dispositif coin d'air, composé de deux lames de verre d'indice n=1.5, formant un angle α entre elles. Une onde électromagnétique monochromatique de longueur d'onde $\lambda=650\,nm$ arrive avec une incidence quasi-normale sur ce dispositif.

1. A quel endroit peut-on observer un phénomène d'interférence? Expliquer.

- 2. A chaque interface, l'angle d'incidence étant très faible, on considère que cet angle est nul et que les faisceaux arrivent en incidence normale. Etablir, sous cette approximation, la différence de marche $\delta(x)$ entre le faisceau (1) et le faisceau (2).
- 3. Exprimer l'intensité lumineuse observée le long de l'axe (0X'). Pour cela, comme l'angle α est petit, on fera l'approximation $tan(\alpha) \approx \alpha$.
- 4. Définir l'interfrange et ensuite, déterminer l'expression de l'interfrange pour ce dispositif.
- 5. On effectue une mesure de l'interfrange $i=1\,mm$, quel est la valeur de l'angle α entre les deux lames de verre?

3 Diffraction par des structures périodiques

• Partie A.

On considère une structure périodique à une dimension de périodicité a placée dans une enceinte sous vide (n = 1) et illuminée par une onde plane monochromatique (cf. figure 1).

L'angle d'incidence (angle entre le vecteur d'onde incident et la normale à la structure périodique au point d'incidence) est noté θ_0 .

L'angle de diffraction est noté respectivement θ^+ ou θ^- selon que l'onde diffractée se propage du même côté de la normale que l'onde incidente ou du côté opposé.

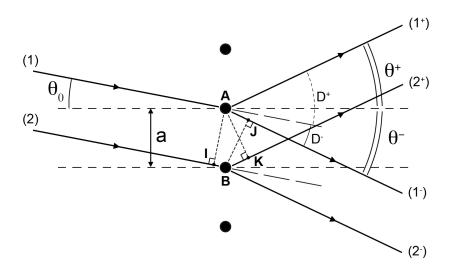


Figure 1 – Diffraction par une structure périodique à 1 dimension.

- 1. À l'aide de la figure 1, exprimer en fonction de d, θ^+ et θ^- la différence de marche δ^+ entre les rayons diffractés (1^+) et (2^+) et la différence de marche δ^- entre les rayons diffractés (1^-) et (2^-) . Exprimer les déphasages $\Delta \phi^+$ et $\Delta \phi^-$ associés.
- 2. Dans quelle condition l'intensité diffractée est-elle maximale ? Retrouver alors la relation fondamentale des réseaux :

$$m\lambda = a\left(\sin\theta_0 \pm \sin\theta\right) \quad (\text{avec } m \in \mathbb{N})$$

- 3. Que vaut l'angle de déviation D entre l'onde incidente et l'onde diffractée?
- 4. En exprimant $\partial D/\partial \theta$ chercher la condition sur θ pour laquelle la déviation D est minimale.
- 5. En déduire la relation entre θ , m, λ et a dans ces conditions.
- 6. On se place en condition d'incidence normale. Quelle est la relation entre θ , m, λ et a dans ces conditions particulières de diffraction?

• Partie B.

On étudie à présent la diffraction par une structure cristalline. Celle-ci est constituée d'un empilement périodiques de plans atomiques (cf. figure 2).

Une onde monochromatique atteint ce cristal placé dans une enceinte sous vide avec un angle d'incidence θ_0 entre le vecteur d'onde incident et les plans atomiques (hkl). L'intensité diffractée est maximale suivant la direction formant un angle θ_{hkl} avec les plans (hkl).

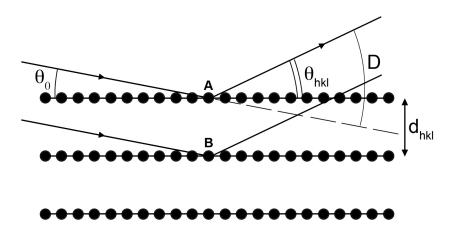


FIGURE 2 – Diffraction par une famille de plans réticulaires.

- 1. En considérant que les plans atomiques se comportent comme des miroirs pour l'onde incidente, donner la relation entre θ_{hkl} et θ_0 .
- 2. En utilisant les résultats obtenus dans la partie A, retrouver alors la loi de Bragg donnant les conditions pour lesquelles l'intensité diffractée est maximale :

$$m\lambda = 2d_{hkl}\sin\theta_{hkl}$$
 (avec $m \in \mathbb{N}$)

- 3. Quelle condition doit remplir d_{hkl} pour l'onde incidente soit diffractée par la structure cristalline?
- 4. Lorsque les plans (hkl) du cristal se trouvent en condition de diffraction (condition de Bragg), quel est l'angle entre le faisceau indicent et le faisceau diffracté?
- 5. On réalise à présent une expérience de diffraction en illuminant un cristal à l'aide d'un faisceau de rayons X de longueur d'onde $\lambda=1,54$ Å.

Au cours de l'expérience, le cristal effectue une rotation θ sur lui même tandis qu'un détecteur effectue conjointement une rotation 2θ autour du même axe.

Des maxima d'intensité sont obtenus pour les valeurs suivantes de l'angle θ :

θ (°) 20	,24 29,30	36,82	43,79	50,69
----------	-----------	-------	-------	-------

- (a) Quel est l'intérêt de faire tourner le détecteur d'un angle 2θ lorsque le cristal tourne d'un angle θ ?
- (b) En supposant que la diffraction a lieu à l'ordre 1 (i.e. m = 1), quelles sont les distances interéticulaires d_{hkl} correspondant aux intensités mesurées?
- (c) Le cristal étudié est un échantillon métallique présentant une structure cristalline cubique. S'agit-il selon vous de molybdène de paramètre de maille $a_{Mo}=3,147\,\text{Å}$ ou de tungstène de paramètre de maille $a_{W}=3,1652\,\text{Å}$?

Rappel : Pour une structure cubique de paramètre de maille $a: d_{hkl} = a/\sqrt{N}$, avec $N = h^2 + k^2 + l^2$