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Doppler Spectra From a Two-Dimensional
Ocean Surface at L-Band

Gabriel Soriano, Maminirina Joelson, and Marc Saillard, Member, IEEE

Abstract—An approximate time-harmonic three-dimensional
electromagnetic boundary-integral method, the small-slope inte-
gral equation, is combined with a series expansion of the Creamer
surface representation at second order with respect to the height,
denoted by Creamer (2). The resulting model provides at low
numerical cost simulations of the nonlinear ocean surface Doppler
spectrum at L-band. As a result of approximations, the model is
designed for a low-wind speed, typically up to 5 m/s. It is shown
that applying directly a second-order model such as Creamer (2)
to a semiempirical sea surface spectrum induces an unrealistic
magnification of small-scale roughness that is involved in the
scattering process at microwave frequencies. This paper thus pro-
poses an undressed version of the Pierson–Moskowitz spectrum
that corrects this artifact. Full-polarized Doppler simulations at
L-band and 70◦ incidence are presented. Effects of the surface
nonlinearities are outlined, and the simulated Doppler spectra
show correct variations with respect to wind speed and direction.

Index Terms—Doppler radar, nonlinear wave propagation, re-
mote sensing, sea surface electromagnetic scattering.

I. INTRODUCTION

E LECTROMAGNETIC wave scattering from the sea sur-
face has been intensively studied, experimentally as well

as theoretically, for now more than half a century. To take ben-
efit from the fluid motion and get much more information than
the average scattering coefficient, one can perform a coherent
integration in time with a Doppler radar. Indeed, surface waves
moving at different speeds provide different Doppler frequency
shifts. This is particularly useful in a monostatic configuration.
The square modulus of the time Fourier transform of the
complex backcattered field is called the Doppler spectrum and
represents the basic information we refer to in this paper.

For the open sea, techniques using coherent microwave
radars to retrieve oceanographic information are now well es-
tablished. In the high-frequency (HF) domain, Crombie [1] ex-
plained the Doppler spectrum by the Bragg scattering process.
For shorter radar wavelengths, Wright [2] and Bass et al. [3]
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proposed composite surface models that include hydromodula-
tion of the wavelets by long waves. Concurrently, Barrick and
Weber [4], [5] developed a perturbative model, more accurate
and analytic, based on a representation of a sea surface up
to second order in terms of hydrodynamic combined with a
second-order electromagnetic scattering model (SPM2). This
SPM2 model is the first one to support the double contribution
from nonlinear interactions between water waves and electro-
magnetic effects. It has been extensively used with a success
under various situations for the HF and very high frequency
(VHF) bands.

Here, the focus is on the probing of the costal area. To capture
small-scale changes that characterize such an environment, one
has to raise the frequency up to at least microwaves. As only
the gravity waves of the ocean surface are considered, we
use the lower part of the microwave band, namely L-band
(between 1 and 2 GHz, following the IEEE standard radar
band nomenclature). From an electromagnetic point of view,
standard low-frequency approximations or composite surface
models no longer hold at those frequencies, and one has to turn
toward more rigorous modelization. Lentz [6] started numer-
ical simulation of the ocean surface by solving the rigorous
harmonic boundary value problem. Rino et al. [7] performed
Doppler spectrum simulations with surfaces generated accord-
ing to the nonlinear model by Creamer et al. [8]. More recently,
Toporkov and Brown [9], [10] combined the method of ordered
multiple interactions with the fast multipole method to address
L-band and the low grazing angles. For other nonlinear ocean
surface models, see Johnson et al. [11] and Hayslip et al.
[12]. However, those numerical simulations cannot predict
quantitatively the radar return, since they address a simpli-
fied two-dimensional (2-D) representation of the problem. The
surface profile is assumed to be invariant along one direction
[one-dimensional (1-D) surface], the wind and the radar beam
directions being enforced to coincide.

