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Fast Numerical Solution for Scattering From Rough
Surfaces With Small Slopes

M. Saillard and G. Soriano

Abstract—The rigorous solution of the scattering by two-dimensional
rough surfaces can be numerically performed thanks to the sparse matrix
flat surface iterative approach (SMFSIA). However, this kind of com-
putation still requires both large CPU time and memory. Consequently,
a lot of work has been dedicated at extending the domain of validity of
approximate methods beyond that of standard high and low frequency
approximations. In this paper it is shown that SMSFIA can be simplified
in order to get a fast approximate method, with low memory requirements.
This approximation is valid for surfaces with small slopes, and covers the
domain of validity of both the Kirchhoff -tangent plane approximation
and the first-order small slope approximation [1].

Index Terms—Ocean remote sensing, rough surface scattering.

I. INTRODUCTION

Inmost remote sensing applications, scattering from natural surfaces
cannot be accurately estimated with the Kirchhoff-tangent plane ap-
proximation or with the small perturbation method. For surfaces with
very wide spectrum, like sea surface, two-scale models combining both
these high and low frequency approximations have been proposed [2],
[3]. As a shortcoming, a cutoff frequency separating the two domains
has to be chosen, and, since the domain of validity of the two approx-
imations generally do not overlap, the solution depends on this cutoff
frequency. In another way, several attempts have been made to improve
Kirchhoff approximation or small perturbation method, so that a single
approximate method can deal with such multiscale surfaces, leading
to the small slope approximation [1], the operator expansion method
(OEM) [4], the integral equationmethod [5], [6], or the extendedKirch-
hoff [7]. However, to fit both the high and low frequency approxima-
tions, the scattering amplitude has to be represented as a double inte-
gral over the surface. Computation of such second order terms is a hard
task, since it generally involves multiple integration of oscillating func-
tions. In addition, analytical expressions of the scattering amplitudes
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involving surface statistics can only be obtained under the assumption
of Gaussian surface height distribution. To overcome these two prob-
lems, the second order small slope approximation has been combined
with a Monte-Carlo approach in [8], but even in this case, one has to
perform a double integration still, one in the spatial domain and one in
the spectral domain, for each scattering angle, which makes the com-
putation of the bistatic scattering pattern rather long. It must also be
pointed out that such methods do not allow one to estimate the accu-
racy of the result.

These remarks lead us to reconsider the use of the numerical methods
based onMonte-Carlo simulations. The sparse matrix flat surface itera-
tive approach (SMFSIA) [9], [10] is an efficient method for the numer-
ical solution of the rigorous problem of electromagnetic scattering by
two-dimensional (2-D) rough surfaces. For perfectly conducting sur-
faces, the magnetic field integral equation (MFIE) is discretized with
a method of moments. The matrix of the resulting linear system is
split into a strong matrix, representing close interactions, a flat surface
matrix, approximating far interactions, and the remaining weak ma-
trix. The flat surface matrix has been introduced to take benefit from
its block-Toeplitz structure. As a consequence, it can be easily stored
in central memory, and matrix-vector products are computed very fast
(see Section II).

It is important to point out that the operator described by the flat
surface matrix coincides with that obtained when the approximation
suggested by Meecham and Lysanov [1] is applied to the MFIE. This
approximation has already been implemented for the scalar solution
of Helmholtz equation with Dirichlet boundary condition. In this case,
it coincides with the operator expansion method at lowest order and
it is known to be accurate for moderate slopes and heights. When
the 3-D electromagnetic problem is addressed, though similarities
remain, the two approaches are no longer identical. Indeed, in [4],
the author expresses the scattered field as a single layer potential
(convolution product of Green’s function with some surface density),
while Stratton–Chu formula are used here to derive the scattered field.
Therefore, the method described in this paper and OEM at lowest order
apply the same approximation but to different integral equations. The
way these equations are solved also differ: an approximate analytical
expression is derived in [4] and a (fast) numerical solution is proposed
here.

