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Abstract
We use a rigorous numerical code based on the method of moments to test
the accuracy and validity domains of two popular first-order approximations,
namely the Kirchhoff and the small-slope approximation (SSA), in the case
of two-dimensional rough surfaces. The experiment is performed on two
representative types of surfaces: surfaces with Gaussian spectrum, which
are the paradigm of single-scale surfaces, and ocean-like surfaces, which
belong to the family of multi-scale surfaces. The main outcome of these
computations in the former case is that the SSA is outperformed by the Kirchhoff
approximation (KA) outside the near-perturbative domain and in fact is quite
unpredictable in that its accuracy does not depend only on the slope. For ocean-
like surfaces, however, SSA behaves surprisingly well and is more accurate than
the KA.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

An important issue in remote sensing applications is to interpret the electromagnetic field
scattered by a dielectric or conducting two-dimensional rough surface. A typical configuration
is a satellite illuminating the sea surface or agricultural soils with monochromatic waves at 20◦

of incidence. A sensibility of the backscattering coefficient to parameters such as wind speed
over the sea and ocean salinity or soil moisture has been observed in experimental data and is
also predicted by theoretical models. However, for a retrieval procedure of these parameters,
a good modelling of the surfaces together with a reliable computation of the scattered field is
needed.

The rigorous computation of scattering by 2D surfaces has recently been made possible by
the drastic improvement of computer capacities combined with efficient numerical methods.
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However, it still remains highly time-demanding and dissuasive when it comes to large surfaces
or Monte Carlo simulations. In that case, first-order approximate methods such as the first-
order Kirchhoff approximation (KA) or the small-slope approximation (SSA) are of great
interest, provided, of course, that they can be relied on in the given regime of frequency. The
domain of validity of such methods has been clearly established in the 1D case for single-scale
surfaces and more recently for ocean-like spectra through numerical investigations (see, for
example, [1] for a review on the KA and [2, 3] for the SSA).

An important step yet to be taken is to investigate the 2D case in view of the processing
of natural surfaces. For ocean-like surfaces, some numerical results using the method of
moments (MoM) have already been performed [4] in order to test the two-scale model based
on the KA and the small perturbation method (SPM). This gives some indication of the choice
of the cutoff frequency separating the small and large scales. However, this cutoff occurs
in a domain where the accuracy of neither the KA nor the SPM is guaranteed. This makes
alternative methods such as the SSA interesting since the latter is designed to make a continuous
transition between the SPM and the KA. The SSA has been introduced quite recently [5, 6]
and to our knowledge has not been systematically tested in the 2D case.

In this paper, we make a numerical comparison between the MoM and both the KA and
the SSA, in a domain where the SPM is not applicable. As for any numerical study, only a
small number of parameters can be taken into account. We have chosen to treat two generic
cases of random rough surfaces: surfaces with Gaussian correlation, that can be considered
as the prototype of single-scale (i.e. smooth) surfaces, and surfaces with power-law spectra,
which are typical for multi-scale (i.e. fractal) surfaces such as ocean surfaces. The height
distribution is assumed to be Gaussian and we deal only with perfectly conducting surfaces,
the dielectric case being left for subsequent work. Furthermore, the incidence has been fixed
to 20◦, which is a typical satellite remote sensing configuration. Our numerical study relies
on a comparison of the scattering diagrams in the main incidence plane for both polarization
cases, with particular attention given to the backscattering cross section. We aim to establish
empirical criteria that ensure the accuracy of either method, to avoid heavy and unnecessarily
rigorous computations. We have systematically computed the energy balance to see whether
it can be used as an a priori accuracy criterion.

The paper is organized as follows. Section 2 presents the scattering problem, and section 3
deals with the approximate methods. The MoM is introduced in section 4 and the numerical
results are discussed in section 5.

2. The scattering problem

2.1. Definitions and notations

We follow closely the presentation and notation of Voronovich [7] for the scattering amplitude
and its different approximations. A rough surface � separates the vacuum (upper medium)
from an infinitely conducting medium (lower medium). We chose the right Cartesian
coordinate (x̂, ŷ, ẑ) system with z-axis directed upward and assume� is given by an Cartesian
equation z = h(r) = h(x, y). An electromagnetic plane wave with wavevector K0 is incident
down on to the surface, giving rise after reflection to outgoing plane waves K in all directions
of the upper half-space. (Some authors choose to place the vacuum in the lower medium and
to illuminate the surface from below; this amounts to changing q → −q in all subsequent
formulae.) We denote the horizontal and vertical components of the wave vector by k and q,
respectively. They satisfy the relation k2

0 + q2
0 = k2 + q2 = K2 = K2

0 . Here and everywhere
the null subscript refers to the incident field, as opposed to the scattered field; for an arbitrary
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Figure 1. Geometry of the scattering problem.

vector a, the notation a refers to its norm and â to its direction. The direction of propagation is
characterized by a polar angle θ = (ẑ, K̂) and an azimuthal angle ϕ = (x̂, k̂). The geometry
of the problem is depicted in figure 1. The incidence plane is fixed to the (x̂, ẑ) plane, that is
ϕ0 = 0.