In the present study, we present numerical Doppler spec-
trum simulations of a 2-D wind-driven sea surface at L-band.
To our knowledge, as far as Doppler spectrum simulation is
concerned, the paper constitutes the first attempt of a three-
dimensional (3-D) electromagnetic simulation. Following the
previous works [7], [9], we combine a boundary-integral equa-
tion for electromagnetic scattering with a Creamer nonlinear
surface. In order to reduce the numerical computation time
and the required central memory to acceptable values, addi-
tional approximations will be done on both the electromagnetic
and the hydrodynamic models. An approximate electromag-
netic boundary-integral equation is considered, the small-slope
integral equation (SSIE) recently developed by Saillard and
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Sentenac [13]. For the hydrodynamic model, we expand the
Creamer formalism in a perturbative series up to the second
order, restricting the model to light winds (typically up to 5 m/s
measured at 10-m height). The first-order term corresponds
to a linear surface, and is thus carried out using the spectral
method on a semiempirical sea surface spectrum. However, the
influence of the nonlinear hydrodynamic effects increase with
radar frequency and led us to undress this spectrum [14] such
that superimposing the second-order term makes it match the
original one. Note that this was not necessary with HF and
VHF radars, since the longer surface waves are hardly modified.
We present simulations on a directional Pierson–Moskowitz
(PM) spectrum for wind speeds ranging from 2 to 4 m/s and
for various values of the wind direction. At this stage, the
influence of the shape of the coast or of superposition of swell
is not considered. Effect on the nonlinearity of the surface on
the Doppler spectrum is investigated, and the sensitivity of the
model to wind speed and direction is studied.

Experimental data have shown that horizontal (HH) and
vertical (VV) Doppler spectra may exhibit strongly different
shapes, in particular at grazing angles [15]–[21]. This has been
interpreted as the manifestation of bound waves and/or non-
Bragg scattering effects due to, e.g., breaking waves [17]. In this
paper, both vertical and horizontal polarizations are considered
for the incident and scattered field, and differences between
polarizations are outlined. Our motivation for computing the
cross-polarized components comes from our wish of vanishing
the single-scattering contribution, which strongly dominates the
copolarized signature at low winds, to clearly exhibit higher
order contributions.

This paper is organized as follows. In Section II, the outlines
of the hydrodynamic model, starting from the general principle
of the spectral method, are described. We focus first on the
linear surface that is the comparative reference to our nonlinear
model. Then, we present the nonlinear model based on the
Creamer model and the technical aspects of the sea surface sim-
ulation with regards to the required computation cost and the
physical processes. The section ends with the formulation of the
undressed spectrum. Section III presents the electromagnetic
model, while Section IV is devoted to results and comments.
The paper ends with a section for concluding remarks and
perspectives.

II. OCEAN SURFACE MODEL

A modeling L-band radar Doppler spectra from the ocean
requires an accurate description of the sea surface motion. One
of the main difficulties lies in the fact that the geometry of the
sea surface is of complex character, involving nonlinear wave
interactions and random aspect.

The general solution of the sourceless linearized hydrody-
namic equations is a linear sum of independent harmonic waves
with undetermined amplitudes and propagating in accordance
with the dispersion relation of free waves. A linear superpo-
sition of harmonic waves of which amplitude is equal to a
Rayleigh-distributed random value times the square root of the
sea surface spectrum with random uniformly distributed phase
provides what is referred to as a linear sea surface. Motion of

such a sample is easily derived from the dispersion relation.
This method of surface sample generation is called the spectral
method.

However, it is now well established that interactions between
harmonic waves cannot be neglected if one aims at interpreting
radar Doppler spectra. The usual way of describing the sea
surface motion consists in combining a perturbative approach
with the spectral method described above. A linear surface
is first generated and higher order corrections are obtained
from expansion of hydrodynamic formulas in terms of wave
interactions. Such terms fill the lack of phase relationship
between various waves, which is known to be the signature of
the nonlinear character. However, keeping in mind that all sea
surface spectra are of semiempirical nature, thus take all wave
interactions into account, this approach implicitly assumes that
higher order terms do not significantly modify the part of the
surface spectrum that contributes to the radar echo. This is true
up to the VHF radar frequency range for which the method
has yielded satisfactory results, but the assumption is no longer
valid at higher frequencies.

In L-band remote sensing, it appears that if the linear sur-
face is generated from the complete sea surface spectrum, the
second-order term would create a significant roughness bias
in the submetric wavelength range. Therefore, the spectrum
describing the linear part of the surface has to be built such that
adding higher order terms leads to the chosen semiempirical
surface spectrum. In the following, the spectrum of the linear
surface will be called the undressed spectrum.

