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We present a rigorous model, based on a specific boundary integral formalism for the wave
scattering from rough, one-dimensional, dielectric or conducting surfaces at low-grazing
incidence and scattering angles. Even though this so-called Grazing Method of Moment
is, from a numerical cost point of view, independent of the incidence, it remains very
numerically demanding. We thus propose an extrapolation technique for faster monostatic
diagram computation, based on the theoretical behavior of the scattering amplitude at low-
grazing angles. This technique is compared to the GMoM and to some approximate models,
for surfaces with Gaussian spectrum as well as for sea surface.
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r é s u m é

Nous présentons un modèle rigoureux, fondé sur un formalisme intégral de frontière
spécifique, pour la diffraction des ondes par des surfaces rugueuses unidimensionnelles,
diélectriques ou conductrices, aux angles rasants. Même si cette méthode, appelée GMoM,
est, en termes de coût numérique, indépendante de l’incidence, elle reste numériquement
très exigeante. Nous proposons donc une technique d’extrapolation pour le calcul rapide
des diagrammes monostatiques, fondée sur le comportement théorique de l’amplitude de
diffraction aux angles rasants. Cette technique est comparée à la GMoM et à des modèles
approchés, pour des surfaces à spectre gaussien ainsi que pour la surface de la mer.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this article we address the time-harmonic scattering of electromagnetic waves from rough surfaces at low-grazing
incidence and scattering angles. The applications we have in mind mainly concern dielectric and conducting surfaces in op-
tics, or soils and the sea surface at microwave frequencies. Low-grazing incidence is a difficult topic (see [1] for a dedicated
special issue), but of particular interest in remote sensing. The normalized radar cross section (NRCS) becomes very small
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at low-grazing incidence, as most part of the incident power is scattered around the specular direction. Therefore, one can
understand that designing an accurate model for this quantity is challenging.

The domain of validity of the most classical approximate models [2] has already been studied and more or less precisely
defined (see for example [3–6]): height very small compared to the electromagnetic wavelength for the Small Perturbation
Method (SPM), large curvature radii for the Kirchhoff-tangent plane Approximation (KA), small slope and moderate height
for the first order of the Small Slope Approximation (SSA) [7], and so on. However, few models claim to be accurate at
low-grazing angles (LGA) (see [8,9] for a perturbative approach at LGA), and the error at those angles, or even the order of
magnitude of this error, cannot be predicted analytically.

The domain of validity of an approximation can be determined by comparison with reference data. These reference data
may come from measurements or from the rigorous numerical solution of the scattering problem. For indoor facilities, in
Optics or in the microwave range, the last degrees or tenths of degrees before grazing are out of range, due to the size of
transmitters and receivers, while in outdoor measurements on natural surfaces, the rough surface and its environment is
never fully controlled. Therefore, reliable numerical computations are of interest for the scientific community.

Numerical solutions of the rigorous scattering problem are now very mature for numerous one-dimensional and two-
dimensional rough surfaces, except at LGA. As a matter of fact, one of the major point here is the so-called edge effect. As
only a finite surface is sampled, the incident field has to be tapered to leave the edges of the sampled domain out of the
beam. Gaussian beams are commonly used [10]. However, those tapered beams have a footprint on the surface that grows
very fast when the incidence angle tends toward grazing. This problem remains in methods such as the Method of Ordered
Multiple Interactions or the Forward–Backward approach [11,12].

In [13], we have presented a boundary integral method for the numerical solution of the rigorous problem of time-
harmonic wave scattering from rough surfaces under grazing illumination. The rough surface is represented by a bounded
perturbation of a plane and is enlightened by a plane wave. The integral equations are built on specific unknowns and
right-hand sides that permit edge effects to be avoided. The integral operators involved are those commonly encountered in
scattering, the scalar single- and double-layer and the vector Electric Field and Magnetic Field Integral Equation operators.
This rigorous approach is called the Grazing Method of Moments (GMoM). It has been applied to two-dimensional perfectly
conducting surfaces with Gaussian spectra to prove that the performances of some popular approximate methods, namely
the SPM at first order and the SSA at first order, deteriorate drastically at backward scattering angles as the incidence goes
to grazing.

