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The sparse-matrix–flat-surface iterative approach has been implemented for perfectly conducting surfaces and
modified to enhance convergence stability and speed for very rough surfaces. Monte Carlo simulations of
backscattering enhancement using a beam decomposition technique are compared with millimeter-wave labo-
ratory experimental data. Strong but finite conductivity for metals or thin skin depth for dielectrics is simu-
lated by an impedance approximation. This gives rise to a nonhypersingular integral equation derived from
the magnetic field integral equation. The effect of finite conductivity for a metal at visible wavelengths is
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OCIS code: 290.5880.
1. INTRODUCTION
Recently much work has been devoted to the rigorous so-
lution of scattering by two-dimensional (2-D) randomly
rough surfaces, either perfectly conducting1–3 or
dielectric.4,5 These studies are based on an integral for-
malism combined with an iterative solver. In some con-
ditions the concept of a perfectly conducting metal is not
relevant. To be convinced of this, one may think of the
total absorption of light by a metallic grating.6–8 There-
fore, in principle, one should use the dielectric model with
complex refractive index. However, when the imaginary
part of the index is high, the free-space Green’s function
decays very rapidly, and so do the kernels of the integral
operators involving the associated wave number. In this
case it can be easily shown from the Stratton–Chu equa-
tions that the integral relationship between the electric
and the magnetic tangential fields on the surface can be
approximated by a local relation.9 This approximation,
often referred to as an impedance approximation, has
been implemented for one-dimensional (1-D) rough
surfaces10,11 but not yet for 2-D ones. Compared with the
Stratton–Chu integral equations, it leads to a reduction
by a factor of 2 of the number of unknowns. Here a
single equation with locally integrable kernels is
derived.12 For numerical implementation, the regularity
of the kernels enables us to use the method of moments
with piecewise-constant basis functions or point match-
ing. The iterative solver is very close to that described in
Ref. 2. It is also based on the concept of interaction
radius13 and has two iteration levels, but the outer level
uses a generalized minimal-residual (GMRes) algorithm,
found to be more stable than a relaxation algorithm for
deep surfaces. To restrict the size of the linear system,
we use narrow Gaussian beams as incident waves, which
allow the surface currents to decay rapidly. But from a
statistical point of view, to get significant results with the
0740-3232/2001/010124-10$15.00 ©
Monte Carlo method, each sample must be large com-
pared with the horizontal length that characterizes the
surface statistics, that is, the correlation length for single-
scale stationary surfaces with rapidly decreasing correla-
tion function. To obey both constraints, the beam simu-
lation method described in Ref. 14 has been generalized,
which permits one to synthesize beams of arbitrary size
from the superposition of overlapping narrow beams.
With this method there is no restriction on the size of the
incident beam. To validate our numerical implementa-
tion, we have compared it with experimental data15 for a
deep surface with Gaussian statistics, with very good
agreement.

2. FORMULATION
A rough surface S separates vacuum from a semi-infinite
homogeneous medium. This medium, assumed to be
nonmagnetic, is characterized by its complex relative per-
mittivity er . S is assumed to be twice continuously dif-
ferentiable, and its unit normal vector n is directed to-
ward vacuum. The electromagnetic field is time
harmonic, and an exp(2iwt) time dependence is assumed.
The free-space Green’s function is written G0p,q
5 2exp(ik0r)/4pr in vacuum, with wave number k0
5 vAe0m0, and Gp,q 5 2exp(ikr)/4pr below S, with
wave number k 5 k0Aer, where r denotes the distance be-
tween the two points p, q. j 5 n 3 H and m 5 n 3 E
denote the electric and the magnetic surface currents re-
spectively, unknowns of the Stratton–Chu equations.

Applying the second Green’s vector identity to the elec-
tric field at a point in vacuum and taking the limit as this
point goes onto the surface, we get

~
1
2 1 M0!m 1

s

ve0
P0 j 5 n 3 Einc. (1)
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With the magnetic field instead of the electric field,

~
1
2 1 M0!j 2

i

vm0
P0m 5 n 3 Hinc, (2)

where Einc and Hinc denote the incident field on the sur-
face. Starting from a point located in the lower medium,
we get for the electric field

~
1
2 2 M !m 2

i

ve0er
Pj 5 0 (3)

and for the magnetic field

~
1
2 2 M !j 1

i

vm0
Pm 5 0. (4)

M0 , M and P0 , P are the integral operators introduced by
Martin and Ola in Ref. 12. Let c denote a surface cur-
rent and p, q two points on S:

Mcp 5 np 3 rotpE
S
Gp,qcqdSq , (5)

Pcp 5 np 3 rot rotpE
S
Gp,qcqdSq . (6)

M0 and P0 have similar expressions but involve the
vacuum Green’s function G0p,q .

