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Optical digital tomographic microscopy can be used for profilometry. The profile of the surface can be estimated
from measurements of the complex diffracted far field obtained when the sample is illuminated successively
under various incidences. Outside the validity domain of perturbative theories of diffraction, the profile is deter-
mined by using an iterative inverse wave scattering numerical method. In this paper we show that, for perfectly
conducting surfaces, the two fundamental polarization cases involve different distances of interaction in themulti-
ple scattering phenomenon. The use of both polarization cases in the inversion process leads to a considerable
improvement of the lateral resolution. Robustness to noise is also discussed. © 2012 Optical Society of America

OCIS codes: 290.3200, 050.1755, 290.4210, 290.5880, 120.6660.

1. INTRODUCTION
Optical digital tomographic microscopy (ODTM) is a quanti-
tative three-dimensional imaging technique [1] in which the
optogeometrical parameters of the object (permittivity,
shape) are determined numerically by solving iteratively an
inverse scattering problem. The data used in the numerical
reconstruction of the object are the measurements of the field
diffracted by the object illuminated successively under differ-
ent angles [2]. In the inversion algorithm, different diffraction
theories can be considered for describing the interaction be-
tween the electromagnetic field and the object. When the op-
togeometrical parameters of the object such as the Born
approximation are valid, the object can be reconstructed di-
rectly by calculating a Fourier transform (FT) of the diffracted
field. Different papers [3]4–6] have reported theoretical and
experimental results showing that, in this case, the synthetic
aperture obtained by varying the incidence angle can lead to a
resolution twice better than that of conventional microscopes.
Outside the domain of validity of first-order approximations,
when multiple scattering occurs in the sample, a resolution
beyond the Abbe–Rayleigh criterion can be reached [7–11]. In
this case, an inversion procedure based on a rigorous model of
diffraction is mandatory. Performances of ODTM in terms of
resolution and its capability to reconstruct objects with strong
slopes and high permittivity contrasts show that it is poten-
tially an interesting alternative to classical optical profilome-
try based on Mirau, Linnik, or Michelson interferometers.

A preliminary study of the applicability of ODTM to profi-
lometry in the resonance domain has been presented in a pre-
vious paper [12]. The importance of using a rigorous method
for calculating the scattered field has been stressed, and it has
been shown that ODTM can be applied when high lateral re-
solutions are required. The discussion was made only for sur-
faces illuminated under TE polarization (electric component
perpendicular to the plane of incidence). In this paper we ex-
tend the study to both polarization cases. We have developed
an inversion algorithm for the TM polarization (magnetic com-
ponent perpendicular to the plane of incidence) in the per-
fectly conducting case. We show that better reconstructions

with increased resolution can be obtained when the data mea-
sured for both polarizations are processed by inversion algo-
rithms accounting for TE and TM cases. We show in particular
that the best results are obtained when the profile recon-
structed in TE polarization is used as a starting estimate
for the inversion algorithm in TM polarization. We also give
a physical interpretation of the superresolved reconstruction
reached in the multiple scattering regime. In particular, we
analyze the role of the distance of interaction between the
scatterers on the surface in the far-field measurement.

In Section (2) we describe the scattering problem and we
present the geometry considered. Section (3) is devoted to the
description of the boundary integral equation method used for
calculating rigorously the field scattered by rough surfaces in
TE and TM polarizations. The numerical iterative algorithm
used for reconstructing the surface profile from the scattered
field is described in Section (4). In Section (5) we present the
results of numerical simulations. We analyze the influence of
the distance of interaction between the scatterers on the sub-
wavelength resolution obtained in the multiple scattering
regime. We present some numerical reconstructions of ran-
domly rough surfaces. Robustness against the presence of
noise in the data as well as against errors of positioning angles
of detection are also reported.