Even though the numerical cost of the Grazing Method of Moments is independent of the incidence angle, it remains
as a numerical method very RAM memory and CPU time demanding. In particular, bistatic diagrams for a given incidence
angle are much less time-consuming than monostatic diagrams, for which the integral equation has to be solved for each
angle. This is why, in this paper, we propose a method to extrapolate the results from the bistatic diagram at a given
grazing incidence to predict monostatic diagrams over the whole range of grazing angles. It is proved through numerical
computations over one-dimensional surfaces how these extrapolations compare with the GMoM for the two fundamental
polarization cases.

The article is organized as follows. After this introduction comes the theoretical section where the principles of the
GMoM are recalled and applied to electromagnetic scattering by one-dimensional surfaces. For both polarization cases,
boundary integral equations are exhibited, either considering that the lower medium is a homogeneous (eventually lossy)
dielectric medium, or applying the impedance approximation on the surface. Section 3 is devoted to the study of the theo-
retical behavior of the scattering amplitude at grazing incidence and/or grazing scattering angles. We derive an expression
of the scattering amplitude that enforces this theoretical behavior when solving numerically the integral equations. The
expressions of the coefficients required for extrapolating the scattering amplitude from grazing incidence and/or grazing
angles is also deduced. In Section 4 about numerical results we present NRCS comparisons between the GMoM and its
extrapolation from grazing. Two kinds of roughness with Gaussian spectra are investigated, with small height and in the
resonant regime, respectively. Both dielectric and conducting surfaces encountered in Optics are studied. Furthermore, sea
surfaces with Unified Ocean spectrum [14] at L-band microwave frequency are considered. Estimations from the KA, the
SPM at first order and the SSA at first order, are also provided and compared to GMoM.

2. Boundary integral formalism

Let us consider a rough surface Γ invariant by translation along the y axis, described by z = η(x), and separating air
(z > η(x)) from a semi-infinite homogeneous medium. Γ is illuminated from air by a time-harmonic plane wave, with
wavenumber K = ω/c and wavevector ki = k0x̂ − q0ẑ in the xO z plane. The angle of incidence is defined as θ i = (ki,−ẑ).
The scattering problem is thus reduced to a two-dimensional problem, and the two fundamental cases of polarization,
denoted by H (horizontal) and V (vertical) depending on whether the electric field E or the magnetic field H is along the y
direction respectively, are uncoupled.

This problem is solved with the help of a rigorous boundary integral formalism combined with numerical solution of
the integral equation. The boundary is assumed to be flat except in a bounded area |x| < L/2, to ensure a fast decreasing
behavior of the unknown of the integral equation away from the rough area and thus make the computation tractable. The
quantities are represented by their complex amplitude, assuming an exp(−iωt) time dependence.
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If u(x, z) is the y-component of the field of interest, that is E(r) = u(x, z)ŷ in the H polarization case and H(r) = u(x, z)ŷ
for V polarization, let us define the scalar field ψ(x, z) as

ψ =
{

u − (ui + ur) z > η(x)

0 z < η(x)
(1)

where ui and ur denote the incident field and the field that would be reflected by the flat interface z = 0, respectively. ur is
thus a plane wave of wavevector kr = k0x̂ + q0ẑ. Its amplitude is given by the reflection coefficient that depends on the
boundary condition. With η′ = dη

dx and n̂ = −η′x̂+ẑ√
1+η′ 2

the normal unit vector directed toward air, ψ> and ∂nψ> denote the

limit of the field and of its normal derivative, respectively, by approaching the surface from air.
In the upper half-space, ψ carries the sole contribution from surface roughness. For both polarization cases, ψ satisfies

the same homogeneous Helmholtz equation in both half spaces, as well as an outgoing wave condition. Therefore Kirchhoff–
Helmholtz formula applies and one gets, in the upper medium,

