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Scattering of Electromagnetic Waves From
Rough Surfaces: A Boundary Integral Method for
Low-Grazing Angles

Philippe Spiga, Gabriel Soriano, and Marc Saillard

Abstract—We present a boundary integral method for the nu-
merical solution of the rigorous problem of wave scattering from
rough surfaces under grazing illumination. The model of a locally
perturbated plane is adopted: a finite patch of rough surface has
its roughness flattened at the edges. The boundary formulation un-
knowns are the tangential components of the scattered field, de-
fined as the contribution from the rough area. This way, the nu-
merical domain of study is correctly bounded, even with a plane
wave as incident field, and the sampled area is made independent of
the incidence. This rigorous approach, called the grazing method of
moments, is implemented on two-dimensional perfectly conducting
surfaces and validated by comparison with a reference numerical
solution for surfaces with Gaussian correlation functions. Now, the
validity of approximate models at low-grazing-angles can be inves-
tigated; the small perturbation method and the small slope approx-
imation are addressed in this paper. Scattering diagrams show how
the performances of these methods deteriorate drastically at back-
ward scattering angles as the incidence goes to grazing.

Index Terms—Boundary integral equations, electromagnetic
scattering by rough surfaces, low-grazing angles.

1. INTRODUCTION

HE backscattering of electromagnetic waves from rough
Tsurfaces at low-grazing angle is a specific and difficult
topic [1]. In particular, the usual criteria of validity of ap-
proximate methods have to be revisited. Indeed, depending on
whether one focuses onto forward scattering or back scattering,
the accuracy of approximate methods may differ drastically.
The efficiency of shadowing functions on high frequency
approximations is also difficult to estimate. Some specific
methods have recently been proposed, both analytical [2],
[3] and numerical [4], [5] but they address one-dimensional
surfaces. At present, all published comparisons with rigorous
methods at grazing appear to be restricted to one-dimensional
surfaces. This proves that current numerical formulations feel
uncomfortable at low-grazing angles. The aim of this paper
thus is to propose a model for the scattering of electromagnetic
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waves from two-dimensional surfaces, based on a boundary in-
tegral formalism, tailor-made for backscattering at low-grazing
angles.

The direct problem of the scattering of electromagnetic
waves from a random rough surface in harmonic regime can be
rigorously solved only by means of numerical methods [6], [7].
When the surface separates two homogeneous media, the prime
approach is the boundary integral formalism. The scattering
problem is reduced to the search of the tangential components
of the total electric and magnetic fields on the boundary. Inte-
gral equations are cast into a linear system using the method of
moments (MoM) or the boundary element method. Sampling
has to be made at the scale of the wavelength. In the physical
problem, the incident field is a beam with a footprint on the sur-
face at least several hundreds wavelengths long. This provides
by far too many unknowns for numerical solution. However,
it is now well established [7] that the scattered field can be
estimated through ensemble average over smaller samples, with
the corresponding lower angular resolution. Several models
have been investigated for the scattering from those small rough
surface patches. We now review them from a low-grazing angle
point of view.

* First, an infinite rough surface is enlightened by a tapered
beam, generally of Gaussian amplitude [8]—-[11], with foot-
print of prescribed dimensions. As long as the short-cou-
pling-range phenomenon can be invoked [12], the support
of the surface unknowns is only some wavelengths larger
than the footprint, and the domain of study is thus well
bounded. This model is very close to the physical problem.
However, with a tapered beam, there is a minimum surface
length to consider, that increases asymptotically as the in-
verse of the squared grazing angle, see [13] for a discus-
sion. The tapered beam model has been widely applied to
the scattering from unidimensional surfaces, at grazing an-
gles as low as 1° [14]. The minimum grazing angle for
two-dimensional surfaces is much higher.

