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Abstract
The weighted curvature approximation (WCA) was recently introduced by
Elfouhaily et al [7] as a unifying scattering theory that reproduces formally
both the tangent-plane and the small-perturbation model in the appropriate
limits, and is structurally identical to the former approximation with some
different slope-dependent kernel. Due to the simplicity of its formulation, the
WCA is interesting from a numerical point of view and the aim of the present
paper is to establish its accuracy on some representative test cases. We derive
statistical formulae for the coherent field and the cross-section in the case of
stationary Gaussian random surfaces. We then specialize to the case of isotropic
Gaussian spectra and perform numerical comparisons against rigorous method
of moments (MoM)-based results on 2D dielectric surfaces. We show that the
WCA remains extremely accurate in a roughness range where other first-order
classical approximations (small-slope and Kirchhoff) clearly fail, at the same
computational cost.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Despite the evolution of computer capacities, the rigorous numerical computation of scattering
by random rough surfaces remains too demanding, especially when it comes to Monte Carlo
averages or large samples. Therefore simple old approximations such as the small-perturbation
method (SPM) and the Kirchhoff approximation (KA) are still employed on a regular basis.
Now, these methods have a limited domain of validity and are in principle accurate in the
asymptotic high- or low-frequency regimes only (in terms of electromagnetic frequency).
This is why there has been a constant effort in the literature in developing approximate
methods that hold in the intermediate regime but also present a good compromise between
numerical efficiency and accuracy. A suitable approximate method should meet the following
requirements:
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1. It must be universal, that is should not depend on or be restricted to a simplified scattering
problem: 1D surfaces, Dirichlet or Neumann scalar problem, acoustic case and perfect
conductors. It should in fact be applicable to the full-vectorial 3D dielectric problem, in
which case it can be easily specialized to the aforementioned problems.

2. It must respect some fundamental a priori physical properties of the scattering amplitude:
(a) reciprocity, (b) shift invariance and (c) tilt invariance.

3. It should not be restricted to a high-frequency or low-frequency regime but should be able
to cope with both limits. Therefore, it must be a unifying theory in that it reproduces the
(a) small-perturbation method (SPM) and (b) the Kirchhoff approximation (KA) in the
appropriate limits.

4. It must be numerically efficient, that is the computations must be (a) fast, (b) easy to
implement and (c) reliable (no numerical instability).

5. It should give the scattering amplitude a simple analytical expression that makes the
dependence upon the surface parameters explicit, and allows for qualitative prediction.

6. It should provide analytical statistical expressions (at least for Gaussian surfaces) for the
scattering cross-section, in order to avoid Monte Carlo procedures.

7. It should account for cross-polarization, especially in the incidence plane.
8. Its accuracy should not be sensitive to the incidence or scattering (non-grazing) angles,

nor to the polarization.
9. It should have the widest possible validity domain in terms of surface parameters outside

the SPM and KA regimes.

Among the large number of approximate methods that have been developed in the last
two decades, we dare think none of them can be recognized to fulfil all these requirements. We
would not review here the existing methods but will only mention some of the best candidates
with respect to our criteria of evaluation. The first one is the small-slope approximation (SSA)
of Voronovich [24–26]. At first order (SSA-1) it satisfies items 1, 2-ab, 3-a, 4-abc, 5, 6. At
second order (SSA-2), it gains 2-abc, 3-ab, 7 but loses 4-abc. The second candidate is the
operator expansion method (OEM) of Milder [12–14, 17]. At first order (OEM-1), it already
possesses 1,2-ab, 3ab, 4-ac, 7. The point 2-c has not been investigated and the omission
of item 4-b is a subjective appreciation (we found the method presented in [17] extremely
complex). The main weakness of the OEM is the absence of statistical formulation. The local
weight approximation (LWA) of Dashen and Wurmser [4–6] satisfies 2-abc, 3, 4, 5 but misses
the essential item 1. For these three methods, one cannot give a definitive answer to items 8,
9 due to the lack of numerical experiments.

In this paper we would like to test a method which was recently introduced by Elfouhaily
et al [7], namely the weighted curvature approximation (WCA), which retains features from
both SSA and LWA. By construction it satisfies 1, 2-abc, 3, 4, 5 and we would like to investigate
items 6–9 to see if it is a worthy candidate to complement the aforementioned methods.

