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Abstract: The polarization and temporal coherence properties of light are
altered by scattering events. In this paper, we follow a far-field approach,
modelizing the scattering from disordered media with the scattering matrix
formalism. The degree of polarization and coherence time of the scattered
light are expressed with respect to the characteristics of the incident field.
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1. Introduction

It has been recently demonstrated how scattering from complex and disordered media – rough
surfaces and inhomogenous bulks – can alter the polarization of light. When incident and scat-
tered light are compared, decrease [1] as well as increase [2–4] of the so-called degree of polar-
ization (DOP) can be met. Note that reported decreasing DOP comes from a spatial integration
of the speckle, while increasing DOP, also called enpolarization, is a purely temporal feature.
Those results, that mainly concern quasi-monochromatic fields, are now enriched with a study
of the temporal coherence of scattered light.

The use of statistical concepts and methods is one of the cornerstones of modern Optics [5,6],
and is ultimately tied to the quantized nature of light. It is now well established that space-time
coherence of light is formalized at first-order in most generality with the coherence matrix
and its spectral counterpart the Wolf’s spectral density matrix [7, 8]. Such a theory was ap-
plied to weak scattering media under the Born approximation [9–12]. For example, turbulent
atmosphere was addressed in [13]. Those derivations were based on a Green’s function ap-
proach. Also, optical fibers were studied with the coherence matrix, this time under paraxial
approximation [14–16]. In all cases, both temporal and spatial coherences were considered.

The paper is organized as follows. After this introduction, the DOP and coherence time are
defined in section 2, with no reference to scattering. The electric field is here profitably mod-
elized as a time-stationary process, since common detectors integrate the random fluctuations
of light. For relating incident and scattered coherence matrices associated to a scattering event,
our approach is based on the scattering matrix formalism rather than the Green’s function, as
detailed in section 3. Then, in section 4 we consider the case of an incident light with the
self-correlations of its two modes proportional. This is a departure from generality that greatly
simplifies and clarifies derivations. The expressions for the DOP and coherence time of the
scattered light are given in section 5. They constitute the key point of this article. They rely on
several integrals in the spectral domain. Those integrals are analytically tractable in the case
of Gaussian self-correlation functions and Gaussian spectral degree of coherence. This case
is detailed in section 6. In section 7 devoted to numerical illustration, the Gaussian case for
incident light is coupled with the random phasors scattering model. This heuristic model, clas-
sically used in statistical Optics, is attached to the strongly scattering regime. Mappings of the
scattered DOP and coherence time are shown, as well as distributions estimated from these
mappings for these two quantities, in different configurations of incident light. The paper is
finally concluded.
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2. Temporal coherence and polarization

In this paper, light is described by the two components of its time-stationary electric field in
orthogonal directions. Far field regime is thus assumed, and dependency to spatial variables is
discarded: spatial coherence will consequently not be addressed. The analytical signals of these
components are denoted Ex(t) and Ey(t) and organized in a column vector:

Ē(t) =

[
Ex(t)
Ey(t)

]
(1)

These components can easily be assumed to be centered variables: 〈Ē(t)〉 = 0 , with brackets
denoting statistical mean.

The light is statistically characterized at first-order by the four self- and cross-correlation
functions Γi j(τ) = 〈E∗

i (t)E j(t + τ)〉, where asterisk is for the complex conjugation and τ the
time lag. The coherence matrix is defined out of these four correlations and writes in matrix-
vector notations:

¯̄Γ(τ) = 〈Ē∗(t)ĒT(t + τ)〉=
∫ ∞

0

¯̄W (ν)e−2iπντ dν (2)

with ĒT the transpose of Ē. The spectral density matrix, its Fourier transform, is denoted ¯̄W
and is bounded to positive frequencies ν since Ex(t) and Ey(t) are analytical signals.

Both temporal coherence and polarization informations are encoded in the coherence matrix
¯̄Γ or its spectral counterpart ¯̄W . Their coefficients do depend on the choice of the two orthogonal
directions the electic field is projected on. The invariant quantities of the coherence matrix are
its trace T (τ) and its determinant D(τ).

T = Γxx +Γyy (3)

D = ΓxxΓyy −ΓxyΓyx (4)

The so-called degree of polarization P depends on both invariants, but only at time lag τ = 0,
while the so-called coherence time Δτ is built on the sole trace T but for all time lags.