* Second, the roughness is assumed to be periodic, and the
incident field is a plane wave. This is a problem of scat-
tering by a diffraction grating, that can be very efficiently
solved by specific methods [15], [16]. However, for a given
incidence, the scattered field is restricted to discrete direc-
tions. Also, grating methods show specific difficulties, such
as the Rayleigh anomaly. Finally, natural surfaces are not
periodic, and the influence of the periodic boundary condi-
tions on the computed scattered field is difficult to estimate.

* In a third model, the surface is a bounded perturbation of
the average plane under plane wave illumination. Here,
some supplementary step is required to bound the domain
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of study. The electrical image theory can do the job in
a very elegant way. It is however restricted to perfectly
conducting surfaces, since the half-space Green’s func-
tion is analytical only for this boundary condition. An-
other tapering method, inherited from resistive strips [17],
[18], consists in adding resistive regions on the edges of
the rough region. It has been succesfully applied at low-
grazing incident angles to the prediction of forward scat-
tering [19]. However, for backscattering, resistive tapering
is claimed in [20] to be restricted to grazing angles larger
than 20°. This may result from a lack of accuracy of the
method, since, at grazing incidence, only a very weak part
of the incident field is backscattered.

This last model has been extensively studied for the
Helmholtz equation under the finite section method desig-
nation. See [21] for a short review. In this same paper, stability
of the bounded perturbation problem and its convergence
toward the infinite rough surface problem as the dimensions of
the perturbation grow has been rigorously proved. This is an
important result, with no equivalent for periodic surface.

Therefore, let us reconsider the model of the bounded pertur-
bation of a plane, without resistive tapering. Under plane wave
illumination, reflection on the flat part is the main contribution
to the scattering amplitude in the forward direction. Since we
are concerned by the contribution from roughness, we define a
scattered field that is free of the field that would be reflected
from a plane interface and we suggest to choose the tangential
electric and magnetic components of that scattered field as sur-
face unknowns.

On one hand, this should provide better accuracy out of the
specular reflection direction. On the other hand, surface un-
knowns should decrease away from the rough area, since their
value result from interactions with the rough area or from the
propagation of surface waves. Therefore, it is assumed that the
support of the tangential components of the scattered field has
similar dimensions as the rough region, say some wavelengths
larger. The boundary integral formalism based on that choice of
surface unknowns is developed in Section II, where we present
integral equations and far-field formulas for these unknowns.

For a plane wave impinging a plane interface with bounded
roughness, the behavior of the scattered field in the far-field
when the grazing incidence angle or the grazing scattering an-
gles tends toward zero can be theoretically predicted [22]. These
results, that depend on the boundary condition, are summarized
in the beginning of Section III. However, as outlined earlier, sur-
face waves (surface plasmon polaritons SPP) may propagate,
whatever the polarization on a two-dimensional rough surface.
Even though they no longer contribute to the far field once prop-
agating over the flat area, SPP are part of the interaction process,
and as such, cannot be discarded in integral equations. Conse-
quently, with a restricted domain of study, the SPP may be trun-
cated and may radiate propagative waves around the grazing di-
rections. To get rid of these artifacts, we propose in Section III
modified scattering formulas that enforce the theoretical be-
havior of the scattered field at grazing. These formulas are di-
rectly inspired from the work by Tatarskii and Charnotskii [22].

Next, this approach, called the grazing MoM, is applied to
perfectly conducting surfaces. Details on numerical imple-
mentation are given in Section IV. Validation by comparison
with a classical numerical method, at non-grazing incidence,
follows in Section V. Then, bistatic results at grazing incidence
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Fig. 1. Bounded perturbation of the plane.

are presented and compared in Section VI with two first order
approximate methods, the small perturbation method and the
small slope approximation, for rough surfaces with Gaussian
pdf height and correlation function. Errors in the backscattering
direction are outlined. The paper is finally concluded.

II. BOUNDARY INTEGRAL FORMALISM

In the right Cartesian coordinate (X, ¥, z) system with z-axis
directed upward, the rough surface ¥ is a local perturbation of
the (zOy) plane with the vacuum as upper medium. The surface
Y is given by a Cartesian equation z = h(r) = h(z,y), and i
denotes its unit normal vector directed toward the vacuum (see
Fig. 1).