2. DIRECT SURFACE WAVE SCATTERING
PROBLEM
For the scattering of an electromagnetic wave from a rough
surface at a given pulsation ω, when the surface height and
the incident field share an invariance direction, two funda-
mental polarization cases appear, which correspond to two
independent scalar two-dimensional scattering problems.
These problems are denoted TE and TM, depending on
whether the electric field or the magnetic field is set parallel
to the invariance direction. In this paper, this direction fits the
y axis of a Cartesian coordinate system �x; y; z� of origin O
and thus �xOz� in the plane of incidence.

Assume that a surface Γ : z � η�x� characterized by its var-
iation of the height η : x → η�x� is successively illuminated
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from air, the incident medium, by L different beams centered
on angles θl and for each illumination l the scattered far field is
measured for M different angles of detection θm. All beams
share the same width, defined by the so-called tapering para-
meter g [13]. In the far field, with a time dependency e−iωt

and wavenumber k � ω
c � 2π

λ , at point rm � �xm; zm� �
�jrmj sin θm; jrmj cos θm� in vacuum along the direction θm,
the scattered field writes as a cylindrical wave:

ψsca�rm; θl� � ψsca
l �rm�∼

�1� i�eikjrmj
4

��������������
πkjrmj

p s�θm; θl�: (1)

The complex amplitude of this field is proportional to the so-
called scattering amplitude s�θm; θl� � sml, which depends on
both the illumination angle θl and the detection angle θm. The
direct surface scattering problem corresponds to the calculus
of the complex-valued array s : ml → sml for a given profile
η : x → η�x�. The inverse surface profiling consists in deter-
mining at best the roughness η : x → η�x� from the knowledge
of the scattering amplitudes s : ml → sml.

For an arbitrary rough surface, there exists no rigorous ana-
lytical solution for the direct surface wave scattering problem.
Approximate models [14], based on simplifying physical as-
sumptions, have first been developed, starting with Rayleigh
for sound waves on gratings in the late nineteenth century. A
commonly used theory is the so-called physical optics, where
single scattering is assumed. It is in fact a family of models
that share a similar form for the scattering amplitude

s�θm; θl� � N�θm; θl�
Z

e−�x ∕ g�
2
e−iQzη�x�e−iQxxdx; (2)

with Qx � k�sin θm − sin θl� and Qz � k�cos θm � cos θl�.
The geometrical coefficient N�θm; θl� varies with the nature
of the wave and of the scattering medium. Its expression de-
pends on the physical assumptions on which the derivation is
based: small height-to-wavelength ratio, small slope, tangent
plane approximation, and so on. The key point with Eq. (2)
is that N�θm; θl� is independent of the roughness η. If a sup-
plementary paraxial approximation Qz � 2k � 4π ∕ λ is as-
sumed, the integral in Eq. (2) turns to the FT of function
f �x� � e−�x ∕ g�

2−2ikη�x�. The so-called Fraunhofer estimate of
the roughness is thus obtained by building ~f �Qx� � s�θm;θl�

N�θm;θl�
and then by computing the original f �x� by inverse FT. Then
the height function η�x� � λ

4π arg f �x� is retrieved. This simple
inversion technique is used in most holographic or phase mi-
croscopy experiments. In this case, the transverse resolution
is easily estimated from the spatial frequency span of ~f , which
is accessible with the given illumination and detection angles.
The resolution is tied to the single scattering assumption.

Most frequently, natural surfaces at optical wavelength are
outside the validity domain of the physical optics. Multiple
scattering does occur, and the relation between the profile η :
x → η�x� and the scattering amplitude s : ml → sml becomes
much more complicated and cannot be directly inverted. This
link can be mathematically represented by a nonlinear opera-
tor F, the direct or forward scattering operator:

F∶η → s � Fη: (3)

This operator has no explicit expression, even if the direct sur-
face wave scattering problem can nowadays be solved with-
out any physical assumption by numerical methods [11,15,16]
such as the boundary integral equation method (BIE) [13] or
the finite element method. The principle of the BIE is a good
illustration of the implicitness of operator F. Following the
BIE, the total field ψ l and its normal derivative ∂nψ l on the
profile are the solutions of a boundary integral equation
whose right-hand side is the incident field ψ inc

l on the profile.
Once this equation is solved for a given incident angle θl,
the scattering amplitude can be computed via a scattering
formula for any scattering angle θm. The BIE is now a well-
established method, and its numerical implementation for
one-dimensional surfaces is for instance documented in [13].