P =

√
1− 4D(0)

T (0)2 (5)

Δτ =
1

T (0)2

∫ +∞

−∞
|T (τ)|2dτ =

∫ ∞
0 T̃ (ν)2dν(∫ ∞
0 T̃ (ν)dν

)2 (6)

We will make use of the expression of the coherence time Δτ in the spectral domain, with
T̃ (ν) =

∫ +∞
−∞ T (τ)e+2iπντ dτ the Fourier transform of the trace T .

Note that the definitions (5) and (6) are not unique. The so-called full width at half maximum
is of common use for long, but appears quite unsuited to analytical derivations. The bandwidth
Δν of light is the spectral counterpart of the coherence time [6, § 4.3.3]. With Eq. (6) that can be
met in [6, eq. 4.3-78 and 4.3-82], the coherence time-bandwidth product is a constant ΔτΔν = 1.
An increasing in coherence time is necessarily balanced by a decreasing in the bandwidth. Also
exists [6, eq. 4.3-66] the more complex definition

√∫
τ2|T (τ)|2dτ/

∫
|T (τ)|2dτ (7)

for the coherence time. Here, the product is only lower-bounded: ΔτΔν ≥ 1/(4π), with possible
variations of the coherence time at constant bandwidth. This reciprocity inequality can represent
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interesting physics, but the inequality turns to equality in the case of a Gaussian trace T . Since
this paper ends in numerical results for the Gaussian case (sections 6 and 7), we stick from now
on to Eq. (6) for the coherence time, that is both simple and analytically tractable.

The degree of polarization (5) and the coherence time (6) are respectively linked to the in-
tensity contrast in interferometry and ellipsometry experiments. Recently, several alternative
definitions of those quantities have been proposed in the literature [17–21], that takes into ac-
count other physical aspects of polarization and temporal coherence. These new results are left
for future investigations.

3. Scattering matrix

The theory of electromagnetic wave scattering is generally formalized in time-harmonic regime.
With the sole assumption that the scattering medium is linear, incident plane wave and scattered
fields are linked by the so-called scattering matrix ¯̄Σ(ν) [22, chap. 11] (see also [23]).

Ēs(ν) = ¯̄Σ(ν)Ēi(ν) (8)

The incident field Ēi(t) is assumed to have a plane wave structure in the scattering region. With
r̂i the propagation direction, two independent components of the electric field in the polarization
plane normal to r̂i form the vector Ēi(t). The scattered field is detected in far field conditions.
Discarding dependency to the distance between the scattering center and the detector, the scat-
tered field is characterized by its scattering amplitude Ēs(t).

The scattering matrix completely characterizes the scattering medium at frequency ν . This
complex 2-matrix is a function of the incident and scattering directions r̂i and r̂s. It writes:

¯̄Σ =

[
Σxx Σxy

Σyx Σyy

]
(9)

with Σxx and Σyy the co-polarized coefficients and Σxy and Σyx the cross-polarized coefficients.
Remark that subscripts x and y denote different directions for incident and scattered fields.

The scattering matrix formalism can be extended to partially coherent and partially polarized
incident light. With light considered as a random stationary process, the spectral density matrix
is related to the generalized Fourier transforms of the fields by :

〈Ē ∗(ν1)Ē
T(ν2)〉= ¯̄W (ν2)δ (ν2 −ν1) (10)

denoting δ the Dirac distribution. With (8) and in the case of a deterministic disordered medium,
scattered and incident spectral density matrices become also directly connected :

¯̄W
s
(ν) = ¯̄Σ

∗
(ν) ¯̄W

i
(ν) ¯̄Σ

T
(ν) (11)

In many situations, including but not limited to quasi-monochromatic light, the variation of
the scattering matrix over the incident light bandwidth can be neglected. We then write

¯̄Γs(τ) = ¯̄Σ
∗
(ν0)

¯̄Γi(τ) ¯̄Σ
T
(ν0) (12)

with ν0 the incident light central frequency. We can now focus on the determinant and trace, in-
variants of the scattered filed coherence matrix. With determinant property for matrix products,
the determinant is simply:

Ds(τ) = |DΣ(ν0)|2Di(τ) DΣ = ΣxxΣyy −ΣxyΣyx (13)
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that is proportional to the incident one. The expression of the scattered trace is less reducible:

Ts(τ) = Tr
(

¯̄M(ν0)
¯̄Γi(τ)

)
¯̄M = ¯̄Σ

∗ ¯̄Σ
T
=

[ |Σxx|2 + |Σxy|2 Σ∗
xxΣyx +Σ∗

xyΣyy(
Σ∗

xxΣyx +Σ∗
xyΣyy

)∗ |Σyx|2 + |Σyy|2
]

(14)

with ¯̄M a positive hermitian matrix.