The electromagnetic field (E,H) can be decomposed over the fundamental cases of
polarization:

Eα = q−1/2 exp(ik · r + q · z)pα(k), α = 1, 2

Hα = Z0K̂ ×Eα

where Z0 =
√
µ0/ε0 is the vacuum impedance and pα is the polarization, with

p1(k) = kẑ − q · ẑk̂

K

p2(k) = ẑ × k̂.

The case α = 1 corresponds to vertical polarization (V-polarization), where the electric field
lies in the (ẑ, k̂) plane; α = 2 is the horizontal polarization (H-polarization), with an electric
field in the horizontal plane (x̂, ŷ). The normalization factorq−1/2 is chosen to obtain a constant
(= Z0/K) Poynting vector flow through a horizontal unit surface. An implicit harmonic time
dependence e−iωt is always assumed.

The scattering amplitude describes the response of the surface to a plane wave in a given
direction of space and polarization. Precisely, for an α-polarized incident electric field E0

α ,
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the β-polarized component of the scattered field can be expressed as

Eβ =
∫

dk Sβα(k,k0)q
−1/2 exp(ik · r + iqz)pβ(k).

The two-by-two matrix S(k,k0) = (Sβα(k,k0)) is called the scattering matrix. Note that the
integral runs over R

2. The components with k � K correspond to propagating waves while
k > K (and q = i

√
(k2 −K2)) corresponds to evanescent waves.

2.2. Finite beams

The scattering amplitude is defined for incident plane waves. However, most rigorous
numerical methods make use of tapered (usually Gaussian) incident fields, to limit the size
of the surface that participates in the scattering process [8–10]. A purely V- or H-polarized
convergent beam E0

α can be obtained in the form

E0
α =

∫
k0�K

dk0 g̃(k0 − k0) exp(ik0 · r − q0z)pα(k0), (2.1)

where the Gaussian g̃ is the spectral amplitude function:

g̃ (k) =
√
�x�y

π
exp

(
−1

2
(�2

xk
2
x + �2

yk
2
y)

)
, (2.2)

and the notation g̃ stands for the Fourier transform of a function g:

g̃(k) =
∫

e−ik·rg(r) dr.

The characteristic size of the illuminated patch on the surface is then �x , �y . Summing all the
contributions of the plane waves forming the incident field, the β-polarized component of the
scattered field is obtained as

Eβ =
∫

dk Sβα(k,k0)q
−1/2 exp(ik · r + qz)pβ(k), (2.3)

with

Sβα(k,k0) =
∫
k0�K

dk0 q
1/2
0 g̃(k0 − k0)Sβα(k,k0). (2.4)

The quantity Sβα(k,k0) is the scattering amplitude in outgoing direction k for a finite beam
with mean incident direction k0.

Since the polarization vector pα varies with the wavevector, the amplitude of the incident
field on the surface mean plane is not Gaussian. This is a typical artefact of vector wave
scattering [11] that does not exist in the 1D case or the scalar 2D case. This is particularly
visible at near-normal incidence, where a pronounced minimum appears at the centre of the
spot (see figure 2). To circumvent this problem we use a more adapted basis of polarization
vectors, namely

pE(k) = − cosϕ p1 + cos θ sin ϕ p2√
sin2 ϕ cos2 θ + cos2 ϕ

= k × ŷ

‖k × ŷ‖

pH (k) = − sin ϕ cos θ p1 − cosϕ p2√
sin2 ϕ cos2 θ + cos2 ϕ

= K̂ × pE(k).

Correspondingly, the incident field assumes the form (2.1), with pα replaced by pE(k)

or pH (k). The polarization vector pE(k) now remains perpendicular to the main incidence
plane (x̂, ẑ), which limits the destructive interference within the beam. Figure 2 indeed shows
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Figure 2. Effect of the polarization basis on the amplitude of the incident field in the spatial domain.
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Figure 3. Comparison between the different polarization bases at different angles.

that deviation from Gaussianity is considerably reduced. Note that pE coincides with the
V-polarization p1 in the mean incidence plane. In the same way, pH (k) corresponds the
H-polarization p2 in the mean incidence plane. A comparison between polarizations p1 and
pE is shown in figure 3. As soon as k0 
 1/�x , that is away from the normal incidence, there
is no perceptible deviation to Gaussianity for any basis of polarization.

For the beam widths and the mean incidence angle used in this work (�x = �y = 4λ,
θ0 = 20◦), we have verified that building the incident field with one polarization basis or the
other has no influence on the co-polarized scattered field in the mean incidence plane for mildly
rough surfaces.



68 G Soriano et al

2.3. Scattered power

The total scattered power ! can be defined as the flux of the complex Poynting vector through
a horizontal plane z = zm above the surface (i.e. zm > max(h)):

! = Re
∫
z=zm

1
2E ×H# · ẑ dx dy.

Likewise, the total incident power is the flux of the incident Poynting vector

!0 = −Re
∫
z=zm

1
2E0 ×H0# · ẑ dx dy.