A. Spectrum Function of Sea Surface

We use a spectrum function

P (k) = ψPM(k)φ(θ) (1)

constituted by a PM omnidirectional spectrum

ψPM(k) =
α

k4
exp

(
−5

4

(
k

kp

)2
)

(2)

and a spreading function

φ(θ) = N
∣∣∣∣cos5

(
θ − θv

2

)∣∣∣∣ (3)

where k is the spatial wave vector of polar coordinates (k, θ).
The PM spectrum depends on two parameters α = 4.05 10−3

and the spectrum peak wavenumber kp which is function of
the wind speed (see Table III for numerical values). In the
spreading function expression, the wind orientation angle θv

denotes the direction from where the wind is blowing, following
the standard definition used in meteorology. In all simulations,
the horizontal projection of the incident electromagnetic wave
vector has a null polar angle. Thus, θv = 0 means that the
radar is looking upwind. N = 1/

∫ +π

−π cos5(θ/2)dθ = 15/16 is
a normalization factor.
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TABLE I
STATISTICS OF A GENERATED SURFACE OF AREA 100λ × 100λ AND

N = 512 × 512 SAMPLING POINTS FOR A 3-m/s WIND SPEED

(kp = 0.73 rad/s) AND A WIND DIRECTION θv = 0◦

B. Linear Simulation

As said above, we adopt in this paper the spectral method un-
der the spatially homogeneous and time-stationary hypothesis.
All the Fourier components of the linear surface are completely
independent with random phases. This implies Gaussian statis-
tics for the water height and all its derivatives. Formulation of
such a surface is

η(x, t) =
∫
k

∫
ω

A(k, ω) exp i(k · x − ωt) (4)

where η(x, t) is the sea surface elevation at spatial location x
for the time t. Also, the complex amplitude A(k, ω) would be
taken as function of the square root of the spectrum formula
P (k). For gravity waves, formula (4) is completed by a disper-
sion relation ω2 = gk, and time dependence becomes trivial.
We simulate a linear sea surface by discretizing the formula (4).
The simulated sea surface elevation is taken as the real part of
the Fourier transform in (4) according to the dispersion relation.
Discretized forms of the simulation write as

ηt(x) = Re
∑
k

At(k)eik·x (5)

where the complex amplitude

At(k) = γ(k)
√

2P (k)δkxδkye
−iωt

and γ is a complex Gaussian process with zero mean and unity
standard deviation.

The sum (5) can be efficiently performed by inverse fast
Fourier transform (FFT): ηt = Re FI [At]. The discretization
steps δkx = 2π/Lx and δky = 2π/Ly are thus related to the
dimensions or periods Lx and Ly of the surface. The generation
of one linear surface with N sampling points involves a number
of floating-point operations of order N logN .

In order to check the simulation, we compute some statistical
characteristics of the generated surface. The root mean square
(rms) values of height and slopes in both directions x and
y are written in Table I. Length and area in the simulation
are expressed in electromagnetic wavelength units (here λ =
25 cm). Of interest is that the rms height value computed
directly from the PM formula gives 0.221λ and then appears
to compare well with values in Table I.

C. Nonlinear Simulation

An approach to carry out nonlinear models involves per-
turbation techniques around the water surface level at rest

TABLE II
CHARACTERISTICS OF NONLINEAR SURFACE GENERATION METHODS

to determine the higher order corrections to the linearized
solution. This was used successfully in remote sensing in the
past by different authors, in particular Valenzuela [22]. The
general principle of the perturbation technique is that higher
order terms are nonlinear functions of the linearized solution.
However, implementation of these models is of high numerical
cost (N2), preventing their use for a Monte Carlo simulation on
2-D surfaces.

Another way to simulate nonlinear effect is the Hamiltonian
formalism under the weak wave-turbulence theory, of which
extensive applications have been made in the fields of water
surface waves since the fundamental work of Zakharov [23].
In this study, we will make use of a recent formulation of
the Hamiltonian formalism as given by [8], also considered by
Toporkov and Brown for 1-D sea surfaces [9].

