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Analytical Techniques for the Doppler Signature
of Sea Surfaces in the Microwave
Regime—II: Nonlinear Surfaces

Frédéric Nouguier, Charles-Antoine Guérin, and Gabriel Soriano

Abstract—This paper extends the results of a previous work by
combining hydrodynamic and electromagnetic analytical models
for the simulation of the ocean Doppler spectrum at microwave
frequencies. We consider weakly nonlinear sea surfaces after the
choppy wave model and incorporate them in classical and unified
scattering models, namely, the Kirchhoff and weighted curvature
approximations. We show that statistical expressions can be ob-
tained for the Doppler spectrum in a way similar to the case
of linear surfaces. As expected, the nonlinear nature of the sea
surface dramatically impacts the Doppler spectrum at moderate
to large incidence angles, with a shift of the central frequency
and a broadening of the spectrum. Monte Carlo comparisons are
performed with the Creamer model, which is frequently used
to describe weakly nonlinear sea surfaces but does not enjoy a
statistical formulation for the Doppler characteristics. The same
qualitative behavior is found but some quantitative differences are
found and discussed.

Index Terms—Doppler spectrum, microwave, nonlinear gravity
waves, remote sensing, rough surfaces, scattering, sea surface.

I. INTRODUCTION

IN A PREVIOUS paper [1], the authors developed a tech-
nique to obtain the main Doppler characteristics of sea

surface in the microwave regime in the framework of asymp-
totic scattering models. The aim of this paper is to combine
these results with recent nonlinear models for the sea sur-
face. It is well known that hydrodynamic nonlinearities have
a dramatic impact on the Doppler signature, particularly at
large incidence, where they are responsible for the shift and
broadening of the central peak. However, the inclusion of sea
surface nonlinearities in a scattering model is a challenge which
has found only few partial solutions. The classical approach
to tackle the problem relies on the scattering two-scale model
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(TSM) [2], and the inclusion of surface nonlinearities is realized
through a modulation transfer function (MTF) [3] or bound
capillary waves [4]. In the last decade, a series of papers pre-
sented numerical simulations of sea Doppler spectra [5]–[10]
with rigorous scattering formulation and weakly nonlinear hy-
drodynamics after Creamer [11] and West [12] models. As
no statistical formulation was available, Doppler spectra had
to be gathered by averaging the backscattered field from a
large number of time-evolving sample surfaces, a procedure
which is highly time consuming even with today’s facilities. A
further difficulty arises from the Creamer technique [11], which
remains computationally demanding and actually dissuasive
for 2-D surfaces. On the other hand, the West technique is
numerically more efficient but has been abandoned in view of
stability issues. Therefore, most of the studies have been limited
to 1-D surfaces, with the exception of [13] and [14], which were
restricted to L-band and small wind speeds, however.

Numerical runs on 1-D surfaces have been found qualita-
tively consistent with experimental observations, inasmuch as
they also evidence an increase of the central frequency and a
broadening of the spectra. To simulate realistic scenes in view
of geophysical applications, efficient and accurate models are
needed. In this respect, the potential of constantly improving
asymptotic models has not been fully exploited. In particular,
the recent choppy wave model (CWM) [15], [16] has proven
to enjoy some desirable properties such as analytical simplicity
and numerical efficiency. Note that the use of this model in the
context of Doppler calculations is not entirely new, as a similar
Lagrangian model has been introduced in [17] in combination
with the so-called generalized curvature expansion [18]. This
promising approach, however, does not seem to have been
pursued.

We will show that the analytical approach which was de-
veloped for linear surfaces can be fully adapted to the case
of choppy surfaces, yielding efficient statistical formulation of
the first two moments of the Doppler spectrum. As before, the
theory will be developed for fully 2-D surfaces and numeri-
cally compared with the reference test cases of Toporkov and
Brown [5] according to the Creamer model. Even though the
CWM fulfills the same qualitative expectations as the Creamer
model, there are still some noticeable differences which will be
discussed.