Electric and magnetic fields are respectively denoted by E
and H, while superscripts i, r, s indicate respectively the inci-
dent, reflected and scattered field, and no superscript the total
field. The reflected field is the field that would be reflected by
the (zOy) plane, so that the scattered field is defined in vacuum
by ES = E — Ef — E*. Let us notice that ES and the standard
scattered field defined as E — E! share the same incoherent scat-
tering amplitudes. The magnetic fields are defined accordingly.

In order to obtain a boundary integral representation of the
scattering problem, let us introduce the discontinuous vector
functions U and V

_ (Es [ H® ifz> h(x,y)
U_{O V_{O if z < h(z,y) M
with jumps at the surface [ x U] = i x E* = m and
[ x V] = n x H® = j. Those equivalent surface currents

are the unknowns of the boundary integral representation of the
scattering problem. For an exp(—iwt) time dependence, the har-
monic Maxwell equations for U and V write, in the sense of
distributions

curlU — iwpgV =més 2)
curlV + iweqU =joy, 3)

with y; the Dirac delta distribution associated with the surface.
Those two equations can be combined to obtain a Helmholtz
equation with right-hand side

AU + K3U = —curl(méys) — iwpojds, + grad divU (4)

Ko = w,/eopo denoting the wavenumber for vacuum. U sat-
isfies an outgoing wave condition in both the upper and lower
half spaces; we assume that this is a sufficient condition for
(4) to have a unique solution, that writes as the convolution
of the right-hand side and of the Green’s function Go(R) =
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—(exp(iKy|R]|)/4x|R|). In order to discard the normal com-
ponents, a supplementary curl operator is applied to (4). Finally,
the function V can be expressed as

V = —curl(Gy * jox) + w%;ocurl curl(Go *xmédy). (5)
The same method applied to (3) gives

U = —curl(Gp * mbg) — L‘%:Ocurl curl(Gg * jos). (6)
To obtain integral equations, we must consider the limit of (5)

and (6) when the observation point tends toward the surface.
According to [23], the equations in vacuum are

1 i

(— +M0>j ~ Y Ppm=0 %)
2 wiio
1 i

<—+M0> m+ —Pyj=0 8)
2 weg

with My and P, the integral operators introduced by Martin and
Olain [24]. They write, for a tangential density ¢ and two points
R and R’ on the surface

M()CR =n x curlR / GORYR/CR/dSI
=

Pycr =n x curlgcurlg /GOR,RICR/dS'.
>

Equations (7) and (8) are not independent. Therefore, ex-
cept for the perfectly conducting case, for which m = —n x
(E! + EF) is known, another independent relation between the
unknowns m and j is required. In the frame of the impedance
boundary condition, of which expressionis n x E = n x Z[i X
H], this second relation writes

m-nxZj=nxZ%[ax (H +H)] -ax(E+E") 9

with right-hand side vanishing outside the rough region, thus
auguring a bounded right-hand side for the boundary integral
equation. The perfectly conducting case corresponds to Z = 0.
The exact transmission problem with a homogeneous dielectric
lower medium can be formalized by subtracting from the total
field the field (E*, H*) that would be transmitted in the dielec-
tric through the (2Oy) plane. Associated integral equations can
be written with right-hand sides that depend on fi x (E! + E¥ —
E%) and f x (H' + H* — H*) which show bounded supports.
Note that for lossy dielectrics, the use of (E*, H*) that varies
exponentially with z might reveal tricky in a numerical method.
For those materials, the integral relationship between the tan-
gential components of the total fields will be benefitly approxi-
mated by a local impedance boundary condition.