The Creamer formulation writes as a nonlinear transforma-
tion of the Hilbert transform of the linear surface. In 2-D, this
Hilbert transform is defined as a vector. At a given time t, its
expression, derived from (4), is

ht(x) = Re
∑
k

(
−i

k
k

)
At(k)eik·x. (6)

The Hilbert transform can be computed by FFT, at a
N logN cost.

The Creamer nonlinear transform writes

Ct(k) =
1
N

∑
x

exp (ik · ht(x)) − 1
k

e−ik·x. (7)

However, this transform cannot be computed by FFT, since the
term exp(ik · ht(x)) depends on both k and x. At last, the
Creamer method reveals to have also a N2 numerical cost.
To circumvent these difficulties, we expand the exponential
operator as a series. Then, the nonlinear transform writes Ct =∑

n≥1 C
n
t , with

Cn
t (k) =

1
N

∑
x

(ik · ht(x))n

n!k
e−ik·x. (8)

One can verify that the first order of this series C1
t identifies

with At, that is, with the linear surface, when the second order
is given by

C2
t = −k2

x

2k
FD

[
h2

tx

]
− kxky

k
FD

[
htx

hty

]
−

k2
y

2k
FD

[
h2

ty

]
.

(9)

Therefore, a second-order Creamer surface can be obtained
by ηt = Re FI [At + C2

t ]. Table II summarizes the characteris-
tics of the Creamer method.
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TABLE III
PARAMETERS OF THE UNDRESSED SPECTRUM AGAINST THE WIND SPEED

Fig. 1. Slopes probability distribution functions in the y direction computed
over 48 surface samples.

Statistics of the linear and Creamer (2) simulations can be
compared in Table I. The rms height remains unchanged, but the
slopes are strongly increased, about one half. This indicates an
unrealistic magnification of the small-scale roughness, which
leads in Section IV-A to an overestimation of the cross section
(Fig. 3).

D. Undressed Spectrum

In order to correct this artifact about small-scale behavior,
one must use the undressed spectrum as an input of the model
instead of the semiempirical sea surface spectrum. In our opin-
ion, there is no clear method in the hydrodynamic theory to
undress one of the semiempirical sea spectra available in the
literature. The present procedure is thus empirical. To prevent
the unrealistic magnification of small-scale roughness in the
Creamer (2) surface, we propose an undressed spectrum ψu

with reduced small-scale roughness. The Creamer (2) transform
of a surface generated by the spectral method applied to the
undressed spectrum is called a Creamer (2) undressed surface

ψu(k) =
{
ψPM(k), k < kc

βk−p, k > kc.
(10)

Coefficient β = kp
cψPM(kc) ensures the continuity of the

undressed spectrum at wavenumber k = kc. The two parame-
ters kc and p have been determined numerically for different
values of the wind speed (Table III) so that the Creamer (2)
undressed surfaces possess the same height and slopes root
mean squares as the linear PM surface. As one can see, the
undressed spectrum decreases faster than the PM spectrum for
wavenumbers higher than kc.

The linear PM surfaces and the Creamer (2) undressed
surfaces have different probability distribution functions. The
slope distributions in the y direction for the two surfaces is
represented in Fig. 1. By definition, the linear PM surface slopes
are Gaussian. Being nonlinear, the Creamer (2) surface is also
non-Gaussian.

Note that this undressed spectrum, rather than the complete
PM spectrum, should be used in perturbative models like
SPM2 at L.

III. ELECTROMAGNETIC SCATTERING MODEL

Rino et al. [7] (see also Toporkov and Brown [9]) have shown
how a frequency-domain integral-equation-based numerical
method can be applied to time-varying surfaces. However, a
deterministic ocean Doppler spectrum requires the computation
of some hundreds of time-harmonic scattered fields, one for
each time step, and statistical results are typically obtained
by averaging over 100 Doppler spectra. Therefore, one un-
derstands that such a simulation is numerically intensive, and
is made possible for 2-D surfaces only with a fast harmonic
integral equation method.

Following the boundary-integral formalism, the tangential
components of the fields on the surface are the two unknowns
of the scattering problem. The Stratton–Chu equations for the
lower medium state that the relationship between the tangential
components of the electric and magnetic fields, the surface
impedance, is an integral relationship. For highly reflecting ma-
terials (HRIEs) like the ocean surface at microwave frequency,
the lower medium Green’s function shows a fast, exponential
decreasing behavior. The surface impedance is thus a very
short-range integral relationship, and can be assumed to be
local. This local impedance has been derived by Marvin and
Celli [24] and depends on the local curvatures of the surface.