2. Geometry and notations of the scattering problem

2.1. Surface geometry

A rough surface � separates the vacuum (upper medium) from a homogeneous dielectric
medium (lower medium). We chose the right Cartesian coordinate (x̂, ŷ, ẑ) system with z-axis
directed upwards and assume � is given by a Cartesian equation z = h(r) = h(x, y), where h
is assumed to be the realization of a random stationary process. For an arbitrary vector a, the
notation a will refer to its norm and â to its direction. A downward propagating electromagnetic
plane wave with wave vector K0 = (k0,−q0) and wavenumber K = 2π/λ is incident on



Weighted curvature approximation 351

the surface and gives rise to up-going scattered wave vectors in directions K = (k, qk).
The vectors k0 and k are the horizontal components of the incident and scattered waves,
respectively, and q0, qk are the vertical (positive) components. They are related by the relation
k2 + q2

k = k2
0 + q2

0 = K2. The vector Q = K − K0 is the so-called momentum transfer
[16] and plays an important role in scattering theory. We will denote by QH = k − k0 and
Qz = q0 + qk its horizontal and vertical components, respectively. The incident and scattered
fields are decomposed over the fundamental polarization basis.

p±
1(k) = kẑ ∓ qkk̂

K
, p±

2(k) = ẑ × k̂.

The case p±
1 corresponds to the vertical polarization (V-polarization), where the electric field

lies in the (ẑ, k̂) plane; p±
2 is the horizontal polarization (H-polarization), with an electric field

in the horizontal plane (x̂, ŷ). The minus superscript corresponds to down-going plane waves
while the plus superscript refers to the up-going waves. The scattering operator S(k,k0)

relates the incident and scattered waves. In dyadic notation it can be written as

S(k,k0) =
2∑

i,j=1

Sji(k,k0)p
+
j (k)p−

i (k0). (2.1)

The two-by-two matrix S(k,k0) = (Sji)(k,k0) is called the scattering matrix. For an incident
wave with unit amplitude and pure i polarization,

E0(r, z) = eik0·r−iq0zp−
i (k0),

the scattered field above the surface writes is written as

Es(r, z) = 1

q

∫
dk eik·r+iqz

∑
j=1,2

Sji(k,k0)p
+
j (k). (2.2)

Our normalization of the scattering amplitude differs by a trivial geometrical factor of some
other conventions. For instance, Voronovich uses a prefactor

√
q0/q instead of 1/q0 in the

defining equation (2.2). The so-called mean reflection coefficient is related to the coherent
part of the scattering matrix. For extended targets such as infinite rough surfaces, it is defined
by

V (k0) = lim
Area→∞

〈Sji(k0,k0)〉
Area

, (2.3)

where Area is the illuminated area and the brackets 〈·〉 stand for the ensemble average. The
incoherent scattered normalized radar cross-section (NRCS) is related to the second moment
of the scattering matrix.

σ 0
ji(k,k0) = lim

Area→∞
4π2K〈|Sji(k,k0) − 〈Sji(k,k0)〉|2〉

q0 Area
. (2.4)

Some authors prefer to use the bistatic cross-section 2q0σ
0
ji .

3. A short review on approximate methods

Before introducing the WCA, we will briefly review the approximate models at which this
method takes its roots.
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3.1. The small-perturbation model

The small-perturbation model (SPM) is the oldest and still most employed approximate method
in scattering from rough surface. It is based on a systematic expansion of the scattering
amplitude in order of surface height. At first order, it involves merely the Fourier transform of
roughness, while it implies a more complicated Fourier kernel at higher orders. In practice,
the expansion is used at the lowest two orders only, the successive terms becoming intractable.
The scattering matrix in the framework of SPM is given by

S(k,k0) = 1

Qz

B(k,k0)[δ(QH ) − iQzĥ(QH )] − Qz

∫
B2(k,k0; ξ)ĥ(k − ξ)ĥ(ξ − k0) dξ,

(3.5)

where ĥ is the Fourier transform of roughness:

ĥ(ξ) = 1

(2π)2

∫
e−iξ·rh(r) dr.

The expression of the matrix B(k,k0) is recalled in appendix A.