For fixed z, the incident as well as scattered fields can be seen as Fourier transforms in the
k-domain. Using Parseval’s formula, this leads to integrals in the spectral domain for the
incident and scattered power:

!0 = Z0

2K

∫
k�K

dk q |g̃(k)|2 ,

! = Z0

2K

∑
β=1,2

∫
k�K

dk
∣∣Sβα(k,k0)

∣∣2 .
Note that the incident flux becomes constant, !0 → q0 as the beam becomes larger. The
conservation of energy reads ! = !0. The outgoing flux will be normalized by the incident
flux. Introducing dΩ = sin θ dθ dφ, the solid angle element in direction K, we have
dk = Kq dΩ and thus we may define the scattered intensity as the scattered power per
solid angle per unit incident power:

Iβα(k,k0) = 1

!0
Kq

∣∣Sβα(k,k0)
∣∣2 .

The conservation of energy then reads∫ ∑
β=1,2

Iβα(k,k0) dΩ = 1. (2.5)

Note that other related quantities are also used in the remote sensing literature: the
scattering cross section 4π cos θ0Iβα and the scattering bistatic coefficient 4πIβα .

3. The Kirchhoff and small-slope approximations

3.1. KA and SSA for plane waves

One of the most popular approximations in scattering from rough surfaces is the KA, also
known as the tangent plane or physical optics approximation. It is known to be valid when the
incident wavelength is small compared with the correlation length of the surface. The SSA,
first introduced in [5], starts from a structure ansatz based on the invariance properties of the
scattering amplitude. Performing a horizontal or vertical translation d on the surface only
affects the latter by a phase shift exp(−i(k − k0) · d) or exp(−i(q + q0) · d), respectively, so
that a solution is sought in the form

S(k,k0) = 1

(2π)2

∫
dr exp(−i(k − k0) · d− i(q + q0)h(r))&[k,k0, r, h],

where & is some functional that contains the explicit dependence on the surface (& = 1 for
the plane). The unknown & is obtained by performing a functional Taylor expansion with
respect to the Fourier transform h̃ and imposing the coefficients to be consistent with the SPM
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as h→ 0. The first-order approximation for the KA and the SSA can be summarized in the
following formula [7, pp 123 and 154]:

S(k,k0) = B(k,k0)
2(qq0)

1/2

q + q0

1

(2π)2

∫
dr exp(−i(k − k0) · r − i(q + q0)h(r)), (3.6)

where the matrix B(k,k0) is given by

B(k,k0) = 1

2qq0

[
(K2 + qq0)k̂ · k̂0 − kk0 K(q + q0)ẑ · k̂ × k̂0

K(q + q0)ẑ · k̂ × k̂0 −(K2 + qq0)k̂ · k̂0 + kk0

]
(3.7)

for the KA and

B(k,k0) = 1

qq0

[
K2k̂ · k̂0 − kk0 Kq0ẑ · k̂ × k̂0

Kqẑ · k̂ × k̂0 −qq0k̂ · k̂0

]
(3.8)

for the SSA. Note that the KA and SSA at first order differ only by the geometrical factor
B(k,k0), which does not depend on the roughness. The off-diagonal terms of the scattering
matrix vanish when k̂ = k̂0, meaning that no depolarization occurs in the incidence plane. In
the specular direction (k = k0), the upper and lower diagonal elements for both approximations
reduce to +1 and−1, respectively. In the limit h→ 0, the complex exponential in the integrand
can be linearized, yielding

S(k,k0) = B(k0,k0)δ(k − k0)− 2i(qq0)
1/2B(k,k0)

1

(2π)2

×
∫

dr exp(−i(k − k0) · r − i(q + q0))h(r), (3.9)

which is the classical formula of SPM when B(k,k0) is given by (3.8).

3.2. KA and SSA for finite beams

The computation of the scattering amplitude Sβα in the KA or SSA after (2.4) and (3.6)
involves a double summation over the space and frequency variable r and k0, respectively,
which becomes computationally demanding in the 3D case. However, the computation can be
greatly simplified by assuming that the finite beam is sufficiently narrow (spectrally), so that
we may approximate B(k,k0) � B(k,k0) and q0 � q0 within the beam and extend the k0

domain of integration to infinity. In that case, the integral over k0 is a mere inverse Fourier
transform of the beam envelope g̃, which leads to

S(k,k0) = B(k,k0)
2q1/2q0

q + q0

∫
dr g(r) exp(−i(k − k0) · r − iq(+q0)h(r)). (3.10)

This expression becomes accurate as the wavelength becomes small compared with the beam
size, λ  lx, ly , or equivalently as the wavenumber becomes much larger than the spectral
width, K 
 1/lx, 1/ly .

3.3. Statistical approach

Most of the statistical results presented in this section are well known, but we revisit them
with a different approach. A complete review of the statistical properties of the scattering
amplitude in the KA can be found in [1]. Let the brackets 〈·〉 denote the ensemble average of
some random quantity. Then we have

〈Iβα(k,k0)〉 = !−1
0 Aβα(k,k0)

∫
dr dr′ g(r)g(r′)

× exp(−i(k − k0) · (r − r′))L(q + q0; r, r′),
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with

Aβα(k,k0) = K

∣∣∣∣ 2qq0

q + q0

∣∣∣∣
2 ∣∣Bβα(k,k0)

∣∣2
and

L(q; r, r′) = 〈exp(−iq(h(r)− h(r′)))〉.
The function L(q; r, r′) can be expressed in terms of second-order properties of the surface.
If h(r) is a stationary Gaussian process with covariance function C(r), then

L(q; r, r′) =: L(q; r − r′) = exp(−q2(C(0)− C(r − r′))).