The four Stratton–Chu equations include integro-differential
operators with hypersingular kernels [25]. However, these
equations can be linearly combined in order to produce two
nonhypersingular equations. The surface impedance can be
inserted into one of these equations to produce a single non-
hypersingular integral equation for HRIEs [13], [26]. This
equation is an extension of the magnetic field integral equation
for nonperfectly conducting surfaces. It has similar singularity,
and can be numerically solved through the same techniques.

The HRIE can be solved without supplementary approxima-
tion by use of the sparse matrix flat surface iterative approach
[27]. However, the computing time scales as N2, where N is the
number of surface unknowns. And the method is very random
access memory (RAM) demanding for surfaces with a large
correlation length such as the ocean surface.

We take a further step toward the ocean surface in [28]. In
this paper, the sparse matrix flat surface iterative approach is
simplified by considering the Meecham–Lysanov approxima-
tion [29]. In the boundary-integral formalism, the interaction
between two points of the surface is modelized by the Green’s
function and its derivatives. The Green’s function itself is a
function of the distance between the interacting points. The
Meecham–Lysanov approximation consists in neglecting the
height difference z in the distance r =

√
d2 + z2. When

the equation is cast into a matrix-vector form, the interaction
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Fig. 2. Comparison between the linear PM and the Creamer (2) undressed
surface copolarized Doppler spectrum. Electromagnetic frequency is 1.2 GHz,
incidence is 70◦, wind speed is 3 m/s, and wind direction is 60◦.

matrix reveals a 2-D Toeplitz structure. The linear system is
solved iteratively, and the matrix-vector product is performed
by 2-D FFTs. The computing time and RAM required by the
method scale, respectively, as N logN and N .

This approximation is a small-slope approximation since a
small height difference z compared to the horizontal distance
d corresponds to a small slope: z/d = p � 1. Our method is
called the SSIE. Its theoretical validity domain is Kσs � 1,
where K denotes the electromagnetic wavenumber in vacuum,
σ and s are, respectively, the height and slope root mean squares
of the surface. Numerical experiments have shown in [28] that
this domain can be extended for copolarized scattering to values
of the product Kσs equal and even slightly superior to one.

The incident field is a Gaussian beam. For grazing angles of
incidence, the minimum enlightened 2-D surface scales as θ−3

g ,
with θg = π/2 − θi being the grazing angle (see the Appendix).
The number of surface unknowns N evolves in the same way.

IV. NUMERICAL RESULTS

At the working electromagnetic frequency of 1.2 GHz (λ =
0.25 m), the ocean complex relative permittivity is ε = 73.5 +
i61.0 for average values of the sea surface temperature and
salinity [30]. For a 4-m/s wind speed, the peak wavelength
λp = 2π/kp is around 15 m. Samples are square surfaces of
100λ = 25 m sides, sampled with 512 points in each direction,
and incidence is set to the maximum value for such a surface
length, that is 70◦. The Doppler computation is realized with
Nt = 128 time steps of δt = 40 ms. The Monte Carlo average
is performed over 48 Doppler spectrum samples. Note that no
additional Doppler shift due to the wind drift current of the
water surface is taken into account in the presented simulations.

A. Effects of the Surface Nonlinearities

For this study of the effects of the surface nonlinearities on
the Doppler spectrum, the wind speed is set to 3 m/s, and the
wind direction is 60◦ from the plane of incidence.