3.2. The Kirchhoff approximation

3.2.1. Low-frequency. The tangent plane and the low-frequency Kirchhoff approximation
(KA-LF) are derived from the assumption that locally the surface can be considered flat
compared to the incident radiation frequency. In this case, the Snell–Descartes law is applied
in a local frame of reference to determine the electromagnetic surface current and therefore
the radiated emergent field. This approximate model has the formal expression of an integral
over a polarization integrand multiplied by some phase factors,

S(k,k0) = 1

Qz

∫
K(k,k0;−Qz∇h) e−iQzh(r) e−iQH ·r dr

(2π)2
, (3.6)

where the polarization kernel is an explicit function of the local surface slopes ∇h. This
dependence on the local slope is generally nonlinear and cannot be evaluated readily without
further assumptions. However, when the surface is perfectly conducting, it can be shown
(e.g., [9]) that the dependence is linear and the polarization integrand can be factored out after
integration by part.

3.2.2. High-frequency. The high-frequency Kirchhoff approximation (KA-HF) is obtained
in addition to the tangent plane derivation of (3.6) by the application of the stationary phase
method in order to evaluate the polarization kernel at the critical points defined by the derivative
of the phase. Under the high-frequency limit, the polarization kernel in (3.6) factors out,
yielding

S(k,k0) = K(k,k0)

Qz

∫
e−iQzh(r) e−iQH ·r dr

(2π)2
, (3.7)

where by definition K(k,k0) = K(k,k0;QH ). The expression of the corresponding matrix
K(k,k0) in the canonical polarization basis is recalled in appendix A. In principle, the
integral in the KA-HF (3.7) should be evaluated at the stationary or critical points. Hence
the integral is replaced by a discrete sum which is the essence of the geometric optics limit.
It is however more convenient to leave the integral form in (3.7) for further analytical and
numerical developments. Under perfect conduction, the low- and high-frequency Kirchhoff
models coincide for the reason invoked in the previous subsection.
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The low- and high-frequency Kirchhoff models are very useful since they formally yield
the geometric optics limit and fulfil some essential properties such as reciprocity, shift and tilt
invariance. Unfortunately, these models do not reproduce another fundamental limit which is
the SPM-1 limit. Intuitively, this deficiency is not surprising since the surface is considered
locally flat and therefore no curvature corrections are present.

3.3. The small-slope approximation

Voronovich introduced in [26] a non-classical approach named the small-slope approximation
(SSA). His model to first order (SSA-1) reads

S(k,k0) = B(k,k0)

Qz

∫
e−iQzh(r) e−iQH ·r dr

(2π)2
, (3.8)

which is essentially similar to KA-HF in (3.7) but with the polarization replaced by that of
SPM-1 (see (3.5). For this same reason, SSA-1 reproduces the SPM-1 limit but no longer the
KA-HF limit (see [18]). The SSA to second order (SSA-2) is (see [25])

S(k,k0) = 1

Qz

∫
e−iQzh(r) e−iQH ·r dr

(2π)2

(
B(k,k0) − iQz

∫
M(k,k0; ξ)ĥ(ξ) eiξ·r dξ

)
.

(3.9)

SSA-1 is now complemented by a double integral involving formally all derivatives of the
surface through a Fourier kernel M. This kernel is based on a combination of first- and
second-order SPM kernels.

M(k,k0; ξ) = 1
2 (B2(k,k0;k − ξ) + B2(k,k0;k0 + ξ) − B(k,k0)). (3.10)

This model is shown to have a second-order accuracy in surface slopes in [25]. Reciprocity,
shift invariance, SPM-1 and SPM-2 limits are attained by construction. In a particular case
of Dirichlet boundary condition, SSA-2 was shown in [25, 26] to reproduce the KA-HF limit.
Recently, Guérin and Saillard [11] demonstrated that SSA-2 reproduces the KA-HF in the
perfect conductor boundary conditions. Elfouhaily et al [8] noted some discrepancy in the
general dielectric case. SSA-2 features tilt invariance up to linear order in the tilting vector
according to Voronovich [27]. Since many fundamental limits are reached by SSA-2, it can
be deemed analytically accurate although very cumbersome to implement numerically due to
the complicated second-order kernel and some numerical instability which may arise in the
evaluation of the double Fourier integral in (3.9). It would be more efficient to have same
analytical accuracy but with a simpler functional form such as KA-LF. Direct evaluation of
ensemble averaged quantities based on SSA-2 is not trivial and adds subtleties to an already
complex model.