III. SCATTERED FIELD

In the upper and lower half-spaces, U writes as a sum of
outgoing plane waves

U(r,z)= [ %(qk)e"’(k'”‘qz)dk:Es(r, z) z> maxgeh
U(r, 2) = [ S eilkr=a2) jc = 0

S 2z < ming: h

(10)
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with k2 + ¢2 = K2, Rq > 0, 3¢ > 0 and, according to (6)

1 1
= —/ (—K X Mg/ + —K x (K Xle))
47 weo
b

x exp(—iK - R")dS’

S* (k)

(11)

where K denotes the wavevector in vacuum k + ¢z.

For an alpha-linearly polarized incident plane wave E! =
¢i(koT=q02) 5 (k). the beta-polarized component of the up-
ward scattering amplitude S (k,ko) = pg(k) - S5, (k) is
related to the coefficient Sgq (k, ko) of the standard scattering
matrix [25] by S’ga(k7 ko) = Sga (k) + Taé(k — ko)éﬁa, with
., the relevant Fresnel reflection coefficient. As S and S share
the same incoherent part, the radar cross section writes 03, =
(1S4, — (S+) |2> Therefore, matrix 7 (k, ko) for real values
of ¢ and g characterizes the far-field séattering from rough sur-
face X, and its behavior at low-grazing incident (qo — 0) and
scattering (¢ — 0) angles is of particular interest here.

Theoretical limits at grazing have been studied by Tatarskii
and Charnotskii in [22] for scalar waves scattered from rough
surfaces, with Dirichlet and Neumann boundary conditions. Re-
sults for electromagnetic waves can be obtained with similar ar-
guments; we just give outlines.

The behavior at grazing incidence is governed by the right-
hand side, and more precisely by —n x (E! + ET) for perfect
conductors, i x Zax (Hi+H") —nx (EI+E") in the impedance
case and i X (E' + E* — E*) and i x (H! + H" — H") in the
transmission case. For example, it is easy to find from Fresnel
coefficients that the last two vectors have all their components
that tend to zero and behave as g at grazing, whatever the polar-
ization (denoted by O(qq) with the Landau notation). The same
limit applies to the perfectly conducting case for horizontal (H)
polarization, defined by pi;(k) = k x 2, while it is only O(1)
in vertical (V) polarization (P¥ (k) = (Fqk + kz)/K). This
behavior at grazing incidence angle is transmitted to unknowns
m and j through integral equations and to the scattering ampli-
tude through formula (11).

Since the scattering amplitude satisfies the reciprocity the-
orem [25], Sga(k, ko) = (_)/MS:@(_kO? —k) with (—);375(1
equals to —1 and (—)aa = +1, the behavior at grazing scat-
tering angles can be straightforwardly deduced, with main result
that the whole scattering matrix is O(qoq) in the transmission
case. The perfect conductor case is more complex because po-
larization dependent, as it appears on Table I. These last results
are in agreement with [22], in the sense that the co-polarized H
amplitude shares the same O(qoq) behavior with the Dirichlet
problem, and the co-polarized V amplitude corresponds to the
Neumann boundary condition. Note that the limit for the Neu-
mann problem may depend on the exact configuration of the
problem [26], [27].

In a numerical computation context, the correct behavior of
the scattering amplitude around gy — O is naturally enforced.
This comes directly from the fact that the excitation terms,
and thus the right hand sides, actually decrease in amplitude
with the correct speed at grazing. The answer is different when
q — 0, since the limit has been obtained through reciprocity.
Here, we only address the cases where the limit at grazing
scattering angles behave as ¢. Such a limit does not explicitly
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TABLE I
THE LOW-GRAZING BEHAVIOR OF THE SCATTERING AMPLITUDE, THE BISTATIC
AND MONOSTATIC RADAR CROSS SECTIONS, RESPECTIVELY, FOR BOUNDED
PERTURBATION OF A PERFECTLY CONDUCTING PLANE MIRROR