II. CWM

Recently, some of the authors [15] have proposed a weakly
nonlinear model termed “CWM” based on a Lagrangian
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description of sea surface particles. The CWM can be con-
structed in a simple way by horizontal displacement of a linear
surface. Consider a linear time-dependent surfaces in the form

η(r, t) =

∫
R2

dk
[
a(k)e−iωkt + a∗(−k)eiωkt

]
eik·r (II.1)

where a(k) is the complex amplitude of the wave, k is the
associated wavenumber, and ωk =

√
g|k|(1 + |k|2/k2M ) is the

gravity–capillarity dispersion relationship (kM = 363.2 rad ·
m−1 is the wavenumber with minimum phase speed). The
CWM is obtained by performing the following transformation:

(r, η(r, t)) → (r+D(r, t), η(r, t)) (II.2)

with D as the so-called Riesz transform of the linear surface η

D(r, t) =

∫
R2

dkik̂
[
a(k)e−iωkt + a∗(−k)eiωkt

]
eik·r (II.3)

where k̂ = k/|k| and a(k) is the complex amplitude of the
wave defined by its wavenumber k. The corresponding non-
linear surface η̃ is implicitly defined by the relation

η̃ (r+D(r, t), t) = η(r, t). (II.4)

Henceforth, the tilde superscript will address quantities per-
taining to the nonlinear surface (for example, η̃, C̃(t), S̃(t),
etc). The model is numerically efficient as it can be entirely
generated by fast Fourier transform. Strictly speaking, the
CWM is not fully consistent with Hamiltonian expansion tech-
niques [11] and the classical perturbative approach [19] as it
has a small vorticity and is not complete at second order of
steepness, a default which is the price to pay for numerical
efficiency. However, the CWM was compared a posteriori with
the Creamer and Longuet-Higgins solution and found to be
close, particularly for narrow spectra. It captures some, but
not all, the features of the fully nonlinear solution, such as the
vertical asymmetry of elevations and the kurtosis of slopes. In
addition, it provides analytical expressions for some statistical
descriptors of nonlinear gravity waves in infinite depth. Later
on, the model was found very useful in the framework of
remote sensing applications [20] as it makes it possible to ob-
tain statistical expressions for the incoherent normalized radar
cross section (NRCS) and consequently does not require Monte
Carlo averaging over a large number of sample surfaces. Note,
however, that CWM is a weakly nonlinear model and is not able
to describe near-breaking crests. Therefore, breaking events are
clearly not taken into account in this model. In this section, we
adapt the CWM to nonlinear moving surfaces for the purpose
of Doppler spectrum calculation. In the CWM framework, time
evolution of nonlinear surface is driven by the underlying linear
surface which, together with its Riesz transform, is calculable at
any time without knowledge of the past. Thus, time dependence
is included in formulas derived in [15] and [20] without loss of
generality and with much simplicity.

Even through the nonlinear effect of the CWM on the NRCS
was found rather small, a strong impact is observed on the

Doppler signal. Indeed, the CWM corrects the horizontal com-
ponent of particle velocities by a displacement related to eleva-
tions. In such a process, long waves strongly affect the shorter
ones which are “Dopplerized” by the corresponding horizontal
displacement. Doppler spectrum depends on these velocities,
and a modulation of Bragg waves by longer waves therefore
impacts its shape. Since the Doppler velocity is obtained by
projection on the line of sight of the radar, we expect a greater
impact of the CWM at high incidence angles in the upwind
direction.