Noting that the Fourier transform of L(q; r−r′) is localized along the diagonal and using
the convolution theorem we obtain

〈Iβα(k,k0)〉 = !−1
0 Aβα(k,k0)

1

(2π)2

∫
dk′

∣∣g̃α(k − k0 − k′)
∣∣2 L̃(q + q0;k′).

For large beams we have |g̃α(k)|2 → δ(k) and !0 = q0, yielding

〈Iβα(k,k0)〉 = Aβα(k,k0)
1

(2π)2

1

q0
L̃(q + q0;k − k0), (3.11)

which corresponds to the mean intensity for incident plane waves. In general, the computation
cannot be made more explicit. When the covariance function is radial, that isC(r) =: C(r), the
Fourier transform L̃(q;k) = L̃(q; k) reduces to a single integral that can easily be evaluated
numerically:

L̃(q; k) = 2π
∫ ∞

0
[L(q; r)− e−q

2C(0)]rJ0(kr) dr + 4π2e−q
2C(0)δ(k) (3.12)

where J0 is the Bessel function. For numerical purposes, the Fourier integral has been split
into a convergent part and a delta function located at zero. In the case of Gaussian covariance

C(r) =: C(r) = σ 2 exp(−r2/ξ 2), (3.13)

a simple analytic expression can be obtained in the high-frequency limit, the so-called
geometrical optics (GO) approximation. Here σ is the RMS height and ξ is the correlation
length. For r  ξ we have L(q; r) � exp

(− q2r2s2

2

)
, while for r 
 ξ we have

L(q; r) � exp(−q2σ 2). Noting that each asymptotic form is preponderant with respect to the
other in the respective domains, we may approximate

L(q; r) = exp

(
−q

2r2s2

2

)
+ exp(−q2σ 2), (3.14)

and thus

L̃(q; k) = 2π

s2q2
exp

(
− k2

2q2s2

)
+ exp(−q2σ 2)δ(k).

This implies

〈Iβα(k,k0)〉 = Aβα(k,k0)
1

2πq0(q + q0)2s2
exp

(
−

∣∣k − k0
∣∣2

2s2(q + q0)2

)
+ Kq0e−4(q0σ)

2
δ(k),

(3.15)

where we have introduced the RMS slope s = √2σ/ξ .
The same expression has been obtained in [7] (p 127) by a stationary phase argument.

Note that the error in the approximation (3.14) is of the order of exp(−q2σ). Hence, the
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Figure 4. Scattering pattern in the KA for incident plane waves (statistical result), dotted curve,
and Gaussian beams (Monte Carlo), solid curve.

expression (3.15) for the scattering amplitude under the KA or SSA becomes accurate for a
large Rayleigh parameter qσ , that is for large roughness, as long as one remains in the domain
of validity of the corresponding approximation.

Figure 4 shows the comparison of 10 log I11 in the mean plane of incidence for varying θ ,
for a surface with Gaussian correlation, lx = ly = 4λ, σ = 0.25 and ξ = 3.15. The first curve
is obtained after (3.12), the second is obtained by Monte Carlo simulation on (3.10) with 1000
realizations and the third curve is the GO limit. As can be seen, the ‘finite beam’ effect for
this size of spot becomes sensible only at backward grazing angles.

4. Method of moments

4.1. Formulation

The MoM is based on a surface integral representation of the scattering problem [12]. Assume
the surface � is twice continuously differentiable and let n be the unit normal vector directed
toward the vacuum. Let Et = E0 + E and H t = H0 + H be the total electric and magnetic
field, respectively, and GR,R′ = − exp

(
iK0

∣∣R−R′
∣∣) /4π

∣∣R−R′
∣∣ the free-space Green

function in the vacuum, where
∣∣R−R′

∣∣ denotes the distance between the two points R,R′.
For a perfectly conducting material one has the boundary condition [n×Et ]� = 0 on the

surface and j = [n×H t ]� is the solution of the magnetic field integral equation (MFIE) [13]:

( 1
2 + M)j = n×H0. (4.16)
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Here M is the integral operator introduced by Martin and Ola in [14]:

MjR = nR × curlR

∫
�

GR,R′jR′ d�
′,

where R = r + h (r) and R′ = r′ +h(r′) are two points on �. Once the MFIE (4.16) is
solved, we can deduce from the surface current j the scattered field E = Et −E0 at a point
R = r + z z of vacuum,

ER = −i
Z0

K
curlR curlR

∫
�

GR,R′jR′ d�
′

and the scattering amplitude in the direction K = k + qz

Sαβ
(
k,k0

) = − Z0

2K
pβ (k) ·

∫
�

jR exp (−ik · r − iqh(r)) d�.

Following [8], the MoM is applied to the MFIE (4.16) on a regular 2D grid of the (xOy)

plane. The linear system associated with a bi-dimensional surface scattering problem is of
large order, and its matrix M is full (i.e. non-sparse). So loading this matrix in central
memory would require a huge memory size, and a direct solving would need prohibitive
computing time. We solve this system in an iterative way by the generalized minimum residual
algorithm (GMRES) [15]. The convergence rate of this method is greatly speeded up by the
use of the sparse-matrix flat-surface iterative approach [16], seen as an iterative preconditioner
of the GMRES [17].