Therefore, we suggest to drop the weak matrix and its associated
iterative level in the SMSFIA. Such a suggestion was first made in
[11] in the frame of the 2-D scalar Helmholtz equation with Dirichlet
boundary condition, but was not further investigated, since it coincides
with OEM in this case. Here, this approximation has been applied to
surfaces with Gaussian correlation function and to a multiscale surface
with band-limited power-law spectrum, then compared to the SMFSIA,
and to the Kirchhoff, small slope, and small perturbation approxima-
tions.

II. FORMULATION

Let us consider an incident electromagnetic field E0;H0 in the
vacuum, impinging on a rough surface � with Cartesian equation
z = h(r) = h(x; y). We denote by � the rms height and by s the
rms slope of the surface. The electromagnetic field is time-harmonic,
and an exp (�i!t) time dependence is assumed. The surface is of
infinite extent, but is illuminated by a Gaussian beam, so that only
a finite area has to be considered. The scattered field is denoted
by Es;Hs. For a perfectly conducting surface, the surface current
j = n̂� H0 +Hs satisfy the MFIE (1=2 +M) j = n̂�H0, where
the normal to the surface is directed toward vacuum. M is the integral
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operator introduced by Martin and Ola in [12]. R = r+h (r) ẑ and
R0= r0+h (r0) ẑ being two points on �

MjR = n̂R � curlR
�

GR;R jR d�0 (1)

whereGR;R is the free spaceGreen’s functionwithwavenumberK =
!=c. Introducing the scalar function g (x) = � exp (iKx) =4�x,
the horizontal distance d = kr� r0k, the horizontal unit vector
û =(r� r0) =d and the slope p = (h (r)� h (r0))=d, operator M
writes

MjR = n̂R �
�

d g0 d 1 + p2 (û+ pẑ)� jR d�0: (2)

If K�s is small, g0 d 1 + p2 can be approximated by g0 (d), and
one finds the flat surface operator MFS , defined in the SMFSIA

MFSjR = n̂R �
�

d g0 (d) (û+ pẑ)� jR d�0 (3)

as a small slope approximation of M. It is important to notice that the
criterion for validity concerns both height and slope, sinceK�s repre-
sents the deviation of the phase from flat to rough surface. This property
is shared with the OEM.

Following [9], the MFIE is written as a set of two coupled scalar
equations, after projection onto x̂ and ŷ. To discretize these equations,
a method of moments is applied on a regular 2-D gridding of the
xOy plane, with pulse basis functions and delta weighting functions.
Diagonal matrix elements are computed separately, using the method
described in [13], as applied to (1). These terms corresponds to the
strong matrix AS of SMFSIA with strong interaction radius rd = 0.
All the remaining elements are evaluated according to (2), and are
set to the value of the kernel at the center of the element times
the area of the element. This way, d g0 (d) becomes a 2-D Toeplitz
matrix. It can be immersed into a 2-D circulant matrix, which is
diagonal in the Fourier space. Only these diagonal elements need to
be computed and stored. If N is the number of surface unknowns,
the strong matrix has N elements, the flat surface matrix AFS has
4N elements (in Fourier space). For example, the scattering problem
associated with a 32� by 32� surface sampled at 8 points per �
has N = 65536 surface sampling points, and thus requires 5 Mb
in central memory (if double precision is used).

The approximate linear system (AS +AFS)X = B is solved by
the biconjugate gradient stabilized of order 2. Each iteration requires
four matrix-vector products. There are 12 fast-Fourier transforms
(FFT) per matrix-vector, and 4N log 4N operations per FFT.

III. NUMERICAL RESULTS AND DISCUSSIONS

This approximation, which will be referred to as the small slope
integral equation (SSIE), is first applied to two perfectly conducting
surfaces with Gaussian correlation function (in this section, all sur-
faces have Gaussian height distribution), at 20� incidence. In the first
example, the rms height is 0.17 � and the correlation length is 1 �.
For this surface, K�s ' 0:25, which has been estimated as the limit
of validity of first-order OEM [14] when applied to 1-D surfaces with
Dirichlet boundary conditions. In Fig. 1, SSIE is compared to the
rigorous computation (SMFSIA) through averaging over 100 surface
samples, 24 �� 24 � square. For V incident polarization, SMFSIA
and SSIE give extremely close results for both co- and cross-polariza-
tion, while some discrepancy occurs for H polarized incident wave,
cross-polarization being slightly overestimated. This discrepancy
disappears for lower values of K�s, leading to perfect agreement