III. KA FOR THE CWM

The scattering amplitude from a nonlinear CWM surface can
be easily obtained under the Kirchhoff approximation (KA) and
will henceforth be designated as KA-CWM. For the geometry
and definition of the scattering problem, we adopt the same
notational conventions as in [1]. Taking [20, eq. (8)] and adding
time dependence, the KA-CWM scattering amplitude can be
written as

S̃KA(t) = K
1

(2π)2

∫
R2

dr eiQH·reiQzη(r,t)+iQH·D(r,t)J(r, t)

(III.5)

where J is the Jacobian of the transformation r → r+D(r, t)
defined by

J(r, t) =

∣∣∣∣ 1 + ∂xDx(r, t) ∂xDy(r, t)
∂yDx(r, t) 1 + ∂yDy(r, t)

∣∣∣∣ .
Accounting for time dependence in the calculations detailed

in [20] leads to

C̃KA(t)=
|K|
Q2

z

1

π

∫
R2

dr eiQH·r
[
e−Q2

z(ρ(0,0)−ρ(r,t))F̃(r, t)

− e−Q2
zρ(0,0)F̃(∞, t)

]
(III.6)

with

F̃(r, t) = exp
(
−Q2

H

(
ρQ̂H

(0, 0)− ρQ̂H
(r, t)

))
×
(
[1− iQH · ∇ρ(r, t)]2 −Δρ(r, t)

+ Q2
z (ρ1(0, 0)− ρ1(r, t))

2
)

(III.7)

where ρ, ∇ρ, and Δρ are the covariance function, its gradient,
and its Laplacian, respectively, and the auxiliary functions ρ

Q̂H

and ρ1 are defined by

ρQ̂H
(r, t) =

∫
R2

dk(Q̂H · k̂)2
[
a(k)e−iωkt+a∗(−k)eiωkt

]
eik·r

(III.8)

ρ1(r, t) =

∫
R2

dk|k|
[
a(k)e−iωkt+a∗(−k)eiωkt

]
eik·r.

(III.9)
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Fig. 1. Comparison of statistical and Monte Carlo KA and KA-CWM Doppler
spectrum shapes at 50◦ incidence in X-band with U19.5 = 5 m · s−1. WCA
results in horizontal polarization are also superimposed.

As pointed out in [20], the nonlinear surface constructed
with the CWM has a modified spectrum (termed “dressed”)
with respect to the underlying linear surface (whose spectrum
is referred to as “undressed”). However, at small winds, the
dressed and undressed spectra are very close, and we will not
distinguish them. We thus used the same spectrum for both
linear and nonlinear surfaces in 1-D calculations. Again, we
chose the Pierson–Moskovitz (PM) spectrum for comparison
purposes with earlier works, even though it is not the most
realistic one.

Fig. 1 shows the Doppler spectra in the KA for linear and
CWM surfaces at 5-m · s−1 wind speed, for a PM spectrum
at 50◦ incidence angle in X-band (electromagnetic wavelength
λe = 3 cm). It has been obtained from the Fourier transform
of (III.6) in a few minutes on an ordinary personal computer.
The numerical efficiency of the CWM provides the alternative
possibility to evaluated Doppler spectra through Monte Carlo
averaging over a certain number of deterministic time-evolving
sample surfaces, as it is usually done in the case of rigorous
electromagnetic solutions [5]. This is useful to verify the statis-
tical formulation of the Doppler spectra or to make comparisons
with other hydrodynamic models for which there is no such
statistical formulation (for instance, the Creamer model [11];
see Section V). In Fig. 1, we have superimposed the Monte
Carlo results over 100 linear and nonlinear surfaces, showing
an excellent agreement with the statistical formulation. The
results obtained under the weighted curvature approximation
(WCA) in horizontal polarization and its associated Monte
Carlo spectrum are also superimposed for further comparisons.

The analytical formulations of the Doppler central frequency
fc and width γ in the CWM framework can be easily derived
with the same technique as in the linear case [1]. Here, however,
it has been found more convenient to derive them from the
Fourier transform of (III.6). Figs. 2 and 3 show fc and γ
versus incidence angle in X-band at 5-, 7-, and 9-m · s−1 wind
speed for linear and CWM surfaces under the KA. As expected,
higher Doppler frequencies are observed when passing to non-

Fig. 2. Comparison of KA and KA-CWM Doppler central frequencies in
X-band with U19.5 = 5, 7, and 9 m.s−1.