Polarization | 5%, (k, ko) | 0ga(k, ko) | oga(—k,k)
f=Hoa=H | O(qq) O(a3a®) O(q")
f=H a=V O(q) 0(¢?) O(¢*)
f=V a=H O(%) ) 0(¢®)
B=V a=V o(1) o(1) o(1)

appear from formula (11). In addition, as recalled earlier, sur-
face waves (SPP) may appear and the unknowns m and j may
have a much larger support than the rough area. Therefore, with
a bounded domain of study, the SPP is truncated and behaves
as a sheet of current, radiating in both the lower and upper
half-spaces through edge effects. Indeed, since the associated
surface current is close to exp(ik - r), the scattering amplitude
in the plane of propagation is, with good approximation, pro-
portional to sinc|[( Ky — k)L/2] (k and L the wavenumber and
the length of the rough area in the direction of propagation)
which mainly contributes to grazing scattering angles and is an
even function of q. Therefore, to get rid of these truncated SPP
artifacts and enforce the theoretical behavior of the scattering
amplitude at grazing scattering angles, we propose to compute
the scattering amplitude through the combination

g,ga(k7k0) = Sga(k7 kO) - S[;a(k7 kO) (12)

From (10), it is obvious that S, (k,ko) = 0 whatever k, so
combination (12) remains theoretically equal to Sga. It is to
be noticed that, since (12) numerically enforces a O(g) limit,
it should not be used to compute the V-polarized component
of the scattering amplitude in the perfectly conducting case, for
any incident polarization.

IV. NUMERICAL IMPLEMENTATION FOR PERFECTLY
CONDUCTING SURFACES

Let us consider a rough surface, with roughness flattened ex-
cept on a finite area. The flattening is mathematically realized
by multiplying the elevation function by a Hanning function, as
shown in Fig. 2. This ensures a smooth transition between the
flat part and the rough part. The size of the transition is ruled by
the parameters L1, L2, .1’ and 1.2, the choice of these param-
eters depending on the rough surface under study. Fig. 3 shows
the geometry of the tapered surface. The rectangle in dashed
lines bounds the domain where i1 x (E! + E*) is non-zero. This
domain is surrounded by plateaus of dimensions P1, P2, P1’
and P2’. Transitions and plateaus are sized to ensure that the
right-hand side of (7) is bounded to the numerical domain of di-
mensions 2L and 21, and represented in Fig. 3 by the rectangle
in solid lines.
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Fig. 2. The Hanning function.

Following Section II, the perfect conductor boundary condi-
tion writes m = —n x (E! 4+ ET). This can be inserted into (7)
to get an integral equation

5 (13)

(1 + M0>j = - Py x (E' +E)

wWho
with same kernel as the magnetic field integral equation (MFIE).
As such, it can be solved by similar techniques. This equation,
discretized by the method of moments (MoM), gives rise to a
linear system AX = B with a completely filled matrix A. This
system can be solved iteratively at a O(N?) cost in memory
and time, where N is the number of surface unknowns. For
two-dimensional surfaces, N becomes very large and advanced
numerical schemes have been proposed [6]. For instance, the
sparse-matrix flat-surface approach [28] has a reduced memory
cost of O(N). This technique has been used in [29] with alter-
native iterative methods; the expression of the coefficients of the
matrix A appear in this paper. In [30], the method has been im-
proved with a multilevel canonical grid technique; the time cost
is now O(N log N) and details of the implementation can be
found in [31].

Since the MFIE operator M is weakly singular [23], [24],
the method of moments can be applied with piecewise-constant
basis functions and point matching. On the contrary, operator
Py is hyper-singular, and the computation of the right-hand side
of (13) is not trivial. With one differentiation of P, transferred
onto the electric field, the right-hand side writes

~ ' Pix (E' +E")g
wito
=-—nx / (iWEoGR,RIﬁ X (Ei + ET)R/
S

+gradg Grp/0-(H +H")g/) dS'. (14)

For this integral to be computed numerically, i x (E! +E*) and
- (H! + H") are expanded in piecewise-constant basis func-
tions. The evaluation of the right-hand side vector B of the linear
system is obtained from two matrix-vector products, therefore
requires O(N?) operations. With the multilevel canonical grid
technique of [31], it is performed with reduced O(N') memory
and O(N log N) time requirements.