3. BIE
We now detail these operators in the BIE context. With
ψ inc�r; θl� � ψ inc

l �r�, the incident field for angle θl, the total
field writes ψ l�r� � ψ inc

l �r� � ψ sca
l �r�. The scattering ampli-

tude sml is related to the value of the total field on the profile
and its normal derivative ∂nψ � n̂ · gradψ through scattering
formula

sml � −

Z
Γ
�∂nψ l�r� � in · kmψ l�r�� exp�−ikm · r�dc; (4)

where n̂ denotes the unit vector normal to the profile and di-
rected toward air. The total field on Γ and its normal deriva-
tive are the two surface unknowns of an integral equation: for
any points r1 and r2 of Γ,

1
2
ψ l�r1� −

Z
Γ
∂nG�r1; r2�ψ l�r2�dc2 �

Z
Γ
G�r1; r2�∂nψ l�r2�dc2

� ψ inc
l �r1�; (5)

with G�r1; r2� � �iH�
0 �kjr2 − r1j� ∕ 4 the two-dimensional free

space Green function andH�
0 the first kind Hankel function of

zero order. The second equation required for solving the
problem is provided by the boundary condition on Γ and de-
pends on the nature of the scattering medium and, for two-
dimensional problems, on the polarization case. The surface
is assumed to be perfectly conducting, first for simplicity and
second because, for such surfaces, the difference between the
polarization cases is the most marked. Here the Dirichlet
boundary condition corresponds to TE case, while the
Neumann boundary condition is related to TM case:

z � η�x� ⇒
�
ψ l�r� � 0 TE
∂nψ l�r� � 0 TM

: (6)

A single surface unknown remains: the surface current. The
discretization method and the numerical resolution of
Eq. (5) with condition Eq. (6) are detailed in [13]. The BIE
is the numerical solution of a rigorous electromagnetic wave
scattering theory. It includes all multiple scattering with no
simplifying assumptions. The BIE constitutes a rigorous direct
model. Thus, solving Eq. (5) with Eq. (6) for a given profile η
and applying Eq. (4) is equivalent to applying F on η.
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4. INVERSE SURFACE WAVE SCATTERING
PROBLEM
In the general case, the link F : η → s � Fη between the profile
η : x → η�x� and the scattered field s : ml → sml is nonlinear.
The inversion problem is then generally recasted as an opti-
mization problem. In this section we describe the Newton–
Kantorovitch (NK) method [17] used to solve the nonlinear
equation relating the data set of scattering amplitudes to
the surface Γ. The NK method builds up iteratively the solu-
tion of Eq. (3) by successively solving the forward problem
and a local linear inverse problem.

At each iteration step n, an estimate of the surface profile
function is given by

ηn � ηn−1 � δηn; (7)

where δηn is an update correction that is obtained by solving
in the least-squares sense the linearized forward problem

Dn−1δηn � s − sn−1; (8)

with sn−1 the scattered far field associated to the best available
estimation of the surface ηn−1, while Dn−1 is the Fréchet deri-
vative of F at ηn−1.