Fig. 2 compares the Doppler spectrum for a nonlinear sur-
face, derived by applying the Creamer (2) transform to surfaces
generated from the undressed PM spectrum (10), with that from

Fig. 3. Comparison between copolarized Doppler spectra derived from PM
surface spectrum and the undressed surface spectrum. Electromagnetic fre-
quency is 1.2 GHz, incidence is 70◦, wind speed is 3 m/s, and wind direc-
tion is 60◦.

the linear PM surface. For the sake of clarity, only copolarized
components are shown. The two Doppler spectra are close to
each other, but significant differences have to be noticed. The
most obvious effect of nonlinearities is the increase of the level
of Doppler spectra for all frequency shifts except at Bragg
frequency (with one exception for vertical polarization in the
vicinity of −6 Hz). It is interesting to notice that for a linear sur-
face the Bragg lines predicted by SPM at first order clearly ap-
pear at ±fB with fB =

√
g sin θi/πλ 
 3.4 Hz. The decrease

of their amplitude is directly linked to the decrease of the ampli-
tude of Bragg wave when undressing the linear wave spectrum
ψPM. This is obvious for VV polarization where the maxima
are 6 dB below, which is exactly 10 log(ψPM(kB)/ψu(kB)).
For HH polarization, the maxima of Bragg lines are lowered by
3 dB only because it comes with a 3-dB overall increase of the
Doppler spectrum. Let us recall that for HH spectra, the behav-
ior strongly depends on incidence angle, especially at grazing,
when fast scatterers may become the main contributors [12].

These results are also consistent with remote-sensing experi-
ments performed either in the microwave range [15] or in VHF
range with big waves [31], which have shown that for such
a rms-height-to-electromagnetic-wavelength ratio, Bragg lines
are of the same order of magnitude as the secondary peaks
which appear, especially in VV polarization, at f = ±fB ± fp,
with fp =

√
gkp/2π 
 0.4 Hz. These secondary peaks are also

well known in ocean remote sensing, since they are predicted by
the second-order small perturbation theory and observed with
lower radar frequencies. Within the frame of this perturbative
approach, the decreasing behavior of the side lobes away from
Bragg lines is closely related to the decrease of the surface
spectrum (f−5 here). Here, significant discrepancies from such
predictions are observed, due to the contribution of higher order
interactions on one hand, to the size of the incident beam [31]
on the other hand.

It is interesting to note that undressing the spectrum mainly
results in lowering the cross section, with minor changes of the
shape of Doppler spectra. As shown in Fig. 3, the shift in VV
varies from 6 dB around Bragg frequency up to 10 dB away
from it, while the difference is even stronger in HH, from 8
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Fig. 4. Creamer (2) undressed surface co- and cross-polarized Doppler spec-
trum. Electromagnetic frequency is 1.2 GHz, incidence is 70◦, wind speed is
3 m/s, and wind direction is 60◦.

Fig. 5. Sensitivity of the ocean copolarized Doppler spectrum to the wind
speed. Electromagnetic frequency is 1.2 GHz, incidence is 70◦, and wind
direction is 60◦.

to 15 dB, respectively. Fig. 4 shows all four components of
the Creamer (2) undressed surface Doppler spectrum. Since
only multiple scattering contributes to cross polarization, no
Bragg line occurs in HV and VH. It also appears that the
cross-polarized and horizontal-copolarized components are of
comparable level. In [32], this was predicted to occur at L-band
above 1-m/s wind speed and for “large” incidence angles.

B. Sensitivity to Wind Speed and Direction

To be used in an inversion process, a forward model has
to translate accurately the influence of the geophysical para-
meters of interest on the data. This section does not pretend
to constitute a quantitative parametrical study, but aims at
showing that the present model behaves as expected with wind
characteristics, its speed and its direction.

Fig. 5 shows the copolarized Doppler spectrum for both V
and H incident fields and for three values of the wind speed: 2,
3, and 4 m/s at a 10-m height. Wind direction is set to 60◦ from
the plane of incidence.

Fig. 5 indicates that between 2 and 3 m/s, wind speed has
noticeable impact on the VV Doppler spectrum mainly at Bragg

Fig. 6. Sensitivity of the ocean VV Doppler spectrum to the wind direction.
Electromagnetic frequency is 1.2 GHz, incidence is 70◦, and wind speed
is 3 m/s.

frequency, while in HH Bragg line remains almost constant and
the remaining is increased by 2 to 3 dB. As expected, Bragg
lines progressively disappear when wind speed increases. Up
to 3-m/s wind speed, the secondary peaks at ±fB ± fp can be
detected and translate accurately the increase of the wavelength
of the dominant wave. Between 3 and 4 m/s, wind speed
increase induces an additional broadening of the lobes, both in
VV and HH. This is the signature of a strong increase of higher
order contributions, probably linked to the increase of the rms
height of the surface profile from λ/4 up to λ/2.