ψ(r) =
∫
Γ

{
G
(
r, r′)∂nψ

>
(
r′) − ∂ ′

nG
(
r, r′)ψ>

(
r′)}d�

(
r′) (2)

where G(r, r′) and ∂ ′
nG(r, r′) denote the free space Green’s function for vacuum and its normal derivative with respect to r′ ,

respectively. The two-dimensional Green’s function in free space writes as G(r, r′) = −i
4 H+

0 (K |r − r′|) where H+
0 denotes the

Hankel function of the first kind.
When r tends toward Γ , one gets the integral equation for the unknowns ψ>

(
1

2
+ D

)
ψ> − S∂nψ

> = 0 (3)

involving the single and double layer integral operators defined by

r ∈ Γ, Sψ(r) =
∫
Γ

G
(
r, r′)ψ(

r′)d�
(
r′), Dψ(r) =

∫
Γ

∂ ′
nG

(
r, r′)ψ(

r′) d�
(
r′) (4)

We now consider the field

φ =
{

0 z > η(x)

u − ut z < η(x)
(5)

with ut the field that would be transmitted through the flat interface z = 0 into the lower medium, of which relative
permittivity is denoted by ε hereafter. With the same calculations as for ψ , one finds that the limit of the field φ< and of
its normal derivative ∂nφ< by approaching the surface from below satisfy the integral equation(

1

2
− Dε

)
φ< + Sε∂nφ

< = 0 (6)

with Sε and Dε the single- and double-layer operators associated to the free space Green’s function for the dielectric
medium Gε(r, r′) = −i

4 H+
0 (K

√
ε|r − r′|).

Now, applying the boundary conditions φ< = ψ> and ∂nφ< = X∂nψ> with X = 1 in H polarization and X = ε in the
Vertical case, the scattering problem is cast into the system of two coupled integral equations⎧⎪⎪⎨

⎪⎪⎩

(
1

2
+ D

)
ψ> − S∂nψ

> = 0
(

1

2
− Dε

)
ψ> + Sε∂nψ

> =
(

1

2
− Dε

)(
ut − ui − ur) + X Sε

(
1

X
∂nut − ∂nui − ∂nur

) (7)

By definition, ut − ui − ur and 1
X ∂nut − ∂nui − ∂nur vanish outside the rough region, that is for |x| > L/2. This ensures a fast

decreasing behavior of the right-hand side of (7), and thus of the unknowns ψ> and ∂nψ> away from the rough area.
Integral equations (7) can be cast into a linear system using numerical techniques such as the Method of Moment (MoM),

and sampling has thus to be performed at the smallest scale involved in the scattering process, including the wavelength.
Therefore, this sampling becomes uncomfortable and numerically expensive when the relative permittivity of the lower
medium is much larger than one, such as for conductors in Optics or wet soils and sea water at microwave frequencies. In
those cases, a different boundary condition, although approximate, is preferred and found more reliable. It is often referred
to as the impedance approximation, assuming a local relationship between the tangential components of the electric and
magnetic fields

Et = −n̂ × (n̂ × E) = [Z ]n̂ × H (8)
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where [Z ] is the local impedance matrix or dyad. The perfectly conducting limit corresponds to the particular case where
[Z ] = 0. For two-dimensional problems the impedance approximation leads to Robin boundary conditions, ∂nu = −iK Z V

Z0
u

in the Vertical polarization case and ∂nu = −iK Z0
Z H

u in the Horizontal case, where Z0 =
√

μ0
ε0

is the impedance of air. For

a rough surface z = η(x) separating the air from a homogeneous medium with relative permittivity ε, Z V and Z H are
functions of x, with the following series expansion with respect to the parameter 1/

√
ε.