4. Incident field coherence matrix

To go further into the derivation, we focus on some specific incident light, that we define as
follows. With central frequency ν0, the diagonal elements of its coherence matrix write

Γi
xx(τ) = Γ0 e−2iπν0τ gi(τ) W i

xx(ν) = Γ0 g̃i(ν −ν0)
Γi

yy(τ) = βi Γ0 e−2iπν0τ gi(τ) W i
yy(ν) = βi Γ0 g̃i(ν −ν0)

(15)

where gi(τ) is a real even function with gi(0) = 1 and Γ0 a real positive constant. The two
self-correlation functions share the same shape gi(τ), differing only in levels : real positive
βi is the so-called polarization ratio. The two trivial examples for g are the Gaussian function
for Doppler-broadened sources and the exponential function for collision-broadened sources.
Gaussian function is investigated in the next section. Following Eq. (6) in the spectral domain,
the incident coherence time Δτi is ruled by function gi(τ): with Ti(0) = Γ0(1+βi),

Δτi =
∫ +∞

−∞
|gi(τ)|2dτ =

∫ ∞

0
g̃2

i (ν −ν0)dν (16)

The incident cross-correlation function is more easily described in the spectral domain, intro-
ducing the so-called spectral degree of coherence wi(ν):

W i
xy(ν) = (W i

yx)
∗(ν) =

√
βiΓ0g̃i(ν −ν0)wi(ν) |wi(ν)| ≤ 1 (17)

Then determinant at null time lag writes

Di(0) = Γ2
0βi(1−|μi|2) μi =

Γi
xy(0)√

Γi
xx(0)Γi

yy(0)
=

∫ ∞

0
g̃i(ν −ν0)wi(ν)dν (18)

leading to a classical formula for the incident DOP:

Pi =

√
1− 4βi

(1+βi)2 (1−|μi|2) (19)

5. Scattered field temporal coherence and polarization

For the scattered field, the trace writes in the spectral domain

T̃s(ν) = Γ0χ g̃i(ν −ν0)(1+ℜe[αwi(ν)]) (20)

introducing for convenience

χ = Mxx(ν0)+βiMyy(ν0)> 0 α =
2
√

βiMyx(ν0)

χ
(21)

Note than χ vanishes only when the complete scattering matrix is zero, an uninteresting case
that is discarded in this paper. With an intensity, that is the value of the trace at null time lag:

Ts(0) =
∫ ∞

0
T̃s(ν)dν = Γ0χ(1+ℜe[αμi]) (22)

#194713 - $15.00 USD Received 26 Jul 2013; revised 5 Sep 2013; accepted 16 Sep 2013; published 2 Oct 2013
(C) 2013 OSA 7 October 2013 | Vol. 21,  No. 20 | DOI:10.1364/OE.21.024191 | OPTICS EXPRESS  24195



the scattered DOP is

Ps =

√
1− |DΣ(ν0)|2

χ2

4βi(1−|μi|2)
(1+ℜe[αμi])2 (23)

It is remarkable that the scattered DOP depends on the incident DOP through βi and μi and the
scattering matrix through ¯̄M, but not on the incident coherence time Δτi. This property is not tied
to incident fields with coherence matrix as detailed in section 4, and is most general for partially
coherent and partially polarized light, as demonstrated in [4]. From Eq. (23) can be directly
retrieved the sufficient condition for total repolarization of light, whatever the polarization of
the incident light:

ΣxxΣyy = ΣxyΣyx (24)

It is now time to estimate the numerator of coherence time (6) for the scattered field. This
term ∫ ∞

0
T̃ 2

s (ν)dν = Γ2
0χ2

(
Δτi +

|α|
2

A+ℜe[2αB+
α2

2
C]

)
(25)

requires the evaluation of three new integrals, namely

A =
∫ ∞

0
g̃2(ν −ν0)|w(ν)|2dν (26)

B =
∫ ∞

0
g̃2(ν −ν0)w(ν)dν (27)

C =
∫ ∞

0
g̃2(ν −ν0)w

2(ν)dν (28)

Finally, the scattered field coherence time writes:

Δτs =
Δτi +

|α |2
2 A+ℜe[2αB+ α2

2 C]

(1+ℜe[αμi])2 (29)

This time, the Eq. (29) relies the scattered trace to both incident coherence and polarization.
One can check that incident and scattered coherence times coincide at the limit α → 0. α

is proportional to the term Mxy = Σ∗
xxΣyx +Σ∗

xyΣyy. There exist configurations where the cross-
polarized coefficients Σyx and Σxy are negligible, such as rough surfaces with small heights
compared to the central wavelength λ0 = c/ν0, with c the speed of light.