3.4. Dashen and Wurmser approach

Dashen and Wurmser [5] proved a theorem that an Ansatz based on a KA-LF structure can
reach an accuracy up to the surface curvature:

S(k,k0) = 1

Qz

∫
G(k,k0;−Qz∇h) e−iQzh(r) e−iQH ·r dr

(2π)2
+ O

(∇∇h

K

)2

, (3.11)

where the integrand is certainly dependent on the local surface slope as in KA-LF (3.6) but
with a fundamentally different polarization kernel derived from formal compliance with tilt
invariance. This tilt invariance imposed the following differential equation on the generic
kernel to be solved analytically,

G0(k,k0; ξ) − ξ · ∇G0(k,k0; ξ) = n̂n̂, (3.12)
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where n̂ = (Q − ξ)/
√

Q2 − 2Q · ξ + ξ 2. The kernel G and the corresponding scattering
amplitude for the different boundary conditions (Dirichlet, Neumann and perfectly conducting
case) are then simply expressed through this generic kernel. This model is named the local
weight approximation (LWA) and satisfies most fundamental properties such as reciprocity,
SPM-1 and KA-HF limit, as well as shift and tilt invariance. Since the kernel is solely derived
from the differential equation in (3.12), Dashen and Wurmser’s approach also gauges the
importance of the tilt invariance property. Unfortunately, LWA does not exist for the general
dielectric case because the differential equation in (3.12) turns intractable. The reason is that
the right-hand side becomes heavily dependent on the dielectric constant of the rough surface.

4. The weighted curvature approximation

4.1. Construction of the WCA

Recently, Elfouhaily et al [7] derived a model named the weighted curvature approximation
(WCA) based on KA-LF (3.6) or also the Dashen and Wurmser’s (LWA) (3.11) Ansatz. They
demonstrated that the integrand can be simply based on the SPM-1 polarization matrix, similar
to SSA-1, along with a second-order correction involving the curvature kernel. This kernel
is a simple difference between the low-frequency SPM-1 and KA-HF kernels expressed in a
local frame of reference. The WCA takes the form

S(k,k0) = 1

Qz

∫
{B(k,k0) − T(k,k0;−Qz∇h)} e−iQzh(r) e−iQH ·r dr

(2π)2
, (4.13)

where

T(k,k0; ξ) = B(k̃, k̃0) − K(k̃, k̃0) (4.14)

and the local wave vectors are given by

k̃ = k + k0 + ξ

2
, k̃0 = k + k0 − ξ

2
.

The curvature kernel has the following properties,

T(k,k0; 0) = 0 (4.15a)

∇T(k,k0; 0) = 0 (4.15b)

T(k,k0;QH ) = B(k,k0) − K(k,k0), (4.15c)

which ensure that both the SPM-1 and KA-HF are formally reached in the appropriate limits.
Furthermore, the WCA is shown to be tilt invariant up to the linear order in a, as it satisfies
the differential equation:

B(k̃, k̃0)
.= B(k,k0) − T(k,k0;−Qza) + q̃H · ∇T(k,k0;−Qza) + O(a2). (4.16)

The WCA is also manifestly reciprocal and shift invariant. In [8], it was demonstrated
that the curvature orders as derived from SSA-2 or from the difference between SPM-1 and
Kirchhoff are equivalent. It is therefore possible to attain second-order accuracy with a single
integral, which is of considerable importance in numerical applications.

We would like to draw attention to a pitfall that may arise from the local dependence of
the kernel T. When extracting the different polarization coefficients Sji , one has to account for
the change of polarization for the local wave vectors involved in the definition of T. Precisely
we have

Tji(k,k0;−Qz∇h) =
∑

i ′,j ′=1,2

p+
j (k) · p+

j ′(k̃)[Bj ′i ′(k̃, k̃0) − Kj ′i ′(k̃, k̃0)]p
−
i ′ (k̃0) · p−

i (k0).

(4.17)
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5. Statistical formula for the WCA

A nice feature of the WCA is the simplicity of its statistical formulation. We will assume in
the following that the surface is described by a random stationary centred Gaussian process
with correlation function ρ(r) = 〈h(r)h(0)〉 and variance ρ0 = ρ(0).

5.1. Coherent scattering matrix

Using the technique presented in appendix B, we obtain the following expression for the mean
reflection coefficient (2.3):

Vji(k0) = 1

(2π)2

Bc
ji(k0,k0)

2q0
exp

[−2q2
0ρ0

)]
, (5.18)

where

Bc
ji(k,k0) = Bji(k,k0) −

∫
Tji(k,k0,−Qzu)P (u) du. (5.19)

Here we have introduced the PDF of surface slopes:

P(u) = 1

2π
√

s2
xs

2
y − s2

xy

exp

(
− s2

xuy + s2
yux − 2sxyuxuy

2
(
s2
xs

2
y − s2

xy

) )
(5.20)

with

s2
x = 〈|∂xh|2〉, s2

y = 〈|∂yh|2〉, sxy = 〈∂xh∂yh〉. (5.21)

Quadratic approximation. A direct consequence of the properties of the curvature kernel in
(4.15) is its quadratic behaviour to lowest order.