Originally, the sparse-matrix–flat-surface iterative
approach2 (SMFSIA) considered the case of a perfectly
conducting surface. This leads to a single equation prob-
lem, with electrical surface current j as unknown. Equa-
tions (1) and (2) become the electric and the magnetic
field integral equations, respectively:

i

ve0
P0j 5 n 3 Einc, (7)

~
1
2 1 M0!j 5 n 3 Hinc. (8)

Because it does not involve the P operator, the magnetic
field integral equation is better suited to SMFSIA. As a
matter of fact, integral equations are cast in a vector-
matrix form by use of the moments method with
piecewise-constant basis functions and delta test
functions.2 This means that unknown currents are not
differentiable. On one hand, writing M as

Mcp 5 2E
S
np 3 ~gradq Gp, q 3 cq!dSq ,

it appears that near the pole r 5 0 the kernel of M be-
haves as the first derivative of the Green’s function, i.e.,
as 1/r2. This singularity can be analytically integrated
as a Cauchy principal value. On the other hand, since P
involves one more differentiation, it is a hypersingular op-
erator, with the kernel behaving as 1/r3. A computable
expression for P is

Pcp 5 E
S
np 3 ~k2Gp, qcq 2 gradq Gp, q divq cq!dSq ,

which requires that the divergence of the current be ac-
cessible. This is not compatible with piecewise-constant
basis functions. Several ways to overcome this impedi-
ment already exist: Divergence can be estimated by nu-
merical differentiation or can be set as an extra unknown.
The first solution would be inaccurate, and the second is
numerically expensive. More subtle is to consider the op-
erator (P0 2 P), which is less singular than P. Indeed,
the 1/r3 singularity of P is independent of the wave num-
ber, i.e., is the same for P0 and P, and so disappears in
(P0 2 P). In addition, 1/r2 singularities also cancel, so
that (P0 2 P) is even locally integrable. The following
expression for the kernel of P can be found in Ref. 16, p.
267.

rot rotp~Gp, qcq! 5 Gp,qF S 3

r2 2
3ik

r
2 k2D ~cq • u!u

1 S 2
1

r2 1
ik

r
1 k2D cqG ,

where u is the unit vector from point q to point p. Its se-
ries expansion with respect to r is

rot rotp~Gp, qcq! 5
1

4p
H 2F 3

r3 1
k2

2r
1 O~r !G ~cq • u!u

1 F2
1

r2 2
k2

2r
1 O~1 !GcqJ .

Finally, the behavior of (P0 2 P) at r 5 0 is written as

rot rotp@~Gop, q 2 Gp, q!cq#

5 @~cq • u!u 1 cq#Fk2 2 k0
2

8pr
1 O~1 !G .

The following combination, @(1) 1 e(3)# and @(2)
1 (4)#, leads to a system of two coupled integral equa-
tions, without any hypersingular kernel, that can be
handled by SMFSIA for the general dielectric case:

S 1 1 er

2
1 M0 2 erM Dm 1

i

ve0
~P0 2 P !j 5 n 3 Einc,

(9)

~1 1 M0 2 M !j 2
i

vm0
~P0 2 P !m 5 n 3 Hinc.

(10)

A. Impedance Approximation
The use of Eqs. (9) and (10) proves difficult for metals
with large but finite conductivity or dielectrics with thin
skin depth. This kind of problem is specific. First, the
magnetic current is not null but remains small compared
with the electric current. Then, when the imaginary part
of wave number k is large, the Green’s function of the
lower medium shows a fast decreasing behavior owing to
exp(ikr), so associated operators M and P have short-
range action. With a direct application of the moments
method, the currents have to be sampled at the skin-
depth scale. A prohibitive number of unknowns is neces-
sary to get a reliable result.17 From this observation
comes the idea of an impedance approximation: Integral
relationships (3) and (4) between electric and magnetic
surface currents can be approximated by a local, imped-
ancelike relationship. Marvin and Celli9 have expanded
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relation (4) as a series with respect to skin depth d. They
have shown that this relation is local up to the second or-
der:

mp 5 Zjp 1 o~d2!,

Z

h0
jp 5 2ik0dnp 3 H 1 1 dFS% p 2

tr~S% p!