Fig. 3. Comparison of KA and KA-CWM Doppler widths in X-band with
U19.5 = 5, 7, and 9 m · s−1.

linear surfaces, the increase being more pronounced at high
winds. The free Bragg frequency is no longer recovered at large
incidence angles. An even more dramatic impact is observed on
the Doppler width, which is found much larger than that in the
linear case and quasi-insensitive to the incidence angles above
40◦ while the linear counterpart falls off rapidly. The elevated
value reached in the nonlinear case strongly increases with
wind, pointing out that the hydrodynamic modulation highly
affects the speed variance of sensed waves.

IV. WCA FOR THE CWM

The most complete approach, from both electromagnetic and
hydrodynamic points of view, is the combination of WCA [21]
and CWM (referred to as WCA-CWM). This reaches a high
level of analytical complexity (even though the numerical effi-
ciency is almost the same as a mere KA), and we will therefore
again restrict to 1-D surfaces. We found it advantageous to start
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with the formulation of WCA based on square slopes rather
than second derivatives

S̃WCA(t)=B
1

2π

∫
R

dx eiQHxeiQz η̃(x,t)

− Qz

Q2
H

T
1

2π

∫
R

dxη̃′(x, t)2eiQHxeiQz η̃(x,t) (IV.10)

where η̃ is the nonlinear surface, η̃′ is its derivative with respect
to the horizontal variable x, and T = B−K is the difference
between the Bragg and Kirchhoff kernels. Now, differentiating
the implicit relation η̃(x+D(x, t), t) = η(x, t) leads to

η̃′ (x+D(x, t), t) =
η′(x, t)

(1 +D′(x, t))
. (IV.11)

Explicit integrand can be obtained by operating the change
of variable x → x+D(x, t), yielding

S̃WCA(t) = B
1

2π

∫
R

dx (1 +D′(x, t)) eiQHxeiQzη(x,t)

− QzT

Q2
H

1

2π

∫
R

dx
η′(x, t)2

1 +D′(x, t)
eiQHxeiQzη(x,t).

(IV.12)

Note that the quantities involved in this integration now
pertain to the linear surface and its derivatives (η, η′, D,D′)
and are thus random Gaussian processes. The calculation of the
associated field covariance function or NRCS involves the two-
point characteristic function and some associated functions〈

ζ(x, t)eiQz(η(x,t)−η(0,t))
〉

(IV.13)

where ζ(x, t) stands for a set of functions related to η′ and D′.
Some of these calculations are classical, and some other are
not and have been relegated to the Appendix. After lengthy
calculations, we obtain the following formula for the WCA-
CWM field covariance function:

C̃WCA(t) = C̃SSA(t) +
Q2

z

Q4
H

∫
R

eiQHxdx

×
[
F̃2(x, t)e

−Q2
zS0/2 − F̃2(∞, t)e−Q2

zρ(0,0)
]

− i

Q2
H

∫
R

eiQHxdx

×
[
F̃1(x, t)e

−Q2
zS0/2

− F̃1(∞, t)e−Q2
zρ(0,0)

]
(IV.14)

where the expressions of the functions F̃1/2 are given in the
Appendix. Note that C̃SSA is the 1-D counterpart of (III.6)
of C̃KA, with the Kirchhoff kernel K replaced by the Bragg
kernel B.

Fig. 4. Comparison of Monte Carlo and statistical WCA-CWM Doppler
central frequencies in X-band with U19.5 = 5 m · s−1. Toporkov and Brown
(T&B) results obtained with the exact electromagnetic MOMI and the Creamer
model.