√
εZ V

Z0
= Z0√

εZ H
= 1 + i

2K
√

ε

η′′

(1 + η′2)3/2
+ O

(
1

ε

)
(9)

The two first terms are local and their use as boundary condition corresponds to the curved surface-impedance approxima-
tion [15]. Given definition (1), the Robin conditions become

∂nψ
+ = −iK

Z V

Z0
ψ+ − φV , φV = ∂n

(
ui + ur) + iK

Z V

Z0

(
ui + ur) (10)

ψ+ = i

K

Z H

Z0
∂nψ

+ − φH , φH = (
ui + ur

)
− i

K

Z H

Z0
∂n

(
ui + ur) (11)

and Eq. (3) turns for both polarization cases to a single scalar unknown integral equation.{(
1

2
+ D

)
+ iK S

Z V

Z0

}
ψ+ = −SφV (12)

{
i

K

(
1

2
+ D

)
Z H

Z0
− S

}
∂nψ

+ =
(

1

2
+ D

)
φH (13)

Note that the reflected field ur, ∂nur is to be build according to the Robin boundary condition, so that φV and φH are strictly
zero outside the rough area.

3. Scattering amplitude, limits at grazing and extrapolation

From (1) and (2), and from Weyl’s expansion, the scattering amplitude is defined for an incident plane wave of unit
complex amplitude as

s±(k,k0) = 1

2π

∫
Γ

{
k± · n̂ψ> − i∂nψ

>
}

e−ik±·r d� (14)

in the direction indicated by wavevector k± = (k,±q) satisfying k2 = K 2, �e q � 0, �m q � 0 so that the scattered field at
any point r = (x, z > maxη) is

ud(r) = u(r) − ui(r) = ur(r) +
∫
R

s+(k,k0)

q
eik+·r dk (15)

while for any k,

s−(k,k0) = 0 (16)

which is the so-called extinction theorem. At this point, the behavior of scattering amplitude s+(k,k0) at grazing scattering
q = K cos θ → 0 or incident q0 = K cos θ i → 0 angles is not explicit. However, let us consider the difference sd = s+ − s− of
which expression can be arranged into

sd(k,k0) = s+(k,k0) − s−(k,k0) (17)

= 1

π

∫
Γ

{(
ikη′ψ>√
1 + η′2

− ∂nψ
>

)
sin (qη) + qψ>√

1 + η′2
cos (qη)

}
e−ikx d� (18)

= O (q) (19)

In that case, it is obvious from s− nullity that sd is exactly equal to s+ , and that the behavior of the scattering amplitude at
grazing scattering angle is

s+(k,k0) = O (q) (20)

Now, invoking Lorenz reciprocity for the scattering amplitude, s+(k,k0) = s+(−k0,−k), we deduce that s+(k,k0) = O (q0).
This behavior can also be proved while studying ut − ui − ur and 1

X ∂nut − ∂nui − ∂nur at grazing incidence. Finally,

s+(k,k0) = O (q0q) (21)
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with immediate consequence that the incoherent scattering cross-section σ(k,k0) = Var(s+(k,k0)) = 〈|s+(k,k0) −
〈s+(k,k0)〉|2〉 = O (q2

0q2) and in the backscattering direction, σ b(k0) = σ(−k0,k0) = O (q4
0).

This important result for materials with finite permittivity can be extended to perfectly conducting metals, but for the H
polarization case only [16].

It has been shown in [13] how the predictions of usual approximate rough surface scattering models deteriorate at
grazing incidence and grazing backward scattering angles. As the use of rigorous computations is required, we investigate
here a way to save computation time by taking benefit from the asymptotic behavior of the scattering amplitude exhibited
in the previous section. With this aim we have to calculate the first term of the expansion of the scattering amplitude with
respect to q and q0. Since s+(k,k0) = O (q) as q → 0, the limits

s+
10(k0) = lim

q→0

s+(k,k0)

q
(22)

are finite. Note that here are two such limits, s+ f
10 (k0) for forward scattering k > 0 and s+b

10 (k0) for backward angles k < 0.
For such grazing amplitudes the formula (18) becomes

s10(k0) = 1

π

∫
Γ

{
ikηη′ + 1√

1 + η′2
ψ> − η∂nψ

>

}
e−iK x d� (23)

with k = +K for s+ f
10 and k = −K for s+b

10 .
At grazing incidence, since s+(k,k0) = O (q0), the limit

s+
01(k) = lim

q0→0

s+(k,k0)

q0
(24)

is finite. To compute this limit, let us divide Eq. (7) by q0 et consider the limit when q0 tends to zero. As mentioned earlier,
the right-hand side has a finite limit. Therefore, ψ>