One should keep in mind that real materials have finite
conductivity, thus that the transmission boundary condition
should be addressed. In this case, all the components of the
scattering amplitude behave as O(qoq) at grazing. Indeed,
for low-grazing angles and vertical incident polarization, the
Fresnel coefficients for finite and infinite conductivity show
opposite limits (respectively —1 and +1) at grazing: the angle
and conductivity limits cannot be commuted here. No real
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Fig. 3. Geometry of the tapered rough surface.

surface should be assumed perfectly conducting under verti-
cally-polarized illumination around and beyond the Brewster
angle. On the contrary, the conductivity has no effect on the
horizontal Fresnel coefficient at grazing, and the perfectly
conducting model is relevant. However, following Table I, only
the co-polarized horizontal amplitude 51—5 g meets the correct
behavior at grazing, and the cross-polarization should be con-
sidered unphysical. For the HH component of the scattering
amplitude, the combination (12) as applied to (11) writes
SUL (k) = % / {isin (ah(x)) (k7 - m + wpoh - §)
b

+qcos (gh(r)) k - m} e"kTds  (15)

with obvious limit O(q) at grazing, now.

In the two following sections, integral (13) is solved for the
right-hand side (14) associated with a horizontally-polarized in-
cident plane wave. The horizontal component of the scattering
amplitude is computed from (15) and radar cross section is es-
timated by Monte Carlo average. The whole approach is called
grazing MoM.

V. VALIDATION AT NON-GRAZING ANGLES

In this section, the grazing MoM is compared to the classical
implementation of the MoM (denoted beam MoM thereafter),
where the surface roughness is not bounded, but is enlightened
by atapered polarized beam with Gaussian envelope. Of course,
only non-grazing incidence may be addressed here. The beam
MoM has itself been validated by comparison with experimental
data in [29], and has been used as a reference in numerous pub-
lished works. All Monte Carlo averages have been performed
on 200 samples.

The first studied surface has an isotropic Gaussian correla-
tion function with height root mean square h = 0.083\ and
correlation radius £ = 0.5\, X\ denoting the electromagnetic
wavelength. The incidence angle is 60° from the normal. For the
beam MoM, the rough surface is sampled at 8 points per wave-
length and, in order to avoid edge effects, is set 64\ long and 32\
wide. The number of surface unknowns is thus N = 131072.

For the grazing MoM, the surface area can be reduced, since
the only requirement is that the dimensions of the rough part
of the surface are much larger than the correlation radius. Here,
the surface is square with sides 2L = 2] = 16\, parameters
L1 = L1 = L2 = L2' = 2) and plateaus of 1\ (see Section IV
and Fig. 3). With a sampling step of one eighth wavelength, the
number of surface unknowns N = 16384 is lowered by a factor
eight, in comparison with the beam MoM.

Fig. 4 shows a comparison between the grazing MoM and
the beam MoM co-polarized normalized radar cross section
(NRCS), versus the scattering angle in the plane of incidence,
for a non-grazing incidence of 60°. It is expected to find
some discrepancy between the two curves in the region of the
specularly reflected beam, from 50° to 75°, as only incoherent
scattering is considered for the grazing MoM, while it is total
scattering for the beam MoM. As predicted by formula (15),
the grazing MoM NRCS vanishes at forward and backward
low-grazing angles, while the beam MoM NRCS, being esti-
mated through a formula similar to (11), show non null limits.
This explains discrepancies between the plots for angles lower
than —85° or higher than +85°. Outside these regions, the
two methods coincide fairly well. One can also notice a slight
vertical shift between the two curves over the whole diagram.
This comes from the value of the area A that normalizes the
NRCS 0 = o /A in the case of the grazing MoM, which should
refer to the area of the rough part. This definition is however
ambiguous, since the Hanning function makes a smooth tran-
sition between the plane and the roughness over distances set
by parameters L1 and L2. Here, the normalizing area has been
setto A = (2L — ((L1 + L2)/2) — P1 — P2)(2l — (L1 +
L2")/2) — P1' — P2').