As before, this statistical expression can be checked with
the solution obtained through a Monte Carlo procedure. The
scattering amplitude (IV.12) has been computed over 100 time-
evolving surfaces and compared with the results of (IV.14).
Fig. 4 shows the Doppler central frequency as a function of
the incidence angle for the WCA-CWM in X-band at 5-m · s−1

wind speed. Here, again, the statistical WCA-CWM curves
have been derived from the incidence-angle-dependent Fourier
transform of (IV.14). The Bragg frequency is still given as refer-
ence. The statistical formulation is in, overall, good agreement
with the Monte Carlo averaging, except at large incidences in
horizontal polarization, and much less computationally time
consuming. The noticeable differences (greater than 10%) in
horizontal polarization at grazing angles are a measure of the
computation accuracy. For the Monte Carlo process, the aver-
aging error decreases as the inverse square root of the number of
sample surfaces. At grazing angles, the Monte Carlo technique
is very sensitive to the size and shape of the tapered beam
which is used to illuminate the surfaces, while the statistical
formulation corresponds to an incident plane wave. However,
the statistical formulation suffers from numerical difficulties at
high incidence angles in horizontal polarization. The reason is
that the WCA NRCS in horizontal polarization is the small
difference of two larger positive terms of the same order of
magnitude and thus requires more accuracy on the latter than
the vertical-polarization counterpart, which writes as the sum
of two positive terms. Hence, the field correlation function
and, consequently, the Doppler spectrum are more difficult
to evaluate. As shown in Fig. 5, in both polarizations, the
Doppler widths under WCA-CWM are extremely close to the
one obtained in the KA case and are in very good agreement
with the Monte Carlo averaging on the whole range of incidence
angles. In the next section, for comparison purposes, we have
superimposed, in Figs. 4 and 5, a more detailed and accurate
version of the statistical results presented in [5]. As discussed
in the next section, the nonlinear hydrodynamic model used in
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Fig. 5. Comparison of Monte Carlo and statistical WCA-CWM Doppler
widths in X-band with U19.5 = 5 m · s−1. Toporkov and Brown (T&B) results
obtained with the exact electromagnetic MOMI and the Creamer model.

their sea surface generation (Creamer model) is responsible of
the observed discrepancies.

V. COMPARISON WITH OTHER NONLINEAR MODELS

There are only few theoretical models in the literature for
the Doppler return of nonlinear sea surfaces in the microwave
regime. One approach is based on the TSM [2] combined with
the MTF technique [3], which allows one to take into account
the modulation of short waves by larger waves (“hydrody-
namical” MTF), as well as the influence of facet tilting on
the cross section (“tilt” MTF). This approach provides simple
expressions for the mean and width of the Doppler spectrum as
weighted averages of the sea elevation spectrum [3, eqs. (10)
and (11)]. The corresponding values have been shown to be
consistent, at least qualitatively, with the experimental results
[3] and other numerical techniques [6]. However, its main short-
coming is the rather heuristic derivation of the MTF. Another,
increasingly popular, approach is the Creamer nonlinear model
for sea surface [11], which is based on a vertical deformation
of an underlying linear surface. Even though the resulting
expression for the nonlinear surface is quite simple, the model
is not numerically efficient as no fast Fourier transform can be
used as in the CWM. The generation of a 1-D surface with N
sampling points requires typically ∼ N2 operations contrary to
CWM, which is ∼ N log(N). Hence, Monte Carlo averaging
over Creamer surfaces implies a massive computational burden
even with today’s facilities.

Contrary to the MTF or the CWM approach, the Creamer
model does not provide statistical expressions for the Doppler
characteristics. To make a fair comparison with our results, we
have used the Monte Carlo rather than the statistical technique
to calculate Doppler spectra in the WCA-CWM model. To ex-
clude differences originating from the electromagnetic method,
we also computed the WCA applied to deterministic Creamer
surfaces (WCA-Creamer). Figs. 6 and 7 show the evolution
of fc with incidence according to WCA-CWM and WCA-

Fig. 6. Comparison of Monte Carlo CWM and Creamer WCA Doppler
central frequencies in L-band; vertical polarization with U19.5 = 5 m · s−1.
Toporkov and Brown (T&B) results based on the MOMI and Creamer model.
The Thompson–Romeiser results are based on a TSM coupled with an MTF.