1 = limq0→0
ψ>

q0
and ∂nψ>

1 limq0→0
∂nψ>

q0
are solution of the same integral

equations as ψ> and ∂nψ> but different right-hand side, allowing us to evaluate s+
01 through Eq. (18)

s+
01(k) = 1

π

∫
Γ

{(
ikη′ψ>

1√
1 + η′2

− ∂nψ
>
1

)
sin (qη) + qψ>

1√
1 + η′2

cos (qη)

}
e−ikx d� (25)

Finally, we can deduce the limit of the scattering amplitude when both incident and scattering angles go to grazing simul-
taneously,

s+
11 = lim

q0→0,q→0

s+(k,k0)

q0q
= 1

π

∫
Γ

{
ikηη′ + 1√

1 + η′2
ψ>

1 − η∂nψ
>
1

}
e−ikx d� (26)

4. Numerical results

First, rough surfaces with both Gaussian height spectrum and Gaussian probability density function are studied, sep-
arating the air from glass with permittivity ε = 2.37. Two different kinds of roughness are investigated: small-scale or
perturbative roughness with λ/16 height root mean square and λ/2 correlation length and resonance range roughness with
λ/4 height root mean square and λ/2 correlation length.

Statistical NRCS is estimated through Monte Carlo average over 100 surface samples. Over the 42λ of the samples length,
� = 21λ have the roughness corresponding to the statistical parameters. On each side of the sample, there are 4.2λ-long
smooth transition regions (see [13] for details) and 6.3λ-long plateaus. � has to be set much larger that the larger scale of
the roughness, that can be assumed to be the correlation length for Gaussian spectrum surfaces. Computing time for 100
samples at a given incidence angle is around 8 minutes, using MATLAB.

We start the numerical study with bistatic scattering, at an incidence angle of θ i = 70◦ . For each surface sample, the
scattering amplitude s+(k,k0) for k0 = K sin(θ i) is computed for all scattering directions −K < k < +K , as well as the limits
s+ f

10 (k0) and s+b
10 (k0). The rigorous NRCS σ(k,k0) = Var(s+(k,k0)) can be compared to forward and backward extrapolations

q2 Var(s+ f
10 (k0)) and q2 Var(s+b

10 (k0)). As can be seen on Fig. 1, where the resonance range is addressed, the exact and
extrapolated bistatic diagrams coincide over a range of 10 degrees from grazing. More precisely, in H-polarization, diagrams
are closer than 1 dB up to −81◦ (−82◦ in V-pol.) for backward angles and up to −82◦ (−82◦ in V-pol.) in forward scattering.

We now focus on monostatic diagrams, that are of major importance for remote sensing. We compare in Figs. 2 and 3 the
rigorous backscattering NRCS σ b(k0) = Var(s+(−k0,k0)), at angles 70◦ , 75◦ , 80◦ , 85◦ , 87◦ , 88◦ and 89◦ , to the extrapolated
diagram q4

0 Var(s+
11). Note that the computing time for the extrapolated diagram is the same as for one incidence angle. Once

again, the angle that corresponds to an error of 1 dB between exact and extrapolated diagrams appears on these figures.
In order to determine this angle θ1 dB more precisely, the ratio σ b(k0)/q4 is interpolated linearly between the monostatic
0
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Fig. 1. 1D surface with Gaussian spectrum, λ/4 height root mean square and λ/2 correlation length, between air and glass ε = 2.37. Bistatic NRCS at 70◦
incidence.

Fig. 2. 1D surface with Gaussian spectrum, λ/16 height root mean square and λ/2 correlation length, between air and glass ε = 2.37. Monostatic NRCS.

angles 70◦,75◦, . . . ,89◦ , and finally compared, in dB, to Var(s+
11). As it can be seen, the value of this 1 dB angle barely

depends on the roughness, being simply 85◦ in H-pol. and 87◦ in V-pol. For smaller angles, the behavior of the diagrams
varies with both roughness and polarization. Note that in the case of the small roughness at H-pol., the extrapolation error
is smaller than 3 dB as far as the incidence angle remains smaller than 70◦ .