The elements of the matrix M are distributed into two matrices S and W , using a
neighbourhood distance rd . The elements corresponding to an interaction at a horizontal
distance

∣∣r − r′
∣∣ (see figure 5) smaller than this neighbourhood distance rd constitute the

strong matrix S, the other elements belong to the weak matrix W:

M = S + W :

{
|r − r′|ij � rd ⇒ Sij =Mij , Wij = 0

|r − r′|ij > rd ⇒ Sij = 0, Wij =Mij .

The neighbourhood distance rd is chosen on physical and numerical criteria, so that the strong
matrix S is a sparse matrix, whose non-zero elements can be loaded in central memory. The
elements of the weak matrix W are recomputed for each use. Three wavelengths is a typical
value for the neighbourhood distance rd .

Due to the short-range coupling effect, the strong matrix contains the most important
interactions. We take it as the first approximation of the system matrix M, so its inverse can
be used as a preconditioning matrix for the GMRES: P = S−1. When the neighbourhood
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distance rd is large compared with Kσ 2, the far interactions can be approximated by the flat-
surface matrix F . The flat-surface matrix elements are obtained by substituting the horizontal
distance |r − r′| for the exact distance |R −R′| in the Green function expression. Elements
corresponding to neighbour points (|r − r′| < rd ) are set to zero:

F :

{ |r − r′|ij � rd ⇒ Fij = 0
|r − r′|ij > rd ⇒ Fij =Mij

(|R−R′| ← |r − r′|) .
As the (xOy) plane is regularly gridded, the flat-surface matrix F can be written as a
combination of 2D Toeplitz matrices. Such matrices are submatrices of 2D circulant
matrices, which are diagonal in the Fourier space. 2D Toeplitz matrices can so be loaded in
central memory, and the matrix–vector product can be quickly performed by 2D fast-Fourier
transforms. When using the flat-surface matrix, the preconditioning matrix is the inverse of
the sum of the strong and the flat-surface matrix: P = (S + F)−1.

These expressions of the preconditioning matrix P are only formal, as the inverse matrices
S−1 and (S + F)−1 are unknown to us. Practically, the product Y of a given vector X by the
preconditioning matrix P is realized by solving the linear system X = P−1 Y , i.e. X = S Y

or (S + F)Y . Thanks to the properties of the matrices S and F , these systems are quickly
solved in an iterative way. For this, we use the biconjugate gradient stabilized algorithm.

Such a preconditioned GMRES converges typically in ten iterations, depending on the
roughness of the surface.

4.2. The 3D canonical grid technique

The most time-consuming operation of this MoM is the computing of W and its product by a
vector. To overcome this problem, we have implemented the multilevel expansion [18] of the
canonical grid method [19]. The z-axis is discretized to insert the surface region into a regularly
spaced 3D grid. The far interactions are computed through a Taylor series expansion of the
Green function about the nodes of the 3D grid. Each term of this series is a combination of 3D
Toeplitz matrices, which can be handled in the same way as previously, with 3D fast-Fourier
transform.

For the present study, we have only considered the first term of the Taylor series expansion.
For any two points, the canonical grid distance (see figure 5) is defined as the distance between
the nearest points on the 3D grid.

This canonical grid distance is used in the expression of the elements of the matrix W
instead of the exact distance. A precise computation requires a tight sampling of the z-axis. Our
results have been validated by a convergence test. When the z-axis sampling step decreases, the
scattered intensity pattern computed with the 3D canonical grid tends to the pattern computed
with the exact Green function. The 3D canonical grid technique is particularly efficient for
mildly rough surfaces, where the necessary number of sampling points on the z-axis is small,
typically 8, 16 or 32.

4.3. Beam decomposition and parallel computations

Even with such an advanced MoM, there is a maximum surface area that can be handled with
given numerical facilities: in order to be efficient, our algorithm needs the strong matrix to
be stored in random access memory, and the size of this matrix increases linearly with the
surface area. Moreover, a large surface takes prohibitive computing time. In a Monte Carlo
simulation, this maximum size may be too small to represent the statistical properties of a
random rough surface. Beam decomposition is an elegant way to overcome this difficulty.
It was originally developed for one-dimensional random rough surfaces [20], but adaptation
to two-dimensional surfaces is straightforward [17]. Beam decomposition is based on the



74 G Soriano et al

Table 1. Surfaces parameters for Gaussian correlation functions.

Surface RMS height Correl. length RMS slope Figure

1 0.25 3.15 0.112(6.4◦)
2 0.05 0.63 0.112(6.4◦)
3 0.5 3 0.24(13.3◦) 6
4 0.25 1.5 0.24(13.3◦)
5 0.167 1 0.24(13.3◦) 7
6 0.125 0.75 0.24(13.3◦)
7 0.083 0.5 0.24(13.3◦) 8
8 0.5 2 0.35(19.5◦) 9
9 0.5 1.5 0.47(25.2◦)

10 0.25 0.75 0.47(25.2◦)
11 1 2 0.71(35.3◦)

representation of a large beam as a weighted sum of shifted narrow beams. Each narrow beam

is handled as a particular scattering problem. Summing the scattering amplitudes Sαβ
ij

of all
the narrow beams provides the scattering amplitude of the large one Sαβ .