Fig. 7. Comparison of Monte Carlo CWM and Creamer WCA Doppler
central frequencies in L-band; horizontal polarization with U19.5 = 5 m · s−1.
(T&B) Toporkov and Brown results based on the MOMI and Creamer model.
The Thompson–Romeiser results are based on a TSM coupled with an MTF.

Creamer for each polarization. Even if the same numerical
electromagnetic method is employed for the two hydrodynamic
models, noticeable differences in both vertical and horizontal
polarizations remain on the most part of the incidence range
of variation, showing that CWM and Creamer model are not
equivalent for remote sensing purposes. To understand this
difference, we investigated the distribution of slopes and cur-
vatures according to both models. Fig. 8 clearly shows that the
Creamer and CWM lead to slightly different slope distributions
and strongly different curvature distributions, the occurrence
of positive curvatures being much higher in the case of the
Creamer model. Note that these distributions are obtained from
sample surfaces with a high-frequency cutoff on the eleva-
tion spectrum (kmax = 137 rad · m−1 in the figure) set at five
times the electromagnetic wavenumber. The results in [5] are



NOUGUIER et al.: TECHNIQUES FOR DOPPLER SIGNATURE OF SEA SURFACES IN MICROWAVE REGIME—II 4925

Fig. 8. Probability distribution functions with a truncated PM spectrum at kmax = 137 rad · m−1 and U19.5 = 5 m · s−1. (a) Slope distribution. (b) Curvature
distribution.

superimposed on Figs. 6 and 7. The agreement between the
central Doppler frequency predicted by the method of ordered
multiple interactions (MOMI)-Creamer and WCA-Creamer is
excellent in vertical polarization (less than 1% error) and re-
mains within 10% relative accuracy in horizontal polarization,
except at grazing angles. This shows that the WCA model is
reliable at nongrazing angles, even for nonlinear surfaces which
exhibit sharper crests. The problem of grazing angles, already
known in NRCS calculations, is still an issue for Doppler
calculation with asymptotic methods. Results from the MTF
approach [3], actually taken from [6], are also given. A mere
piecewise curve regression was used to fit their data. They
compare well with the MOMI-Creamer model between 20◦ and
60◦ incidence angles. At grazing angles, the MOMI-Creamer
model has an explosive behavior which cannot be predicted
by any of the analytical models. The conclusion is that the
Creamer model is actually more strongly nonlinear than CWM
inasmuch as it exhibits stronger slopes and curvatures and
produces enhanced Doppler shifts.

Another well-known nonlinear surface model is the West
model [12]. It is based on an efficient operator expansion and is,
in principle, capable to include arbitrary orders of nonlinearity.
In practice, it suffers from stability issues due to the explosion
of high frequencies which must be therefore filtered. In view
of these numerical issues, we did not test this model. However,
numerical comparisons performed in earlier works [7], [8] show
that Doppler spectra calculations according to this model ex-
hibit even stronger nonlinear features than the Creamer model,
with broader spectra and the occurrence of an additional peak
at the negative Bragg frequency, indicating reverse traveling
waves (which are ignored by assumption in our model).