The NCRS predicted by SPM and SSA at first order and KA also appear in Figs. 2 and 3. Those NRCS are computed via
Monte Carlo averages, even if statistical expressions exist. This way, the same rough surface samples are used for all models,
and the discrepancy between plots is only due to the physical approximations. Without surprise, the most problematic
method is the KA, of which NRCS does not even tend toward zero at grazing, whatever the polarization. SPM and SSA
largely underestimate the surface NRCS at all studied angles. Over the last grazing degrees, the error is 10 dB in Fig. 2, and
much larger in Fig. 3. As expected, SSA and SPM curves coincide at grazing, and at larges angles, SSA outperforms SPM.

For dielectric surfaces, the influence of the geometrical parameters on the accuracy of the extrapolated NRCS is thus
quite moderate. We now turn to conducting media, with complex relative permittivity ε = 30 + 30i. Note here that the skin
depth in the medium is very small compared to the electromagnetic wavelength in the vacuum, and the Grazing Method of
Moments is applied under the curved surface-impedance approximation [15], using Eqs. (12) and (13). The same two kinds
of roughness as previously are addressed, with surface samples of similar characteristics, except that the roughest surface
has a correlation length of 3λ/4 instead of λ/2, at monostatic angles 60◦ , 80◦ , 85◦ , 89◦ . NRCS are compared in Figs. 4 and 5.
For such a medium, a polarization effect appears clearly. In Horizontal polarization, extrapolation remains as accurate as for
glass, by far outperforming the approximate models. However, in Vertical polarization, the GMoM and extrapolated curves
coincide only at 89◦ , the error reaching 4 dB as soon as 85◦ is reached. This strong difference can be understood by noticing
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Fig. 3. 1D surface with Gaussian spectrum, λ/4 height root mean square and λ/2 correlation length, between air and glass ε = 2.37. Monostatic NRCS.

Fig. 4. 1D surface with Gaussian spectrum, λ/16 height root mean square and λ/2 correlation length, between air and conductor ε = 30 + 30i. Monostatic
NRCS.

that, in V polarization, the right-hand side of the integral Eq. (7) behaves as q0 only at incidence angles larger than Brewster
angle. For glass, it is about 57◦ , while for the conducting material considered here, it reaches 82◦ .

From 60◦ to 80◦ , SSA and KA show more accurate than the extrapolation, with errors smaller than 4 dB for small height
roughness (Fig. 4). KA error is also smaller than 4 dB in the resonance range (Fig. 5).

The ocean surface exhibits a multiscale spectrum, including spatial frequencies from millimeter waves up to meter or de-
cameter waves, depending mainly on the wind speed. As such, it has scattering properties very different from surfaces with
Gaussian spectrum. We consider for simulations the Unified ocean spectrum [14] for two different wind speeds (measured
at a 10 m height), 4 m/s and 7 m/s and at L-band, that is with an electromagnetic wavelength of λ = 25 cm. For the 4 m/s
wind speed case, the sea surface peak wave wavelength is 15 m, and the 100 surface samples are taken � = 64 m-long,
with on each side a 1.6 m plateau and a 6.4 m transition region. Computation time reaches 90 minutes for each incidence
angle 70◦ , 75◦ , 80◦ , 85◦ , 87◦ , 88◦ and 89◦ . For the 7 m/s wind speed case, the peak wave wavelength rises to 45 m, and all
surface samples dimensions are increased fourfold, resulting in a 14 hours per incidence angle computing time. At L-band
frequency, the ocean is a good conductor, and permittivity ε = 30 + 30i is set. Note that the generated surface samples are
of Gaussian probability density function, which may be an important approximation for ocean surface remote sensing. As
can be seen in Fig. 6 that displays the ocean NRCS against monostatic angle for the weaker wind speed, results are very
polarization dependent. In the Horizontal case, extrapolation error is 1 dB at 82◦ and only 3 dB at 70◦ , while SPM and SSA
are 4 dB away from GMoM at 70◦ , but the error of those approximate models is growing at grazing, reaching 8 dB from
GMoM at 89◦ . On the contrary, for the Vertical polarization, from 70◦ up to 89◦ , SPM and SSA fit GMoM with a maximum
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Fig. 5. 1D surface with Gaussian spectrum, λ/4 height root mean square and 3λ/4 correlation length, between air and conductor ε = 30 + 30i. Monostatic
NRCS.