2
G J jp . (11)

The impedance Z is only a function of the skin depth d
5 i/k and of the first and second derivatives of the sur-
face profile at point p. S% p denotes the extrinsic curvature
tensor, and its trace tr(S% p) equals the sum of the surface’s
main curvatures.

With this impedance approximation, the thin-skin-
depth dielectric problem can be solved with a single inte-
gral equation, since the magnetic surface current is no
longer present:

F S 1 1 er

2
1 M0 2 erM DZ 1

i

ve0
~P0 2 P !G j 5 n 3 Einc,

(12)

F ~1 1 M0 2 M ! 2
i

vm0
~P0 2 P !ZG j 5 n 3 Hinc.

(13)
Since the magnetic current is weak, Eq. (13) is written as
a modified magnetic field integral equation (MFIE), with
an extra corrective term that represents finite conductiv-
ity:

S 1

2
1 M0D
MFIE

j 1 H 1

2
2 M 2

i

vm0
~P0 2 P !ZJ

Correction for finite conductivity

j 5 n 3 Hinc.

The impedance approximation leads to resolutions with
approximately the same numerical cost as perfectly con-
ducting surfaces: the number of unknowns and matrix
size are unchanged, and only the matrix elements are
more complicated and thus take longer to compute.

The surface S has the Cartesian equation z 5 f(x, y),
and fp , f p

x , f p
y , f p

xx , f p
xy , f p

yy , denote values of f(x, y)
and the first and second derivatives at point p. The
sampled rectangular part of the plane (xOy) is divided
into N similar rectangular subdomains. The moments
method is applied to integral equation (13) with
piecewise-constant basis functions and delta test func-
tions. The unknown complex vector X̄, with length 2N,
contains the values of the product of multiplying the x
and y components of the electric surface current j by f
5 @1 1 ( f x)2 1 ( f y)2#1/2 at the center of each of the N
subdomains. The z component of j is linked to the x and
y components by n • j 5 0:

X̄ 5 @jx1
f1,..., jxN

fN , jy1
f1,..., jyN

fN#T.

The right-hand side B̄ is similarly created from the inci-
dent field on S. From each operator M0 , M, (P0 2 P),
and Z arises a complex 2N matrix, constituted by four N
submatrices. For example, the operator M gives the ma-

trix M% 5 @
M3% M4%
M1% M2%

#. Integral equation (13) is transformed
into the linear system
F ~1 1 M0 2 M% ! 2
i

vm0
~P0 2 P !Z% G X̄ 5 B̄. (14)

An impedance approximation states that the four sub-
matrices of Z% and M% are diagonal and that P has no
influence on nondiagonal terms of submatrices of

P0 2 P.
The diagonal elements of Z% are expressed as follows:

Z% ii 5 FZii
1 Zii

2

Zii
3 Zii

4 G
5

2 ih0k0d

f i
H F1 2

d

2
tr~S% i!G

3 F 2f i
xf i

y 21 2 ~ f i
y!2

1 1 ~ f i
x!2 f i

xf i
y G 1 dF2f i

xy 2f i
yy

f i
xx f i

xy G J ,

(15)
with

tr~S% i! 5 ~1/f i
3!$@1 1 ~ f i

y!2# f i
xx 2 2f i

xf i
yf i

xy

1 @1 1 ~ f i
x!2#f i

yy%

evaluated at the center of each subdomain i 5 1,..., N.
Now, let us consider the matrix M0 . Nondiagonal

terms are trivially set equal to the product of the value at
the subdomain center by the subdomain area D:

i Þ j,

M0ij 5 FM0ij
1 M0ij

2

M0ij
3 M0ij

4 G 5
ik0rij 2 1

rij
2

3 G0i, jF f j
xxij 1 f i

yyij 2 zij ~ f j
y 2 f i

y!xij

~ f j
x 2 f i

x! 2 yij f i
xxij 1 f j

yyij 2 zij
GD,

(16)

where

xij 5 xi 2 xj , yij 5 yi 2 yj , zijfi 2 fj ,

rij 5 ~xij
2 1 yij

2 1 zij
2 !1/2.