For this local inverse problem, we make use of the Fréchet
derivative D of operator F at a given height η. It links a varia-
tion δη : x → δη�x� of the profile η to the first-order variation
δs : ml → δsml of the scattering amplitude:

D : δη → δs � Dδη � lim
t→0

F�η� tδη� − Fη
t

: (9)

The important point is that D is a linear operator. Its detailed
derivation for electromagnetic waves and from the reciprocity
theorem can be found in [18]. In the present case, the Fréchet
derivative D of F writes as a curvilinear integral, whose
expression depends on the polarization. It appears that
δsml � δs�θm; θl�, the scattered field in direction θm for an in-
cidence angle θl, can be estimated from the surface currents
ψ l or ∂nψ l related to incident θl but also involves the surface
currents ψ−m or ∂nψ−m of the adjoint forward problem where
the same surface is illuminated under incident angle −θm. For
the two polarization states, we have

TE → δsml � −

Z
Γ
∂nψ l�r�∂nψ−m�r�δη�x�dc; (10)

TM → δsml � −

Z
Γ
fk2ψ l�r�ψ−m�r� − ∂tψ l�r�∂tψ−m�r�gδη�x�dc:

(11)

In the TM case, ∂tψ � t̂ · gradψ denotes the tangential deriva-
tive of the total field on the profile.

Once the Fréchet derivative D is determined, the updated
correction of the surface, which is the solution of Eq. (8), is
obtained in the sense of the least mean squares. This solution
minimizes the cost functional of the form

F �δη� � ‖Dδη − δs‖2: (12)

Unfortunately, the problem of finding the solution of Eq. (8)
is ill posed and needs regularization. This is achieved by mini-
mizing a cost functional of the form

F �δη� � ‖Dδη − δs‖2 � μ2‖Rδη‖2; (13)

where μ2 is the regularization parameter and R is the regular-
izing operator. Two operators have been studied for several
examples, R � Iwhich corresponds to the minimum norm so-
lution of F described in Eq. (13) and R � S the second order
of the standard Tikhonov regularization [19]. Better results
have been obtained by mixing both choices. Instead of mini-
mizing the cost functional of Eq. (13), we use a mixture of
zero- and second-order standard Tikhonov regularization
and we minimize a cost functional of the form

F �δη� � ‖Dδη − δs‖2 � μ2��1 − α�‖Iδη‖2 � α‖Sδη‖2�: (14)

Equivalently, the minimum of F of Eq. (14) is the solution of
the algebraic equation

��Dn−1�†Dn−1 � μ2�αS†S� �1 − α�I��δηn � �Dn−1�†�s − sn−1�;
(15)

where D† stands for the adjoint of D and μ2 is the regulariza-
tion parameter, which does not vary during the iterative pro-
cess. I is the identity operator and S is the second-order
derivative operator. The real α is the mixing parameter be-
tween the zero- and the second-order Tikhonov regularization,
and its value is fixed to 0.95 for all numerical examples studied
in this paper.

In practice, the regularization parameter μ2 is chosen by
trial and error. For the numerical experiments reported here,
μ2 takes the value that gives the lowest value of the cost func-
tion at the end of the iterations. This also corresponds quali-
tatively to the best reconstructions of the profiles.

5. NUMERICAL RESULTS
In the numerical study the wavelength is set to the optical
wavelength of λ � 633 nm. The surfaces are illuminated under
an incidence angle varying from −45° to �45° with a 9° step.
The scattered field is collected at detection angles between
−45° and �45° with a 1° step. These conditions are represen-
tative of the experimental characteristics of ODTM setups
used for microscopy applications [7,10]. With such angular
ranges, the Rayleigh criterion for resolution is λ ∕ �4 NA� �
223 nm with NA � 0.71 the numerical aperture. The consid-
ered surface is 10 μm long and consists in two identical bumps
of width 80 nm and height 140 nm with a center-to-center of
200 nm. The bumps are positioned at abscissas 500 and
700 nm. The center of the illumination beam is at the origin
of x axis. Data for both polarizations are generated according
to Eqs. 4 and 5 with boundary conditions Eq. 6, where the in-
tegral equations are cast into matrix–vector equations. In ad-
dition we used different mesh sizes for generating and
inverting the data: the number of points on the profile is
4096 for the forward problem and 1024 for the inverse pro-
blem. The numbers of incident and diffracted angles are L �
11 andM � 91, respectively. The inversion process is stopped
when convergence is reached, here after 600 iterations.