Fig. 6. 1D surface with Unified ocean spectrum [14], wind speed 4 m/s at L-band, permittivity ε = 30 + 30i. Monostatic NRCS.

error of about 1.5 dB, while the extrapolation technique can only be used over the two most grazing degrees, with an error
reaching 6 dB at 85◦ and 18 dB at 70◦ .

Those results worsen with the wind speed getting higher (Fig. 7). Note that 7 m/s is the average wind speed over
the world. Here, for the Vertical polarization, the 1 dB error is reached by extrapolation as early as 88◦ . In fact, the H
extrapolation error at 7 m/s is very close to the V one at 4 m/s. Also, for Vertical polarization at 7 m/s, for the first time in
this paper, there a visible difference between GMoM and extrapolation at 89◦ . SPM and SSA remain with a maximum error
of 1.5 dB up to 87◦ , and of 5 dB at 89◦ .

5. Conclusion

It has been developed a complete theory of wave scattering from rough surfaces at grazing incidence and scattering
angles. The resulting integral equations can be numerically solved by classical techniques and the whole method is called
GMoM for Grazing Method of Moments. The paper is entirely focused on one-dimensional surfaces, but covers all common
materials, dielectrics and conductors, that can be modelized by a complex permittivity.

From the integral relationship between the scattering amplitude and the solution of the GMoM, it has been shown how
the scattering amplitude can be extrapolated in the LGA domain. Then from a single rigorous computation at one single
incident angle, one can derive a monostatic diagram over a more or less extended part of the grazing angles.

We have performed some numerical computations to illustrate the performances of the theory and to derive the angular
domain of validity of the presented extrapolation technique. For surfaces with Gaussian roughness spectrum, numerical
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Fig. 7. 1D surface with Unified ocean spectrum [14], wind speed 7 m/s at L-band, permittivity ε = 30 + 30i. Monostatic NRCS.

results indicate an important sensitivity to the nature of the lower medium, rather than to the roughness parameters. For
dielectrics such as glass, the extrapolation is very accurate over the [85◦;90◦] angular range, whatever the polarization and
the roughness, with maximum error around 1 dB, and it should always be preferred to elementary approximate models over
those angles. However, for less grazing angles, no general rule obviously prevails. For conducting surfaces under Horizontally
polarized illumination, the same accuracy and recommendations are true over [85◦;90◦]; furthermore, extrapolation is
meaningful at least up to 60◦ , with maximum errors around 4 dB. On the contrary, for conducting surfaces in the Vertical
case, approximate models are to be chosen for angles smaller than 80◦ , and larger incidence angles than Brewster angle are
required for accurate extrapolation.

The ocean surface at microwave, that has naturally only be investigated as a conductor, shows results highly depending
on the wind speed. For calm seas (4 m/s wind speed), the conclusion is clear: there exists an easy way to accurately
forecast the sea NRCS over the [60◦;90◦]. One will rely on extrapolation for the H-NRCS, while SSA or SPM, the two
methods coinciding here, will be trusted for the V case. Things get quickly more complex for moderate seas (7 m/s wind
speed), where no method prevails in H, except extrapolation over [85◦;90◦], while in V, SSA and SPM keep great accuracy
over [60◦;85◦], and no method performs better than 1 dB over [85◦;90◦]. This last feature may in our opinion become
more pronounced yet with stronger winds.

Admittedly, all those results have to be validated and backed up by 3D vector computations before being applied to
natural surfaces. Cross-polarizations have also to be investigated. However, we have clearly stated that rigorous computations
can be performed at the lowest grazing angles and can be used to generate monostatic diagrams as reference data. With our
extrapolation technique, we prove that a simple approach can lead to accurate results in the difficult and complex domain
of LGA.
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