Diagonal elements are null for submatrices M2% and M3%

and are equal for submatrices M1% and M4% :

M0ii
1 5 M0ii

4

5
1

8p S f i
xxEE

D

x2dxdy

r3 1 2 f i
xyEE

D

xydxdy

r3

1 f i
yyEE

D

y2dxdy

r3 D . (17)

For this expression, derivatives of order higher than 2
have been neglected, and only leading terms of the series
expansion of the Green’s function have been considered.
Cauchy principal-value integrals can be analytically
evaluated if the surface is approximated by its tangential
plane at point i, i.e., r 5 @x2 1 y2 1 ( f i

xx 1 f i
yy)2#1/2.
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M% having diagonal submatrices, diagonal elements are
evaluated by analytical integration of the kernel over the
entire xy plane. This gives

Mii
1 5 Mii

4 5 2
d

4

f i
xx 1 f i

yy

f i
, (18)

with all other terms of M% being null.
(P0 2 P) is handled globally to avoid hypersingularity.

Operator P is considered only for diagonal elements, so

nondiagonal elements of P0 2 P are also set equal to the
product of the value at the subdomain center by the sub-
domain area D:

i Þ j, P0 2 Pij 5 G0i, jF S 3

rij
4 2

3ik0

rij
3 2

k0
2

rij
2 D

3 S A10 1
dx

2A1x 1 dy
2A1y

12
D

1 S 2
1

rij
2 1

ik0

rij
1 k0

2D A2GD,

(19)

with the following notation:

A10 5 F2T10T30 2T20T30

T10T40 T20T40
G ,

A1x 5 F2T1xT3x 2T2xT3x

T1xT4x T2xT4x
G ,

A1y 5 F2T1yT3y 2T2yT3y

T1yT4y T2yT4y
G ,

A2 5 F 2f i
yf j

x 1 2 f i
yf j

y

1 1 f i
xf j

x f i
xf j

y G ,

T10 5 xij 1 zij f j
x , T1x 5 1 1 ~ f j

x!2

T20 5 yij 1 zij f j
y , T2x 5 f j

xf j
y ,

T30 5 yij 1 zij f i
y , T3x 5 f j

xf i
y ,

T40 5 xij 1 zij f i
x , T4x 5 1 1 f i

xf j
x ,

T1y 5 f j
xf j

y ,

T2y 5 1 1 ~ f j
y!2,

T3y 5 1 1 f i
yf j

y ,

T4y 5 f i
xf j

y.

For diagonal elements, the 1/r singular part is inte-
grated analytically over D, whereas the regular part is
handled numerically. The singular part is
P0 2 P ii
sing

5
k2 2 k0

2

8p 5 f i
2F 2EE

D

xydxdy

r3 EE
D

x2dxdy

r3

2EE
D

y2dxdy

r3 EE
D

xydxdy

r3
G

1 2F 2f i
xf i

y 2(1 1 ~ f i
y!2)

1 1 ~ f i
x!2 f i

xf i
y G E E

D

dxdy

r 6 , (20)

and the regular part is

P0 2 P ii
reg

5 EE
D

H G1f i
2F2xy x2

2y2 xyG
1 G3F 2f i

xf i
y 2(1 1 ~ f i

y!2)

1 1 ~ f i
x!2 f i

xf i
y G J dxdy

2 EE
Supp~P !\D

H S 3

r4 2
3ik

r3 2
k2

r2 Df i
2F2xy x2

2y2 xyG
1 S 2

2

r2 1
2ik

r D
3 F 2f i

xf i
y 2(1 1 ~ f i

y!2)

1 1 ~ f i
x!2 f i

xf i
y G J exp~ikr !

4pr
dxdy, (21)

with Supp(P) the numerical support of the operator and
intermediate functions G1 and G3 derived from the
Green’s functions:

G1 5 S 3

r4 2
3ik0

r3 2
k0

2

r2 D exp~ik0r !

4pr

2 S 3

r4 2
3ik

r3 2
k2

r2 D exp~ikr !

4pr
2

k2 2 k0
2

8pr
,

G3 5 S 2
2

r2 2
2ik0

r D exp~ik0r !

4pr

2 S 2
2

r2 1
2ik

r D exp~ikr !

4pr
2

k2 2 k0
2

4pr
.