First, we apply the NK algorithm to the TE-polarized syn-
thetic data from the two-bump profile, with the plane η � 0 as
initial guess and for several values of the Tikhonov parameter
μ2TE. The reconstructed profiles are plotted in Fig. 1 for four
values of the μ2TE parameter. The bumps are correctly located
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but are resolved only for the two lowest values μ2TE � 107 and
μ2TE � 108. On plots 1(a) and 1(b), the bumps are recon-
structed accurately with correct values of height and width.
The two bumps are not completely separated since the mini-
mum value of the retrieved profile between the two bumps
does not go under 100 nm for a bump height of 140 nm.
For values of the Tikhonov parameter smaller than 107, the
regularization is too weak to compensate the ill conditioning
of the Fréchet derivative matrix D, and the iteration process
diverges or converges slowly toward unphysical solutions.
For values larger than 108 [Figs. 1(c) and 1(d)], the problem
is too strongly regularized and superresolution is lost, with
performance comparable to that of methods based on single
and paraxial scattering assumptions, such as the Fraunhofer
approximation. Thus, the range of the regularization para-
meter μ2TE for which superresolution is reached in TE polar-
ization when the plane is used as initial guess is �107; 108�.

We now shift to the TM polarization case. It appears that
synthetic data cannot be inverted in this polarization case
when starting from the bare plane η � 0. We also tried to
use the Fraunhofer estimate as initial guess, but the Tikhonov
parameter μ2TE for regularization has to be set precisely for the
iterative process to converge. A considerable improvement is
obtained when the surface profile retrieved in TE illumination
is used as an initial guess for the inversion in the TM polariza-
tion case. Here, the TM-inverted surface depends on two reg-
ularization parameters: the value μ2TE used to produce the
initial guess from TE-polarized data and the value μ2TM used
to regularize the TM problem. All pairs �μ2TE; μ2TM� for ranges
μ2TE ∈ �105; 1012� and μ2TM ∈ �107; 1014� have been tested, and
the best reconstruction is obtained for μ2TE � 108 and
μ2TM � 109.

As one can see in Fig. 2(b), the retrieved bumps for TM po-
larization are separated, with the retrieved height between the
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Fig. 1. Reconstructions of the profile at λ � 633 nm, using the NK algorithm under TE polarization and starting from plane, for different values of
the Tikhonov parameter: (a) μ2TE � 107, (b) μ2TE � 108, (c) μ2TE � 109, and (d) μ2TE � 1011.
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parameter: (a) μ2TE � 107, (b) μ2TE � 108, (c) μ2TE � 109, and (d) μ2TE � 1011.

Arhab et al. Vol. 29, No. 8 / August 2012 / J. Opt. Soc. Am. A 1511



two bumps being close to 0. The rendering of the bases of the
bumps is of much higher quality for that polarization case. The
TE inversion is undoubtedly outperformed by the TM inver-
sion in terms of resolution and general performance. We
now discuss this result.

The presence of multiple scattering for bumps as high as
140 nm, and its modelization in the iterative method, can ex-
plain why profiles are retrieved with superresolution [8,9].
However, the different behavior between TE and TM polariza-
tions has to be commented. The comparison between the sup-
ports of the spectral densities of the surface currents, namely
∂nψ in the TE case and ψ in the TM case, show that (see Fig. 3),
in TM polarization, higher frequencies can be retrieved. They
have been normalized to share the same value at null fre-
quency. However, without any other consideration, this would
explain the obtained higher TM resolution only in the near
field, since in the far field, spatial frequencies larger than
the electromagnetic wavenumber are filtered. In order to bet-
ter understand the role of multiple scattering in superresolu-
tion, we study the distance of interaction between two points
of the surface. In integral Eq. 5, this distance of interaction
jr1 − r2j appears explicitly in the Green’s function. Thus, in
the forward scattering problem, it is possible to suppress
the interactions at a distance larger than a chosen value d.
The associated scattered field is denoted sml�d�, while sml de-
notes the rigorous scattered field, which includes all interac-
tions on the surface. We express the so-called field difference
parameter FD,