The same limiting value is reached in the totally polarized case when w(ν) = μi = eiϕ0 . In
that case, the integrals analytically write A = Δτi, B = μiΔτi and C = μ2

i Δτi. Equal scattered
and incident coherence times should also be met at the limit μi → 0, so that other defining
conditions on the spectral degree of coherence, along with Eqs. (17)-(18), are that integrals A,
B and C tend toward zero when μi vanishes. These conditions are implemented in the following
section.

6. The Gaussian case

The function gi(τ) in the self-correlation terms is choosen real Gaussian, with only one real
positive parameter, the incident coherence time Δτi.

gi(τ) = e
− π

2

(
τ

Δτi

)2

w(ν +ν0) = eiϕ0e−2π(zν)2 (30)

The spectral degree of coherence is also Gaussian, but complex, with complex parameter
z = r eiθ . A third real parameter, the constant phase ϕ0, is added. With a central frequency
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ν0 sufficiently large compared to the bandwith Δνi = 1/Δτi, the bounds of integrals in Eq. (16),
Eq. (18) and Eqs. (26)-(28) can be extended to the whole real axis. All those integrals are thus
analytical, with expressions:

μi =
eiϕ0√

1+
(

z
Δτi

)2
A = Δτi√

1+ℜe

[(
z

Δτi

)2
]

B = Δτie
iϕ0√

1+ 1
2

(
z

Δτi

)2
C = Δτie

2iϕ0√
1+

(
z

Δτi

)2

(31)

7. Numerical simulations with the random phasors scattering model

We consider a strongly scattering medium, such as an inhomogeneous bulk with high optical
index variations or a rough surface with steep slopes or peak to valley heights larger than the
central wavelength. Such a medium is easily modelized with the random phasors sum phe-
nomenological model [24, 25]. In accordance with this model, each of the four coefficients of
the scattering matrix (9) is modelized by the far field scattered by n2 random phasors placed
on a plane square regular grid with mesh size δx. Those phasors are circular complex gaus-
sian random variables of zero mean and equal variance. They are statistically independent, but
the scattered field is obtained by interference of their individual fields. The computation is effi-
ciently performed with two-dimensional Fast Fourier Transforms (FFT) on N = np points along
each dimension, using zero-padding [26]. With θ the polar angle and ϕ the azimuthal angle,
scattering directions can be pointed by the two horizontal components of the wavevector

{
kx = (ω0/c)sinθ cosϕ
ky = (ω0/c)sinθ sinϕ . (32)

The scattered field is estimated on a regular grid in the (kx,ky) plane with a mesh size δk =
2π

Nδx
.

Each direction (kx = iδk,ky = jδk) on this grid is parametered by two integer numbers (i, j)
in the range [1−N/2 : N/2], and corresponds to a pixel on the maps of forthcoming figures.
The covered region includes n2 speckle grains, with p2 pixels per grain. Those directions are
paraxial under condition δx � λ0 =

2πc
ω0

that is assumed thereafter.

The real part of z2 should be positive, in order for w(ν) to remain a bounded function of the
frequency. This leads to the following inequality:

|ϕ0 − arg μi − kπ| ≤ 1
2

arccos(|μi|2) (33)

with k an integer. At the limit of the totally depolarized incident light, the modulus r of the
complex parameter z tends toward infinity. In order to avoid infinitely dense oscillations of the
spectral degree of coherence w(ν), z is forced to be real at this limit.

μi → 0 r → ∞ θ → 0 (34)

A single realization of the scattered field is estimated using the previously described model
with numbers n = 64 and p = 32. The intensity TS(0) with Eq. (22), the DOP with Eq. (23) and
the coherence time with Eq. (29) are computed for all pixels and a set of values for parameters
βi, μi and z = r eiθ of the incident field correlation matrix.