Fig. 6 shows the copolarized Doppler spectrum for a verti-
cally polarized incident field for four representative values of
the wind direction: 0◦ (upwind), 30◦, 60◦, and 90◦ (crosswind).
Wind speed is set to 3 m/s at a 10-m height.

Note that the spreading function (3) vanishes in the down-
wind direction and that first-order perturbation theory predicts
a difference between Bragg lines of 28 dB at 30◦ and 12 dB
at 60◦. This is very close to what is computed in VV. Whether
such a spreading function is realistic or not can be discussed,
but the point here is that the present model permits to derive
some properties of the spreading function, especially in the
decimetric range. The influence of the spreading function on
the shape of Doppler spectra is left for future work.

V. CONCLUSION

It has been shown that the combination of the SSIE method
for the electromagnetic scattering with a Creamer (2) model
for describing a time-evolving wind-driven sea surface per-
mits us to compute, at reasonable numerical cost, realistic
full-polarized ocean Doppler spectra in L-band. The use of
Creamer’s perturbative approach restricts this 3-D model to
light winds. In addition, the Creamer model cannot be directly
applied to a semiempirical ocean spectrum at microwave fre-
quencies, since it would induce unrealistic magnification of
small-scale roughness that mainly contributes to the radar cross
section. Therefore, we have proposed an empirically undressed
PM spectrum for wind speed values of 2, 3, and 4 m/s, which
corrects this artifact.

Simulations of Doppler spectra at L-band (λ = 0.25 m) and
70◦ incidence, for 2-, 3-, and 4-m/s wind speeds and different
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wind directions have been presented. The model has been
successfully used to investigate the effect of the hydrodynamic
nonlinearities, and the sensitivity of the Doppler spectrum to
wind speed and direction. Copolarized components, especially
VV, share some characteristics with small perturbation theory:
the presence of two Bragg lines, each one shouldered by two
secondary peaks. It can be concluded that a global shift of a
Doppler spectrum would be detected through the shift of Bragg
lines and that such an L-band Doppler radar may be useful
to map surface currents. Compared to HF radars, which take
benefit from surface waves, the range at L-band will be much
lower but the experimental setup is much more flexible and the
resolution can be improved. Therefore, such an L-band Doppler
radar could be helpful for coastal current studies. To this end,
it would also be important to take into account superposition
of long swell to short wind waves. This is possible at moderate
cost by modeling nonlinear hydrodynamic interactions as those
of short waves with a surface current. In its present form,
the model cannot deal with low grazing incidence angles, for
numerical reasons related to memory requirements and compu-
tation accuracy, since the radar cross section decreases as the
fourth power of the grazing angle.

APPENDIX

GAUSSIAN INCIDENT BEAM AT GRAZING ANGLE

A Gaussian beam is spectrally characterized by a mean
direction (ki, 0), where ki = K sin θi and θi is the incidence
angle, and dimensions σkx

, σky
. The Gaussian function is

not compact, but one can set a parameter nk and limit the
spectral domain of a Gaussian beam in the plane (kxOky)
to an ellipse of center the mean direction and half axis ax =
(1/2)nkσkx

and ay = (1/2)nkσky
. A similar reasoning can be

done in the spatial domain. The footprint of a Gaussian beam
is elliptical, and can be inserted in a rectangle of dimensions
Lx = nrσx and Ly = nrσy . Spatial and spectral dimensions
are linked by σxσkx

= σyσky
= 1. The Gaussian beam is only

constituted of propagative plane waves. The ellipse ((kx −
ki)/ax)2 + (ky/ay)2 = 1 should thus be included into the
circular propagative plane wave boundary k2

x + k2
y = K2. One

easily finds ax ≤ K − ki, and for ax = K − ki, ay must verify
ay ≤

√
K(K − ki). The minimum surface dimensions are thus


Lx =

nrnk

2K
1

1 − sin θi

Ly =
nrnk

2K
1√

1 − sin θi

.

Parameters nr and nk are commonly set to 8. At the limit of
grazing angles, this gives a sampled area that scales as

LxLy → 1√
2

(nrnk

2K

)2

θ−3
r .

Note that nr and nk may depend on θr at grazing.
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