FD�d� �
�����������������������������������������P

m;ljsml − sml�d�j2P
m;l jsmlj2

s
; (16)

as a function of the interaction range d. This parameter is
plotted in log scale as a function of d for the two polarization
cases [see Fig. 4(a)]. The results show a quite chaotic behavior
from 0 to 300 nm, when near interactions are the strongest. A

monotonic region between 300 and 5.5 μm is observed, but the
TE curve decreases much faster than the TM curve. The va-
lues of FD finally vanish shortly before d � 6 μm, which
roughly corresponds to the width of the beam footprint. This
numerical experiment shows that the scattered field is much
more sensitive to the far interactions between surface points
in the TM case. These long-range interactions are responsible
of the coupling of the high-frequency components of the sur-
face currents into the low-frequency components that are col-
lected by the detector. This effect appears to be stronger in
TM polarization.

Another numerical experiment can be done by filtering the
high spatial frequencies of the surface. If kc denotes the cut-off
spatial frequency and sml�kc� the associated scattered field
from the smoothed profile, the field difference can be ex-
pressed as a function of kc:

FD�kc� �
�������������������������������������������P

m;ljsml − sml�kc�j2P
m;l jsmlj2

s
. (17)

This field difference FD�kc� in the two polarization cases has
been computed for cut-off frequencies up to 125 rad · μm−1 in
Fig. 4(b). The TM field appears to be more sensitive to the
intermediate spatial frequencies of the profile over the range
�4 rad · μm−1; 40 rad · μm−1�. Stronger sensitivity to spatial fre-
quencies higher than 40 rad · μm−1 is not necessarily a good
point for TE inversion: on one hand, these frequencies are
far too high to be inverted, and on the other hand, they will
be the first to be covered by noise in experimental data. Even-
tually, the behavior of the field difference at low cut-off fre-
quency can explain the sensitivity of the NK algorithm to the
initial guess when applied to surface scattering in the TM case.
From zero to kc � 4 rad · μm−1, the TE curve is quickly de-
creasing, indicating its response to the lowest frequencies
of the surface profile. On the same range, the TM curve is in-
creasing. TM inversion is not adapted for retrieving the largest
wavelengths of the profile that have to be supplied through the
initial guess. Here we illustrate the sensitivity of the TM inver-
sion to the initial guess by fixing the TM regularization para-
meter to the previously found optimal value μ2TM � 109 and by
varying the TE parameter μ2TE, which impacts the TM starting
value of η. The four plots of Fig. 2 represent the profiles re-
trieved from TM data using the four TE profiles of Fig. 1 as
initial estimates. Superresolved reconstructions are obtained
for the three different values 107, 108, and 109 of the μ2TE para-
meter. This indicates that this parameter does not have to be
finely tuned. Moreover, in the case μ2TE � 109, the bumps are
not resolved in the TE case. We conclude that, when intended
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to be used as initial estimate for the TM inversion, the TE com-
putation can be slightly overregularized. However, Fig. 2(d)
shows that, when the initial guess is too strongly regularized,
namely μ2TE � 1011, the method fails: here regularization sup-
presses a too large part of the profile spatial frequencies from
the initial guess and prevents the TM inversion process to
converge.