T(k,k0; ξ) ≈ ξAξ + O(ξ 3) (5.22)

where the pure curvature A tensor is defined as the second derivative of generalized curvature
kernel T as

Aji(k,k0) = 1
2∇∇Tji(k,k0; ξ)|ξ=0. (5.23)

In this approximation one gets, using the results of appendix B,

Bc
ji(k,k0) = Bji(k,k0) − Q2

zTrace[Aji�], (5.24)

where � = (
s2
x , s

2
xy; s2

xy, s
2
y

)
is the covariance matrix of slopes. For the acoustical cases with

Neumann and Dirichlet boundary conditions, we can demonstrate that the curvature kernel A
is the dyadic notation

A(k,k0) = 1

2

{
1 +

1

2

(
k0k0

q0q0
+

kk

qkqk

)}
. (5.25)

It should be noted that this result is dimensionless and therefore does not depend on the
incident frequency or wavenumber K.

Equation (5.18) with (5.24) is equally obtained by Voronovich [26] (p 139,
equation (5.4.13)) and Rodriguez [16] (equations (43) and (44)) in the Dirichlet case. Milder
[15] also found the same result by a direct derivation from the operator expansion to first order
for both Dirichlet and Neumann cases in his equations (43) and (45), respectively.



356 C-A Guérin et al
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Figure 1. The validity domain of the different approximations.

5.2. Incoherent radar cross-section

The NRCS is easily obtained by use of the marginal generating function defined in appendix B,

σ 0
ji(k,k0) = e−Q2

zρ0

Q2
z

∫ {
eQ2

zρ(r)|Mji(k,k0; r)|2 − ∣∣Bc
ji(k,k0)

∣∣2}
e−iQH ·r dr

(2π)2
, (5.26)

where

Mji(k,k0; r) = Bji(k,k0) −
∫

Tji

(
k,k0;−Qzu − iQ2

z∇ρ(r)
)
P(u) du (5.27)

or equivalently

Mji(k,k0; r) = Bji(k,k0) −
∫

Tji(k,k0;−Qzu)P (u − iQz∇ρ(r)) du. (5.28)

Isotropic surfaces. The formula (5.26) simplifies considerably in the case of an isotropic
correlation function ρ(r) = ρ(r). Interchanging the order of integration between slope and
position variable in (5.28) we easily obtain

σ 0
ji(k,k0) = σ (1)(QH ,Qz) + σ

(2)
j i (QH ,Qz) + σ

(3)
j i (QH ,Qz). (5.29)

The first term is the SSA-1 cross-section:

σ (1)(QH ,Qz) = |Bji(k,k0)|2 e−Q2
zρ0

∫ ∞

0
[eQ2

zρ(r) − 1]J0(QHr)r
dr

2π
.

The second term is the cross-term between SSA1 and the WCA correction:

σ
(2)
j i (QH ,Qz) = −2


[
B∗

ji(k,k0)

∫
du Tji(k,k0;−Qzu)P (u)w1(u;QH,Qz)

]
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Figure 2. Bistatic diagram in the incidence plane for Gaussian isotropic correlation function with
RMS height σ = 0.25 and correlation length l = 1 (in wavelength unit) at incidence θ0 = 20◦.

with

w1(u;QH,Qz) = e−Q2
zρ0

∫ ∞

0
eQ2

zρ(r)

[
e

[Qzρ′(r)]2
2s2 J0

(∥∥∥∥QH − Qzρ
′(r)

rs2
u

∥∥∥∥)
− J0(QHr)

]
r

dr

2π

and s2 = s2
x = s2

y = −ρ ′′(0) and sxy = 0. The third term is the quadratic term on the WCA
correction:

σ
(3)
j i (QH ,Qz) =

∫
du1 du2 Tji(k,k0;−Qzu1)T

∗
ji(k,k0;−Qzu2)

×P(u1)P (u2)w2(u1 − u2;QH ,Qz)

or equivalently

σ
(3)
j i (QH ,Qz) =

∫
du1 w2(

√
2u1;QH ,Qz)P (u1)