Following section 2.2, the incident large beam is characterized by dimensions �x and �y .
In a similar way, the incident narrow beams have dimensions nx < �x and ny < �y . For the
scattering amplitude,

Sαβ(k,k0) =
Nx∑

i=−Nx

Ny∑
j=−Ny

uij
(
k − km

0

)
S
ij

αβ(k,k0)

where rij = (i;X, j;Y) and

uij (k) = ;X;Y

2π

exp
(−ik · rij

)
√
�2
x − n2

x

√
�2
y − n2

y

exp−1

2

(
(i;X)2

�2
x − n2

x

+
(j;Y)2

�2
y − n2

y

)
.

Numerical experimentation has shown that a good representation of the large beam is
achieved as soon as ;X � 2nx and ;Y � 2ny .

The beam decomposition is naturally well fitted for parallel computation. As a matter of
fact, after the rough surface is divided and weights for the decomposition are evaluated, the
following tasks (computation of the incident field on the surface, building the matrices, solving
the system and computing the scattering amplitude) can be performed independently for each
narrow beam. Then, scattering amplitudes only need be summed. This scheme is particularly
adapted to distributed memory parallel environment.

5. Numerical results

5.1. Single-scale surfaces

For our first experiment, we have chosen the prototype of single-scale surfaces, namely surfaces
with Gaussian correlation function (3.13). These are parametrized only by the RMS height σ
and the correlation length ξ . An additional parameter for the validity of the approximations is
the RMS slope s = √2σ/ξ . We have been working on surfaces numbered from 1 to 11,
whose parameters are summarized in table 1. Here and everywhere, the unit of length
is the electromagnetic wavelength. The minimum value 0.5 of the correlation length is
imposed by the numerical limitations of the MoM: for memory storage and computation time
considerations, the maximum sampling rate of the surface has been set to 64 points per square
wavelength.
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Figure 6. Surface 3.

5.2. Scattering diagrams

Figures 6–9 compare the co-polarized scattered intensity in the incidence plane according to
the MoM, KA and SSA for some representative surfaces (3, 5, 7, 8). We have performed a
Monte Carlo simulation over 500 sample surfaces for the approximate methods (computed
after (3.10)) and over at least 100 sample surfaces for the MoM. The intensity has been given
in decibels, that is 10× log(intensity) has been plotted.

Surface 2 falls into the usually acknowledged limit of the SPM domain. The SSA is
accurate over the whole scattering diagram while the KA is irrelevant outside the specular
region. This is natural since the SSA is designed to meet the SPM at small roughness. As
one increases the RMS height to leave the domain of validity of the SPM (surface 7), the SSA
is still better than the KA and is accurate in the forward direction but starts deteriorating in
the backward direction. Increasing the correlation length while keeping the slope constant
(=13.3◦), we observe a continuous transition from the SSA to the KA (surfaces 6, 5, 4, 3) as
the most accurate method, the turning point being surface 5. For higher values of the RMS
slope (surfaces 8–11), the SSA is never reliable while the KA remains good up to RMS slope
value of 19.5◦ for large correlation length (surface 8). Note that for large correlation length,
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the SSA is accurate only for very small values of the slope (surface 1). Judging from this
sample of surface statistics, one can conclude that the RMS slope is not the only relevant
parameter for the accuracy of the SSA, which is in fact also very sensitive to the value of
the RMS height. For a given (reasonably small) slope, the SSA becomes truly reliable only
for smaller values of the RMS height but one has to resort to the KA for larger RMS. The
SSA domain is often qualitatively depicted by the area below a hyperbola in the usual 1/ξ, σ
diagram (see e.g. [7, p 4]) and is often assumed to cover both the KA and the SPM domain.
For the first-order SSA, the validity domain is more intricate. We suggest a refined diagram
based on the few available surface types, see figure 10. An important fact to note is that the
SSA, at least at first order, does not truly bridge the gap between the KA and the SPM since it
fails to cover the large correlation length part of the KA domain. The second-order SSA seems
very promising in that respect but more difficult to implement; it will be tested subsequently.
Thus the KA and the SSA play complementary roles, as far as first-order approximations
are concerned. Note, however, that we have only considered the case of small incidence
(20◦), which favours the KA. The above conclusions would not necessarily hold at grazing
incidences.
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Since most active remote sensing techniques are concerned with the backscattering
cross section, special attention has been devoted to it. We have computed the exact and
approximated backscattering coefficient for surfaces 1–9. To get rid of the remaining Monte
Carlo fluctuations, a 10◦ angular average has been performed around the backscattering
direction for each method. Table 2 summarizes the numerical results. Column 1 gives
the surface and polarization, column 2 is the exact co-polarized backscattering coefficient
σMoM

co = 10 log Iαα , given in dB, columns 3 and 4 give the KA co-polarized backscattering
coefficient σKA

co and the relative deviation ;σKA
co = (σKA

co − σMoM
co )/σMoM

co to the MoM,
respectively; columns 5 and 6 are similar for the SSA and column 7 is the polarization ratio
ρMoM = IMoM

VV /IMoM
HH . As was noted before on the scattering diagrams, the KA is generally

more accurate than the SSA outside the near-perturbative domain (that is surfaces 2 and 7) and
no further away than 10% from the exact value, in both polarizations. Note that, surprisingly,
the KA is less accurate for surface 1 than surface 3 which has almost the same correlation
length but twice the RMS height. This is due to the lack of precision of the MoM in the diffuse
part for shallow rough surfaces.