To check the robustness of the NK inversion method with
respect to the presence of noise in the scattered field, a com-
plex white noise is added to data. For each independent po-
larization and for a given signal-to-noise ratio (SNR), the noise
is proportional to the amplitude of the real and imaginary
parts of the scattered field. In order to maximize robustness
to noise, we choose as parameter for the initial guess μ2TE �
109 � μ2TM that corresponds to the most regularized TE solu-
tion, which ensures the convergence of the TM inversion
toward the actual profile when the data are free of noise.
In Fig. 5, four values of the SNR are studied and applied to
both TE and TM data. Inversion is very good for an SNR of
35, with no impact of the noise [Fig. 5(a)]. The inverse method
shows a strong robustness to noise for an SNR of 15 and 7
[Figs. 5(b) and 5(c)]. The algorithm still converges for an
SNR as low as 5 [Fig. 5(d)], but not toward the actual two-
bump profile: the retrieved profile shows important oscilla-
tions on its right side, and the right bump has vanished. If
the left bump is correctly inverted, a fake hole and a supple-
mentary bump appear on its left side. However, good results
for an SNR of 7 or larger demonstrate the possible use of our
inverse model on experimental data.

We have also tested the robustness of the reconstruction
against errors of positioning angles of detection. For this pur-
pose, we have performed numerical experiments with random
errors on detectors’ positions. Results have shown that recon-
structions are not affected by a random angular error of�0.2°,
which is an accuracy that can be easily reached with commer-
cial rotation stages. This can be explained by the fact that the
number of measured data is much higher than the number of
unknowns in the inverse problem.
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In order to confirm the versatility of our approach, we pre-
sent the inversion of a rough surface of long length. Its height
root mean square is 60 nm, and its correlation length is set to
ℓ � 100 nm. A normal height distribution and a Gaussian
height spectrum are given to the roughness. With a slope root
mean square that corresponds to an angle of 40°, this surface
is far too rough to be inverted under the Fraunhofer approx-
imation [12]. The profile is 60 μm long and sampled with 4096
points to compute the scattered field, which corresponds to
data. Angles of incidence and scattering are the same as
for the two-bump profile. For the inversion, the estimated pro-
file is also 60 μm long but counts only 2048 points. In Fig. (6),
three reconstructions are reported and compared to the actual
profile. The two first ones are obtained using solely TE and
TM data, respectively, with the plane as initial guess, while
for the third plot, the TE reconstruction is used as initial guess
for TM inversion. The profile being too long to be shown
clearly on a single plot, three views are presented. It appears
that the TE reconstruction made with the plane as initial guess
fails to retrieve the high spatial frequencies of the profile. The
TM reconstruction made with the same initial guess fails to
retrieve the low frequencies of the profile presents spurious
peaks in the intermediate region of the profile and seems
to be blind to its edges. When the reconstruction is made
in TM polarization with the profile reconstructed in TE polar-
ization as initial guess, the solution is much closer to the ac-
tual profile. The comparison is also brought to the Fourier
space in Fig. 7. One can see that the low frequencies are better
reconstructed in the TE case while the high frequencies are
better retrieved in the TM case when the reconstructed sur-
face obtained in TE polarization is used as starting solution.

These results show the importance of using both polariza-
tion cases for obtaining accurate and high resolution
reconstructions.

6. CONCLUSION
In this paper we have presented an inversion method for re-
constructing the profiles of rough perfectly conducting sur-
faces in the resonance domain from measures of the
scattered field in TM polarization. We have shown that a
strong improvement of the resolution can be obtained when
the reconstructed surface obtained in the TE case is used as
starting solution of the iterative reconstruction algorithm in
TM polarization. We have also shown that a resolution beyond
the Abbe–Rayleigh criterion can be reached when multiple
scattering occurs within the surface. We have given a physical
interpretation of the results by considering the distance of in-
teraction between the scatterers on the surface. We have

shown in particular that this distance is longer in the TM po-
larization than in the TE one, and we have studied its influence
on the coupling between the spatial frequencies of the scat-
tered field. Reconstructions of randomly rough surfaces have
been presented. The robustness of the inversion method
against noise and against angular errors of the detector’s posi-
tion have been also addressed.

The results presented in this paper are a step toward the
development of a new optical profilometry technique that
can deal with rough surfaces having strong slopes and strong
roughness that cannot be characterized with the standard
methods based on Linnik or Mirau interferometers.
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