×
∫

du2 P(u2)Tji

(
k,k0;−Qz

u2 − u1√
2

)
T ∗

ji

(
k,k0;−Qz

u2 + u1√
2

)
,

with

w2(u;QH,Qz) = e−Q2
zρ0

∫ ∞

0
eQ2

zρ(r)

[
e

[Qzρ′(r)]2
s2 J0

(∥∥∥∥QH − Qzρ
′(r)

rs2
u

∥∥∥∥)
− J0(QHr)

]
r

dr

2π
.
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Figure 3. Same as figure 2 with σ = 0.25, l = 1, θ0 = 45◦.

Numerical efficiency. The kernel Tji is a smoothly varying function and is exponentially
attenuated by the p.d.f of slopes. Hence the multiple integrals over slope variables can
be performed rapidly via a lose sampling over several RMS slopes. The most demanding
part is the computation of the function w1 and w2, which requires a tight sampling over
several correlation lengths due to the oscillating nature of the integrand. Note that the second
formulation of σ

(3)
j i is more adapted to numerical computations since it involves the estimation

of the function w2 in one single loop over slopes. Altogether, the computational time is of the
same order of magnitude as SSA-1.

6. Numerical trials

6.1. Test cases

The method has been numerically tested on 2D surfaces and compared with the method of
moments (MoM) with an impedance approximation. We refer to [19, 20] for a complete
presentation of the algorithmic of MoM and its numerical implementation for dielectric
surfaces. Since no statistical formulation is available for the MoM, one has to resort to
a Monte Carlo procedure on samples surfaces with a finite width of illumination. Due to
the enormous amount of computational time that is required for 2D dielectric surfaces, we
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Figure 4. Same as figure 2 with σ = 0.5, l = 2, θ0 = 20◦.

restricted the study to single-scale surfaces with representative parameters, and limited the
averaging procedure to about 400 samples. The test surfaces are Gaussian with isotropic
Gaussian correlation function:

C(r) = σ 2 exp(−r2/l2), (6.30)

which can be considered as the paradigm of single-scale isotropic surfaces. The only two
parameters are the RMS height σ and correlation length l. The RMS slope is given by
s2 = 2σ 2/l2. The validity domain of KA and SSA-1 with respect to these parameters is
by now well established (see [18] for 2D conducting surfaces or e.g. [2, 3, 21–23] for 1D
surfaces). It is usually represented on a diagram with dimensionless parameters (Kl,Kσ) (see
figure 1). We will investigate a line of constant RMS slope s = 0.353, corresponding to a RMS
angle of about 20◦. There is an intermediate range on this line for which none of the usual
approximations is valid. We will test the WCA for two points on this line: (σ = 0.25, l = 1)

and (σ = 0.5, l = 2) (in wavelength unit).

6.2. Results

One intermediate value of permittivity corresponding to wet soils has been chosen (ε = 25 + 3i)
and two typical satellite incidences have been considered: θ0 = 20◦ and θ0 = 45◦. The bistatic
diagrams have been presented in the incidence plane only, in both linear and logarithmic
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Figure 5. Same as figure 2 with σ = 0.5, l = 2, θ0 = 45◦.

scales, and for both co-polarizations (figures 2–5). For both roughness scales and incidences,
the WCA appears to be superior by far to both KA-HF and SSA-1 and particularly accurate,
expect at forward grazing angles (θ � 75◦) in HH polarization, where it, however, stays within
2.5 dB error. At backward grazing angles, it remains amazingly accurate in both polarizations.
Surprisingly, the WCA performs even better at large roughness (σ = 0.5), where the contrast
with the classical methods is striking. We also checked the cross-polarization coefficients,
for which the WCA gave a bad estimate. This was expected since the WCA is a local theory
which does not take multiple-scattering phenomena into account. We did not represent these
coefficients to avoid making plots too difficult to read.