VI. CONCLUSION

This paper has investigated the characteristics of the mi-
crowave sea Doppler spectrum in the framework of analytical

electromagnetic and hydrodynamical models. We have com-
bined CWM with KA and WCA analytical scattering model
and obtained statistical expressions for the field correlation
function which prevent from running highly demanding Monte
Carlo simulations. The most complete model is the combination
of WCA and CWM, which is sensitive to both polarization
and hydrodynamical modulation and still enjoys a statistical
numerically efficient formulation. A comparison has been made
with the extensive numerical experiments by Toporkov and
Brown, with a rigorous electromagnetic model (MOMI) and
the Creamer hydrodynamic model. The WCA-CWM model
displays the expected qualitative features of the Doppler return,
namely, an enhanced Doppler shift in horizontal polarization
and a saturated Doppler width as the incidence angle increases.
Some discrepancies have been found with the MOMI-Creamer
model. To find out the origin of these discrepancies, the WCA-
Creamer model has also been implemented and found in ex-
cellent agreement with the MOMI-Creamer model for all but
grazing incidents. This shows that differences can be attributed
to the hydrodynamic models in consideration. An inspection of
the slopes and curvature distribution actually reveals that the
Creamer model and CWM are not equivalent in this respect, as
the former predicts stronger positive curvatures than the latter.
While the WCA scattering model seems to be reliable now, the
sensibility to the nonlinear surface model shows the necessity
to pursue the research on the hydrodynamical issues.

APPENDIX

SOME NONTRIVIAL CORRELATORS

Some nontrivial statistical expressions are required for the
calculations involved in the WCA-CWM model. The technique
relies as usual on the calculation of n-points characteristic
functions of Gaussian process and their derivatives. As usual,
the bracket symbols 〈.〉 mean the statistical average over real-
izations. The prime superscript means the space derivation, and
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the “0” subscript means that quantities are taken at space and
time origins〈

η′20 (1 +D′)

(1 +D′
0)

E

〉

= i erfc1

(
1√
2σ2

2

)[
−2ρ′1f++(g++i)

(
f2
+−σ2

2

)]
E

〈
η′2 (1 +D′

0)

(1 +D′)
E

〉

= i erfc1

(
1√
2σ2

2

)[
−2ρ′1f−+(g−+i)

(
f2
−−σ2

2

)]
E

〈
η′2η′20

(1 +D′) (1 +D′
0)
E

〉
=
[
2ρ′′(ρ′′−2f+f−)+

(
f2
−−σ2

2

) (
f2
+−σ2

2

)]
erfc2(ρ′′)E

with

E = exp [ iQH(D −D0) + iQz(η − η0)] (A.15)

E = exp
[
−
(
Q2

H +Q2
z

)
S0/2

]
(A.16)

f± =QHS1/2±Qzρ
′ (A.17)

g± =QHρ′ ±QzS1/2 (A.18)

ρ1 =

∫
|k|Γ(k)eikx−isgn(k)ωktdk (A.19)

S0 =2 (ρ0 − ρ(x, t)) (A.20)

S1 =2(ρ1(0, 0)− ρ1(x, t)) (A.21)

erfc1(z) = z
√
πez

2

erfc(z) (A.22)

erfc2(ρ′′) = 2

π/4∫
0

(−ρ′′0 − ρ′′ sin(2θ))
−1

×
[
1− erfc1

(√
1 + sin(2θ)

2 (−ρ′′0 − ρ′′ sin(2θ))

)]
× dθ (A.23)

where erfc is the well-known complementary error function.
For numerical purposes, we can note that the erfc2 function can
easily be tabulated and that erfc2(0) = erfc12(1/

√
2σ2

2).
In WCA-CWM statistical (IV.14), the integrands are

F̃1 =erfc1

(
1√
2σ2

2

)
e−Q2

HS0/2

×
{
BT

∗ [−2ρ′1f+ + (g+ + i)
(
f2
+ − σ2

2

)]
+ B

∗
T
[
−2ρ′1f− + (g− + i)

(
f2
− − σ2

2

)]}
(A.24)

F̃2 = |T|2
[
2ρ′′(ρ′′ − 2f+f−) +

(
f2
− − σ2

2

) (
f2
+ − σ2

2

)]
× erfc2(ρ′′)e−Q2

HS0/2 (A.25)

where T = B−K.
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