Fig. 1. Scattering diagrams in the plane of incidence for a surface with
Gaussian correlation, rms 0:17� and correlation length 1:0� and for
an incident angle of 20 . The curves at high energy level represent the
co-polarized contribution, while the cross-polarized component is represented
by the lower curves of each plot.

between SMFSIA ans SSIE. Contrary to classical first-order approx-
imate methods, solving the approximate linear system permits one
to take multiple scattering into account, such that even the low-level
cross-polarization in the plane of incidence can be estimated thanks to
SSIE. The numerical costs of the two methods can be compared. For
this surface with 20 736 sampling points (twice more unknowns), the
SMFSIA takes 400 Mb of random access memory to store the strong
and flat surface matrices and requires 6 min CPU time to solve the
linear system. The costs of SSIE are 1.6 Mb for the matrices and 30 s
for solution.

The second Gaussian surface considered here has a rms height of
0:5� and a correlation length of 2:0� (Fig. 2). This example is at the
limit of the domain of validity of Kirchhoff approximation, while small
slope approximation is clearly inaccurate. In principle, since K�s '
1:11, the phase perturbation should not be neglected. However, SSIE
outperforms other approximate methods and remains very close to the
rigorous solution for co-polarization, except at grazing scattering an-
gles. On the other hand, cross-polarization is overestimated by several
dB. Using this method, one can also get an estimation of the accuracy of
the computation. With this aim, the Ewald–Oseen extinction theorem
[15] has been tested for each surface sample. It consists in computing
from the surface current a scattered field in the lower half-space using
the electric permittivity of the vacuum. This field, the extinction field,
must be the exact opposite of the incident field. In the last example,
even though the statistical result is satisfactory in co-polarization, some
computations have exhibited strong deviations from the rigorous result.
The worse case observed among the hundred ones used in the average
process has lead to 50% deviation to the extinction theorem. Memory
requirements are the same as for the first surface, and SMFSIA solves
the linear system in 40 min while SSIE needs only 90 s.
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Fig. 2. Same as Fig. 1 for a surface with rms 0:5� and correlation length
2:0�.

We have then considered a multiscale surface with a band-limited
power-law spectrum: 	r (���) = �= 2��4 for spatial wavenumbers
� 2 [K=30; 4K], at 20� incidence.With� = 5:2510�3, this spectrum
isagoodapproximationof thehighfrequencypartof theomnidirectional
ocean spectrum at L band for a 10 m/s wind [16], [17]. This surface
has a root-mean-square (rms) height of � = 0:25� and a slope rms of
s = 0:112, leading toK�s ' 0:176,well suited for this approximation.
Ithasalreadybeenshownthatelectromagneticscatteringfrom2-Drough
surfaces with large conductivity can be modelized by a single surface
integral equation, thanks to a curved-surface impedance boundary
condition [18]. As the MFIE for perfect conductors, this equation is
weakly singular, we thus can apply both the SMFSIA and the SSIE.
It can be seen in Fig. 3 that in co-polarization and for both incident
polarizations, SMFSIA, SSIE, and small slope approximation are
in good agreement. Here, small perturbation method and Kirchhoff
approximationarenot reported,but ithasbeenshownin [17] that theyare
not revelant for suchamultiscale surface.SSIEis slightlyoverestimating
the cross-polarized intensity around the specular direction. Here, the
computational costs of SSIE are 16 Mb for matrices and 6 min for
solution. For the SMFSIA and due to the large number of surface
sampling points (82944), a beam decomposition technique with 16
narrow beams is applied [18]. Each one requires 250 Mb and 6
min. To show the versatility of the method, we have also performed
computations at 80� incidence. It is well known that the length of
the surface in the direction of the mean incident wavevector has to
be dramatically increased at grazing incidence. Here, it has been set
to 256 �. To save computation time we have restricted the width
of the surface samples to 16�, which is smaller than the upper
bound of the surface spectrum, thus leading to artificial geometrical
anisotropy. As a consequence, one can notice in Fig. 4 that the
two cross-polarized intensities differ in this case. The number of
sampling points is 262144, requiring about 50 min to solve the linear
system on our PC. The extinction theorem remains very accurate,
typically 10�2 to 10�3.