7. Conclusion

The WCA has been tested on some key cases which we think are typical of rough single-scale
surfaces outside both the perturbative and high-frequency regimes. On these examples, one
can clearly say that the WCA outperforms both KA and SPM and remains extremely accurate,
thereby enlarging the validity domain of the former approximations. Hence we have given
a positive answer to the points 6, 8, 9 mentioned in the introduction, the only negative but
non-surprising result being the failure in cross-polarization. We are confident that the method
will also perform well on multi-scale surfaces, but this has to be established.
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Appendix A. Bragg and Kirchhoff scattering matrices

The SPM-1 coefficients for dielectric boundary conditions are taken from the appendix of [27]

B11(k,k0) = 2qkq0(ε − 1)(q ′
kq

′
0k̂ · k̂0 − εkk0)

(εqk + q ′
k)(εq0 + q ′

0)

B12(k,k0) = 2qkq0(ε − 1)Kq ′
k(k̂ × k̂0) · ẑ

(εqk + q ′
k)(q0 + q ′

0)

B21(k,k0) = 2qkq0(ε − 1)Kq ′
0(k̂0 × k̂) · ẑ

(qk + q ′
k)(εq0 + q ′

0)

B22(k,k0) = −2qkq0(ε − 1)K2k̂ · k̂0

(qk + q ′
k)(q0 + q ′

0)

and the primed variables are defined as

q ′
k =

√
εK2 − k2 (A.1a)

q ′
0 =

√
εK2 − k2

0 (A.1b)

For simplicity, we use the Kirchhoff matrix K(k,k0) as simplified by [10, 1] and put in
the following approximate form,

Kji(k,k0) = Rji(Q/2)K∞
ji (k,k0), (A.2)

where K∞ is the Kirchhoff matrix in the conducting case:

K∞
11(k,k0) = −K∞

22(k,k0) = [(K2 + qkq0)k̂ · k̂0 − kk0]

K∞
12(k,k0) = −K∞

21(k,k0) = K(qk + q0)(k̂ × k̂0) · ẑ
and the R matrix is based on the Fresnel coefficients:

R11(q) = εq −
√

(ε − 1)K2 + q2

εq +
√

(ε − 1)K2 + q2
(A.3a)

R12(q) = R21(q) = R11 + R22

2
(A.3b)

R22(q) = −q −
√

(ε − 1)K2 + q2

q +
√

(ε − 1)K2 + q2
, (A.3c)

where ε is the relative permittivity. We recall that the variable Q is the norm of the momentum

transfer Q = |K − K0| =
√

Q2
H + Q2

z .
This approximate Kirchhoff model is valid for good conducting surfaces and away from

grazing angles where (R11 − R22) is assumed to be small.

Appendix B. A marginal generating function

Let X = (x1, x2, . . . , xN) be an N-dimensional Gaussian processes with the probability density
function

P(X) = 1

(2π)N/2
√|M| exp

[
−1

2
X · M−1 · X

]
, (B.1)
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where M is the covariance matrix Mji = 〈xixj 〉. We define the marginal generating function
(MGF) with respect to the process xi as

G(X(−i); q) =
∫

P(X) e−iqxi dxi. (B.2)

We bring the reader’s attention to the fact that the previous integral is defined with respect to
the process xi and hence the result is a function of N − 1 remaining processes (X(−i)) along
with the dummy Fourier variable q. After some algebraic manipulations one finds a compact
expression for the MGF as

G(X(−i); q) = exp

[
−q2

2
Mii

]
P(X − m)(−i) (B.3)

where m is an effective mean vector of N − 1 dimensions and defined through its elements
mj = −iqMji . The subscript (−i) in all previous equations refers to the omission of the ith
random process and therefore turning the N-dimensional variable X into X(−i) with N − 1
dimensions.

A direct application of this simple MGF expression is when we evaluate the ensemble
averaged scattering amplitude. The random Gaussian processes are now the surface elevation
or a combination thereof with surface slopes. As an example, we have for the first process the
difference between two surface elevations x1 = h1 − h2 followed by the surfaced slopes ∇h,
and hence the corresponding MGF is

G(∇h;Qz) =
∫

P(h1 − h2,∇h) e−iQz(h1−h2)d(h1 − h2)

= exp
[−Q2

z(ρ0 − ρ)
]
P(∇h + iQz∇ρ)

Some other applications of MGF are

〈(∇h) e−iQz(h1−h2)〉 = −iQz∇ρ exp
[−Q2

z(ρ0 − ρ)
]

(B.4a)

〈(∇hA∇h) e−iQz(h1−h2)〉 = Trace[A�] − Q2
z(∇ρA∇ρ) exp

[−Q2
z(ρ0 − ρ)

]
. (B.4b)

In all previous equations, � is the covariance matrix of the slopes, ρ = ρ(r) is the
autocorrelation function of surface elevations and ρ0 = ρ(0).
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