Another interesting parameter is the polarization ratio ρMoM. As can be seen in table 2,
it strongly depends on the surface roughness, a sensibility that is not captured by either
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approximation. Indeed, ρKA = 1 and ρSSA = (1 + sin2 θ0)
2 cos−4 θ0 = 1.6 as can be seen by

an easy calculation using (3.8). Note, however, that ρKA remains within 10% of ρMoM except
for surfaces 2 and 7, whereas ρSSA overestimates by far the polarization ratio.

5.2.1. Energy balance. We have computed the energy balance (in per cent) for the different
approximations and polarization cases. Figure 11 shows the isolines in the usual RMS height
versus inverse correlation length diagrams. As expected, the energy balance of the KA
improves for increasing correlation length and decreasing RMS height; for large values of the
Rayleigh parameter, the isolines are hyperbolae as predicted by the GO approximation (3.15).
In fact, the hyperbolic behaviour can be observed on the whole diagram. The energy diagrams
are more complex for the SSA. In the region with large correlation radius, the isolines are
no longer hyperbolic and the energy balance is slightly overestimated, for both polarizations.
Furthermore, the 100% isoline passes through a region where the SSA has been shown to be
irrelevant in the previous section (surface 9). Thus the energy balance criterion cannot be
considered as a reliable test of accuracy for the method in that case. Note that there is no
qualitative difference between the two polarizations for the SSA. However, this is not true in
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Figure 10. Validity domain of the approximations.

Table 2. Backscattering properties for Gaussian surfaces.

N σMoM
co σKA

co ;σKA
co % σ SSA

co ;σ SSA
co ρMoM

1V −15.7 −14.9 −4.7 −14 −10.9
1H −16.2 −14.9 −7.71 −16 −1.09 1.10
2V −10.8 −11.4 5.67 −10.4 −3.67
2H −12.5 −11.4 −9.2 −12.4 −0.614 1.50
3V −5.09 −5.23 2.8 −4.2 −17.4
3H −5.23 −5.23 −0 −6.38 22.1 1.03
4V −5.53 −5.69 2.86 −4.81 −12.9
4H −5.85 −5.69 −2.8 −6.78 15.9 1.07
5V −6.2 −6.02 −2.86 −5.09 −17.9
5H −6.58 −6.02 −8.44 −7.21 9.68 1.12
6V −6.58 −6.58 −0 −5.69 −13.5
6H −7.21 −6.58 −8.83 −7.7 6.7 1.13
7V −7.45 −7.7 3.33 −6.78 −8.99
7H −8.54 −7.7 −9.88 −8.86 3.77 1.33
8V −5.85 −6.2 5.94 −5.09 −13.1
8H −5.53 −6.2 12.1 −7.21 30.5 0.96
9V −6.02 −7.45 23.7 −6.38 6.01
9H −5.38 −7.45 38.5 −8.54 58.8 0.88

10V −6.99 −7.21 3.19 −6.2 −11.3
10H −6.38 −7.21 13 −8.24 29.1 0.90
11V −6.2 −10.2 64.2 −9.21 48.6
11H −5.23 −10.2 94.6 −11.3 116 0.80

the 1D case, where a strange phenomenon appears in V-polarization: the energy balance is
largely overestimated over the whole diagram. This anomaly has not been reported previously
in the literature, to our knowledge. In fact, we are only aware of 1D numerical simulations
in H-polarization for the SSA [2, 21]. Hence, there may be some pitfalls in extrapolating 2D
results from 1D studies.

The energy balance has also been checked for the MoM. For slopes up to 13.3◦

(surfaces 1–7), the error is less than 1%. For higher slopes, the energy balance deteriorates
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Figure 11. Energy balance.

progressively up to surface 11, for which it is underestimated by 7%. A smaller error could
be achieved with a finer discretization in the MoM but would require a considerably larger
amount of computing time.

The general conclusion of this section is that the KA is in all respects (energy balance,
scattering diagram, backscattering coefficient, polarization ratio) is more reliable than the SSA
in the case of Gaussian surface correlations, as long as one remains well outside the domain
of the SPM and even for small slopes (down to 6◦). The validity domain of the SSA seems
difficult to establish. All that can be said at the moment is that the slope is not the only relevant
parameter and that the SSA extends the SPM domain but not the KA domain.