Fig. 3. Same as Fig. 1 for a surface with a ��4 band-limited power law
spectrum and a permittivity of 73:5 + i61:0 for an incident angle of 20 .

Fig. 4. Same as Fig. 3 for an incident angle of 80 .

IV. CONCLUSION

To draw a first conclusion, the SSIE approximation appears to have a
domain of validity that covers both that of the first-order small slope ap-
proximation and of the Kirchhoff-tangent plane approximation. It also
provides an estimation of the cross-polarized component in the plane of
incidence. This is very similar to the second-order small slope approx-
imation or to the OEM. It has been tested with single scale Gaussian
metallic surfaces as well as with multiscale surfaces with power law
spectrum. From a theoretical point of view, its extension to dielectric
penetrable surfaces is straightforward. As a numerical method based on
a Monte-Carlo average process, there is no hypothesis on the surface
spectrum or on its height distribution, and the accuracy of the com-
putation can be estimated. In addition, taking benefit from the block
Toeplitz structure of the matrix permits one to solve huge linear system
at very low computational cost. In our opinion, it is an interesting al-
ternative to statistical approximate methods when second order correc-
tions have to be taken into account.
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Fixing Limits to Free-Access Areas Around
Broadcast Antennas

Iñigo Cuiñas, Antonio García Pino, Manuel García Sánchez,
Marcos Arias, and Alonso A. Alonso

Abstract—The growing interest in the relation between electromagnetic
fields and human health forces the assumption of national and international
regulations on emission levels. In order to reduce the risks, restricted ac-
cess around transmitting antennas have to be defined according with those
regulations. This paper offers a guideline to determine the boundary of the
potentially risky volumes around radio broadcasting antennas for AM-MF
and FM-VHF services. With the proposed method, a complete reference
volume is defined by just five parameters.

Index Terms—Antenna radiation patterns, biological effects of electro-
magnetic radiation, electromagnetic radiation effects, Pollution.

I. INTRODUCTION

Social factors in technologically developed countries have reopened
a topic that seemed to be closed some years ago: the influence of
electromagnetic radiation on human health. Military standards were
adopted to preserve the health of people staying near radar and com-
munications antennas after World War II. However, the expansion of
mobile communication networks, and radio-frequency based com-
munication systems in general, has compelled the erection of many
antenna towers all around our cities. These antennas are of special
concern due to electromagnetic and visual pollution. Latest research
results are closely observed by the International Commission on
Non-Ionizing Radiation Protection (ICNIRP). This nongovernmental
organization, formally recognized by World Health Organization
(WHO), evaluates scientific results from all over the world. ICNIRP
produces guidelines recommending limits of exposure, which are
revised periodically and updated [1]. Some guidelines, developed for
electromagnetic fields exposure, covering the nonionizing radiation up
to 300 GHz can be found in [2] and [3].

National and international regulations have fixed exposure limits on
electromagnetic fields that can be related to safety distances to the trans-
mittingelements[4].Manygovernmentsandadministrationsadoptedthe
ICNIRPreferencelevels.Theestablishmentofrestrictedareasaroundthe
antenna(bypaintingnontrespassing linesorby installingfences) isaway
to prevent that people will enter a potentially risky place.

In [5], the near field of wireless base-station antennas is studied
under the exposure compliance point of view. The case of Medium
Frequency (MF) broadcasting is especially interesting because people
could be in the surroundings of the antennas, installed at ground level,
supporting radiation levels over the WHO-recommended exposure
limits. The AM-MF antennas are commonly composed of masts with
a height of several tens of meters, radiating as a monopole over ground
plane. In this case, the installation of a fence near the antenna is nec-
essary to avoid people touching the mast. In addition, another element
(painted line or fence) is needed to limit the presence of people inside
the risky area. Furthermore, antennas for FM-VHF broadcast services
are usually installed on the same mast.
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