As arigorous method, the grazing MoM predicts cross-polar-
ization. In this case, formula (11) has to be used for computa-
tion of the scattering amplitude. For validation purpose, the VH
component of the NRCS is plotted in the plane of incidence in
Fig. 5 and compared to the beam MoM. The incident field of the
grazing MoM is a perfectly horizontally-polarized plane wave.
On the contrary, in the beam MoM, the surface is enlightened
by a superposition of plane waves of which polarization cannot
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Fig. 4. Co-polarized component of the normalized scattering cross-section at
60° incidence and Horizontal polarization versus scattering angle in the plane
of incidence for the grazing MoM and the beam MoM. The surface is perfectly
conducting with 0.083 X height root mean square and an isotropic Gaussian cor-
relation function of radius 0.5 A.
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Fig. 5. Cross-polarized component of the normalized scattering cross-section
at 60° incidence and Horizontal polarization versus scattering angle in the plane
of incidence for the grazing MoM and the beam MoM. The surface is perfectly
conducting with 0.083 X height root mean square and an isotrope Gaussian cor-
relation function of radius 0.5A.

be perpendicular to the plane of incidence [11]. Therefore, re-
flection of such a beam on a mere plane gives a field that com-
prises a non-zero vertically-polarized component. In the same
way, the cross-polarized NRCS predicted by the beam MoM for
a rough surface is overestimated. This explains the difference
between the two curves of Fig. 5. To conclude this comparison,
our opinion is that the grazing MoM is better suited than the
beam MoM to characterize the cross-polarized response in the
plane of incidence of a rough surface.

The grazing MoM can be applied to rougher surfaces. We
now consider a second roughness with 0.25\ height root mean
square and 0.75\ correlation radius, and a third one, with 0.50A
height root mean square and 1.50)\ correlation radius, at 60°
incidence still. For these surfaces, the slope root mean square
is 0.47. The size of the surface samples for both methods is
unchanged. For the second case (Fig. 6), the two models also
fit very well. When the surface is very rough and its correlation
length exceeds the wavelength, the two MoMs differ around
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Fig. 6. Same as Fig. 4, with 0.25X height root mean square and 0.75X corre-
lation radius.
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Fig. 7. Same as Fig. 4, with 0.50A height root mean square and 1.50\ corre-
lation radius.

the specular direction, as shown in Fig. 7. Here, the difference
between the two representations of the problem—a tapered
beam on an infinite roughness and a plane wave on a plane with
bounded perturbation—shows off. However, comparison re-
mains excellent for all backward angles, thus in backscattering.

These comparisons prove the validity and interest of the
grazing MoM.

VI. COMPARISON WITH APPROXIMATE METHODS

The grazing MoM, as a numerical solution of the rigorous
scattering problem, can be used to check the validity of approx-
imate models at low-grazing incidence, the backscattering di-
rection being of particular interest for remote sensing applica-
tions. High-frequency asymptotics such as the Kirchhoff-tan-
gent plane approximation or the Geometrical Optics, mainly
suited for predicting scattering around the forward direction,
will not be addressed here. We thus focus on the small perturba-
tion method (SPM1) and the small slope approximation method
(SSA1), both at first order. Note that more advanced and re-
cently published methods such as [2] are claimed to handle low-
grazing, but we think that classical methods should be tested
first. For Gaussian surfaces, SPM1 is usually given to be valid
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Fig. 8. Horizontal-horizontal component of the normalized scattering cross-
section at 20°, 80° and 89° incidence versus scattering angle in the plane of
incidence for the grazing MoM, SPM1 and SSA1. The surface is perfectly con-
ducting with 0.083 A height root mean square and an isotropic Gaussian corre-
lation of radius 0.5A.