B. Sparse-Matrix–Flat-Surface Preconditioned GMRes:
a Modified SMFSIA
Because discretized integral equations lead, for 2-D sur-
faces, to huge linear systems that cannot be solved with
classical methods on standard computers, Pak et al. de-
signed the Sparse-Matrix–Flat-Surface Iterative
Approach2 (SMFSIA). As explained previously, the first
step in the SMFSIA is the moment method. Then when
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we consider the matrices of linear system (14), the terms
of most importance are those involving strong interac-
tions, linking neighboring subdomains. Matrix terms
with a horizontal distance r ij 5 (xij

2 1 yij
2 )1/2 shorter than

a chosen neighborhood distance rd constitute in SMFSIA
the strong matrices. With the usual rd of three wave-
lengths, strong matrices are between 70% and 90%
sparse. For computations, these matrices are stored in
RAM, with use of a sparse storage mode (for example row
index sparse storage mode). Each long-distance term is
divided into two: a flat-surface part and a weak part.
The Green’s function G that appears in each kernel is
translationally invariant only for the specific case of a flat
surface. For the general rough surface, the translation-
ally invariant part GFS of G gives rise to the flat-surface
matrices. These matrices are combinations of block
Toeplitz matrices, and so, following a rather intricate
procedure,18 flat-surface-matrix vector products can be
computed quickly by 2-D fast Fourier transforms. An-
other advantage of block Toeplitz matrices is that only
one row or one column of storage is needed, and it can be
done in RAM. The remainder of strong and flat-surface
matrices makes weak matrices. These dense, property-
less matrices are not put into RAM. They either are
stored on hard disk or evaluated whenever needed:

(22)

This decomposition allows an exact resolution of the sys-
tem, with the help of a scheme using two nested iterative
methods. In the original SMFSIA, the solution of

Matrix% X̄ 5 B̄ (23)

is seen as the limit of a sequence of solutions of approxi-
mate problems,

~Strong% 1 Flat-Surface%!X̄n 5 B̄n , n . 1, (24)

with a sequence of right-hand sides,

B̄n11 5 B̄ 2 Weak% X̄n , B̄1 5 B̄. (25)

The iteration is stopped when the numerical criterion

iB̄ 2 Matrix% X̄ni2 < eiB̄i2 (26)

is fulfilled. Approximate problems are solved by a gradi-
ent method suited to general complex matrices: the Bi-
Conjugate Gradient Stabilized algorithm (BiCGStab),
each approximate problem having its own stopping crite-
rion. Experience has shown that it is very efficient for
our kind of problem.19 Relaxation/BiCGStab is the origi-
nal configuration. The BiCGStab algorithm is fast be-
cause it uses the two matrices that are stored in RAM and
that have fast matrix-vector products. And even if the
right-hand sides take long to generate because of weak-
matrix use, relaxation requires very few iterations (typi-
cally between five and ten, once again depending on rd).
From there comes the efficiency of the SMFSIA. We
have successfully implemented this configuration for a
large class of roughness, where approximate methods are
no longer accurate, but we were unable to reproduce the
comparison of Monte Carlo simulations with the experi-
mental data published in Ref. 15. These results concern
surfaces with Gaussian height distribution and Gaussian
correlation function, the rms height h being one wave-
length and the correlation length equal to two wave-
lengths. For very rough surfaces, relaxation too often
fails to converge. We have therefore replaced relaxation
by a more advanced and sturdy method: the Generalized
Minimal Residual (GMRes) method.

First, let us reconsider the use of flat-surface matrices.
Flat-surface matrices have been introduced in the case of
a scalar theory with a Dirichlet boundary condition.20

GFS is the zeroth-order term of the series expansion of G
with respect to ratio zij /r ij . Using flat-surface matrices,

we get O(Weak% x̄) 5 O(k0h2/rd), and flat surface im-
proves convergence for rough surfaces when
h!(rd /k0)1/2, which is the range of validity for the series
expansion. But outside this range, i.e., for rd 5 3l when
the rms height is higher than half a wavelength, the num-
ber of iterations becomes smaller without consideration of
flat-surface matrices. Second, we have chosen GMRes
because it can handle non-Hermitian complex matrices
with only one matrix–vector product per iteration. The
row-index sparse storage mode used in the strong matrix
is inefficient for the transpose matrix-vector product; thus
it is another advantage of GMRes that it does not require
such a product. GMRes is already known as an efficient
algorithm for difficult surface-scattering calculations,21

and this reputation has been confirmed by our trials of
other methods. Finally, GMRes is now a standard, well-
known method that can be found in most numerical li-
braries.