A complete example is illustrated on Fig. 1 for parameters βi = 1, μi = 1/2, θ = π/8 and
r 	 1.8. All maps are restricted to the 1 ≤ i, j ≤ 512 region for clarity. Nevertheless, the proba-
bility density functions of those three quantities are estimated over the full N2 points, that is a
statistical sample of around four million values. The intensity is normalized by its mean value,
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Fig. 1. Maps (left column) and densities (right column) of the scattered normalized inten-
sity (top line), degree of polarization (middle line) and coherence time (bottom line) for
parameters β = 1, μi = 1/2, θ = π/8 and r 	 1.8.
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and the scattered field coherence time is normalized by the incident field coherence time. This
kind of figures has already been published in [27] for the intensity and in [4] for the degree of
polarization, although a different theoretical approach was undergone. They are given for con-
sistency: the gamma law of order 4 is notably retrieved for the intensity. On the contrary, the
coherence time maps and densities are novel. The coherence time map share the same granular
structure as the degree of polarization, with variations at the scale of the speckle grain. Even if
the most probable value is 0.9Δτi, the distribution is centered on the incident coherence time.
Its coefficient of variation, that is the standard deviation to mean ratio, is around 11% in this
case.

On Fig. 2, the polarization ratio βi is varied. Here again, as for all numerical simulations in
the section, the mean scattered coherence time matches the incident coherence time. It appears
that the scattered coherence time has a coefficient of variation that slightly reduces when the
polarization ration departs from unity. Note that in the strongly scattering regime, a value of βi

and its inverse share the same DOP and coherence time densities.
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Fig. 2. Densities of the degree of polarization (left) and coherence time (right) for parame-
ters μi = 1/2, θ = π/8, r 	 1.8 and three values of parameter βi.

From now on, the polarization ratio is fixed to unity, and the cross-correlation coefficient is
varied from zero to one. In this study, Eqs. (33)-(34) are conditions enforced by setting:

θ =
π
4

μi (35)

The variations of the coherence time coefficient of variation and the mean DOP are reported
on Fig. 3, with several examples of coherence time densities. It can be noted how these last
densities tend toward the Dirac distribution coinciding with the incident coherence time at both
limits μi → 0 and totally polarized light μi → 1. In the given configuration, the coherence time
coefficient of variation reaches its maximum value 13.5% at μi = 0.8.

8. Conclusion

It is shown in this paper that the scattering matrix formalism is well-fitted for the modeliza-
tion of the polarization and temporal coherence properties of light altered by scattering from
disordered but deterministic media. The main outcome is that the coherence time of scattered
light depends on the scattering matrix of the disordered media and both the DOP and the tem-
poral coherence of the incident light, while the scattered DOP is independent of the incident
coherence time. This result has been derived under the assumption that the scattering matrix has
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Fig. 3. The coherence time coefficient of variation and the mean DOP against the cross-
correlation coefficient (left) and densities of the coherence time for several values of the
cross-correlation coefficient (right) for parameters βi = 1 and θ = π

4 μi.

negligible spectral variation over the incident light bandwidth. The exact domain of validity of
such an assumption, that includes the quasi-monochromatic regime, remains to state.

It appears that the estimation of the scattered field coherence time requires the computation
of several integrals that involves the elements of the incident field spectral density matrix. In
the simplifying case where the diagonal elements of this matrix are proportional, the number of
integral is three. Moreover, those integrals are analytical for Gaussian functions. The scattered
field DOP and coherence time can thus easily be mapped in strongly scattering regime, with
the random phasors model. Influence of the incident polarization parameters on the scattered
field coherence time is illustrated. In all our numerical examples, scattered coherence time
distribution is centered on the incident coherence time, with standard deviation up to 13.5%.
We have checked that this deviation vanishes at both limits of totally polarized and depolarized
incident light.

Such a study can be continued or extended in many ways. We briefly mention three of them.
First, Gaussian correlation functions correspond to Doppler-broadened sources of light, but the
exponential correlation functions case is also interesting and commonly met. Here, the integrals
can be estimated numerically. Second, for light with large spectral bandwidth, the nondispersive
scattering matrix asumption no longer hold. In this case, a more physical scattering model is
required, as the random phasor model cannot predict relevant spectral variations. Third, the the-
ory can be generalized to incident field matrix with arbitrary diagonal elements, since common
sources such as Gaussian Schell model frequently exhibit disproportional diagonal elements.
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