TABLE II
HORIZONTAL-HORIZONTAL COMPONENT OF THE BACKSCATTERING NRCS OF
THE GRAZING MoM, SPM1 AND SSAT1 IN dB FOR THREE VALUES OF THE
MONOSTATIC ANGLE IN DEGREES. THE SURFACE IS PERFECTLY CONDUCTING
WITH 0.083\ HEIGHT ROOT MEAN SQUARE AND AN ISOTROPIC
GAUSSIAN CORRELATION OF RADIUS 0.5 A

Monostatic angle | grazing MoM | SPM1 SSA1
20 2.48 4.10 1.87
80 -45.14 -61.70 | -58.79
89 -85.44 -102.87 | -102.82

for height root mean square a lower than \/20, while the cri-
terion for SSA mixes a with the slope root mean square s :
Kysa < 1. From the analytical expressions of the scattering am-
plitude, it appear that these two methods coincide when an expo-
nential term can be linearized at first order, namely: exp[i(q +
qo)h(r)] ~ 1 + i(q + qo)h(r). Therefore, SPM1 and SSAl
should agree for low-grazing backscattering angles.

The study starts with a surface with a small roughness of
0.083\ height root mean square and an isotropic Gaussian cor-
relation of radius 0.5, already considered in the previous sec-
tion. The height and the slope (13.2° angle root mean square)
are moderate, so SSA1 should behave well. Fig. 8 shows the
comparison between these two approximations and the grazing
MoM. Three angles are considered, namely 20°, 80° 89°. At20°
incidence, SPM1 gives a correct indication of the shape of the
scattering diagram, underestimating the NRCS between —90°
and —25° and overestimating it beyond —25°, with an error al-
ways smaller that 5 dB. SSA1 is generally closer to the MoM,
showing excellent accuracy on the major part of the diagram,
from —30° to +90°. However, outside this region, SSA1 under-
estimates the NRCS by several dB. When the angle of incidence
increases, the gap between rigorous and approximate methods
widens. SSA1 fits MoM on a region that goes tighter. As shown
in Table II, SPM1 and SSA1 are very close to each other, but
irrelevant for backscattering at low-grazing angles.
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VII. CONCLUSION

This paper presents a boundary integral method for the nu-
merical solution of the rigorous problem of wave scattering from
rough surfaces under grazing illumination. The model of a lo-
cally perturbated plane is adopted: a finite patch of rough surface
has its roughness flattened at the edges. The boundary formula-
tion unknowns are not the tangential components of the total
field, but those of the scattered field, defined as the contribution
from the rough area. This way, the numerical domain of study
is correctly bounded, even if the incident field is a plane wave.
Since no tapered beam is used, the sampled area is a priori in-
dependent of the incidence, and low-grazing angles are at hand.
No supplementary assumption such as periodic boundary con-
ditions or resistive loading is necessary.

This approach has been implemented on two-dimensional
perfectly conducting surfaces, and validated by comparison
with a reference numerical solution for surfaces with Gaussian
correlation functions. Finally, the scattering diagrams predicted
by the small perturbation method and the small slope approxi-
mation are compared to those given by this rigorous model, the
grazing MoM, in the plane of incidence for incidence angles of
20°, 80° and 89°. One can see how the performances of these
methods deteriorate drastically at backward scattering angles as
the incidence goes to grazing, up to 17 dB in the backscattering
direction at 89° incidence for a surface with slope root mean
square of 0.23.

The same approach can be implemented to solve impedance
or transmission problems. In such cases, hyper-singular inte-
gral operators cannot be avoided, and may require the use of
more advanced discretization schemes, such as divergence-con-
forming basis functions.

This model is naturally aimed at investigating the numerous
advanced approximate models that have appeared in the litera-
ture for the last decades [32], and sorting them in the context of
low-grazing angles.
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