5.3. Ocean-like surfaces

We now wish to study the case of multi-scale surfaces. Typically, such surfaces exhibit
a 1/f spectrum, at least in some frequency ranges: usual examples are ocean spectra
(Pierson–Moskovitz, Apel, Elfouhaily, etc), fractional Brownian motion [22, 23], surfaces
with exponential or Weilbulian correlation functions. We have chosen to work on a spectrum
which is at the same time simple and universal, namely a band-limited power-law spectrum:

@ (κ) =
{
ακ−4 κ ∈ [κl; κu]

0 κ /∈ [κl; κu].
(5.17)

In that case, the correlation function, which is the Fourier transform of the (even) spectrum,

C(r) =
∫

dκ exp(−iκ · r)@(κ) (5.18)

is not explicit. The κ−4 power-law is a realistic choice as it corresponds to the high-frequency
behaviour of the Pierson–Moskovitz as well as the Elfouhaily sea spectrum [24]. The value



Scattering by two-dimensional rough surfaces: approximation comparison 81

Table 3. Backscattering properties for ocean-spectra.

MoM KA SSA

σVV 3.01× 10−2 2.73× 10−2 3.40× 10−2

σHH 2.34× 10−2 2.73× 10−2 2.13× 10−2

ρ 1.29 1 1.6
;! 0 0.6% 0.8%

of the low-frequency cutoff is imposed by the numerical limitations: κl = K/30, where K is
the electromagnetic wavenumber, which corresponds to a maximum scale of 30λ. Note that a
true κ−4 surface is not differentiable. However, the spectrum decays fast enough to ensure that
high-frequencies do not contribute to the scattering process. We have set κu = 4K , which has
been shown numerically in the 1D case to be the electromagnetic cutoff. The multiplicative
factor has been set to α = 5.25×10−3 in order to fit the Elfouhaily spectrum in the considered
range of frequency for L-band wavelength (λ = 20 cm). A remarkable feature of the truncated
κ−4 spectra is that neither Kσ nor s depends on the value of the wavelength. Indeed, a simple
computation of the zeroth and second moments of the spectrum yields

Kσ =
√
α

2

√( κl
K

)−2
−
(κu
K

)−2
= 1.537 (5.19)

s =
√
α ln(κu/κl) = 0.112. (5.20)

Hence, even though the spectrum (5.17) has been designed to fit realistic sea spectra, the results
we derive are universal, in the sense that they do not depend on the value of the wavelength.

The KA is a priori not adapted to multi-scale surfaces, which are not smooth. Also, the
RMS height of the considered surface is well beyond the usual SPM domain (kσ < 0.3). The
small value of the slope, however, makes the SSA a good candidate. Figures 12 and 13 show
Monte Carlo simulations of the scattering intensity for the KA, the SSA, the SPM and the MoM.
The ensemble average has been performed over 1000 sample surfaces for the approximate
methods and 100 sample surfaces (due to the huge computational time) for the MoM. Both the
KA and the SSA turn out to be extremely accurate (less than 0.5 dB error) in both polarizations
for small angles (−30◦ � θ � +50◦), but only the SSA remains reliable over the whole range
of scattering angles (less than 1 dB error in VV and for −65◦ � θ � +75◦ in HH). The SPM
overestimates by far the scattering coefficient in the specular region but becomes reliable at
larger angles as it meets the SSA. The values of the backscattering intensity are given in table 3,
as well as the polarization ratio ρ and the energy balance. The error on the latter quantities are
equivalent for both approximations and polarizations.

Note that the KA and the SSA coincide in the specular direction and remain extremely
close to one another (within 0.5 dB) up to the backscattering direction. This is due to the small
value of the incidence angle (θ0 = 20◦). We expect a more highly contrasted backscattering
intensity in favour of the SSA for larger incidences (for instance, the backscattering coefficient
differs by more than 2 dB at 30◦).

Hence, the SSA is well adapted and more accurate than the KA for ocean-like spectra in the
considered frequency band (even though both approximations have comparable performances
in the backscattering direction, due to the small incidence angle). Note that the opposite
conclusion was drawn on the Gaussian single-scale surface (surface 1) with the same first
spectral moments (5.19) and (5.20). This confirms that the RMS slope is not the only relevant
parameter for the validity of the SSA, which is also sensitive to the kind of spectrum.
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Figure 13. H copolarization. Comparison of MoM, KA and SSA for a sea surface HH.

6. Conclusion

In this paper, we have compared numerically the accuracy of the KA and the SSA for two repre-
sentative types of rough surfaces. For single-scale (Gaussian) surfaces, the SSA at first order is
disappointing outside the near-perturbative domain, even for small slopes, as in many respects
it is outperformed by the KA. Furthermore, the energy balance is not reliable as an accuracy cri-
terion, unlike the KA. However, when it comes to (band-limited) ocean-like surfaces, the SSA
performs better than the KA, and for RMS height and slope values where the converse holds in
the case of Gaussian correlations. This shows that the RMS slope is not the sole relevant param-
eter for the accuracy of the SSA, which turns out to be strongly dependent on the type of spec-
trum. Thus, the SSA appears to be the better adapted first-order approximate method for ocean-
like surfaces, provided that a low spatial frequency cutoff is used. This suggests an improve-
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ment of the usual two-scale model, by replacing the SPM by the SSA in the high-frequency part
of the spectrum. In this way, the cutoff wavenumber could be shifted down to larger frequencies
(in our case K/30) that fall plainly in the Kirchhoff domain. This is left for further research.
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