Our goal is not to explain here the theory of GMRes but
rather to emphasize the differences between the Relax-
ation and GMRes configurations. In relaxation, the solu-
tion of approximate problems does not need high accuracy
for first iterations, because it does not influence the final
result. Each new approximate solution uses only the
previous one, former solutions being forgotten: there is
no memory in relaxation. This is an advantage: the
BiCGStab stopping criterion can be loosened at the begin-
ning and tightened when the relaxation criterion is close
to being achieved. In contrast, GMRes computes at each
iteration n a new vector basis that constitutes with the
n 2 1 previous vectors the orthonormal basis of iteration
n Krylov space, Kn . From this entire basis one can
evaluate the solution that minimizes the 2-norm of the re-

sidual R̄n 5 B̄ 2 Matrix% X̄n over space Kn . Therefore
the same high accuracy is required for every BiCGStab
solution. This is the price of convergence.

Another aspect of the GMRes configuration is that it is
more than a two-nested-iterative-method scheme. It can
be seen as a preconditioned GMRes algorithm. Precon-

ditioning matrix Prec% is set to the inverse of

Strong% 1 Flat-Surface%, or the inverse of Strong% if h
> (rd /k0)1/2 so, that linear system (23) becomes

Prec%Matrix% X̄ 5 Prec% B̄. (27)
Strong and flat-surface matrices bear the most important
terms of the complete matrix, so that the product

Prec%Matrix% is close to identity; and as for relaxation,
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GMRes succeeds within a few iterations. The precondi-

tioning matrix Prec% is never computed explicitly, because

products V̄ 5 Prec% Ū are solved as linear systems

Prec%21V̄ 5 Ū by the BiCGStab method.
The GMRes/BiCGStab configuration has a larger field

of convergence, with more stability on samples with the
same statistical properties. It has its own limitations
that, as is true for the original relaxation/BiCGStab con-
figuration, are difficult to define clearly. It should be
noted that not only GMRes but also BiCGStab can fail to
converge for too-rough surfaces. Another advantage of
GMRes, which can be important for future improvements,
is multi-incidence computations. This is a field in which
direct methods such as LU decomposition are tradition-
ally superior. Once matrix inversion (or LU decomposi-
tion) is done, any number of right-hand sides, i.e., any
number of incidence angles, can be handled, whereas each
incidence is an entire problem for the SMFSIA. Studies
have been done on gradient methods that can efficiently
solve multi-incidence computations in a global way.22

C. Beam Decomposition and Parallel Computations
Even with the SMFSIA, there is a maximum surface area
that can be handled with given numerical facilities: In
order to be efficient, the SMFSIA needs the strong matrix
to be stored in RAM, and strong-matrix size increases lin-
early with the surface area for a given discretization and
neighborhood distance. Moreover, a large surface takes
a prohibitive amount of CPU time, because a weak-
matrix-vector product increases quadratically with sur-
face area. In a Monte Carlo simulation, this maximum
size may be too small to represent the statistical proper-
ties of a random rough surface. Beam decomposition is
an elegant way to overcome this difficulty. It was origi-
nally developed for 1-D random rough surfaces,14 but ad-
aptation to 2-D surfaces is straightforward. Beam de-
composition is based on the representation of a large
beam by a weighted sum of shifted narrow beams. Each
narrow beam is handled as a particular SMFSIA problem.
Summing the surface currents from all the narrow beams
provides the surface current of the large one. The scat-
tered field is obtained by making this latter current radi-
ate. An alternative approach is to compute the scattered
fields from all the narrow beams and to sum them to get
the scattered field from the large beam.

The incident large beam B has the following plane-
wave decomposition:

HB
inc~x, y, z ! 5 EE

kx
2
1ky

2<k2

hB
inc~kx , ky!pinc~kx , ky!

3 exp~ikxx 1 ikyy 2 ikzz !dkxdky , (28)

where hB
inc and pinc denote the plane-wave complex ampli-

tude and the polarization unit vector. Narrow beams
have similar decomposition:

Hb
inc~x, y, z ! 5 E E

kx
2

1ky
2<k2

hb
inc~kx , ky!pinc~kx , ky!

3 exp~ikxx 1 ikyy 2 ikzz !dkxdky . (29)
The rigorous relationship between large and narrow
beams is the continuous sum

HB
inc~x, y, z ! 5 EE

R2

u~X, Y !Hb
inc~x 2 X, y 2 Y, z !dXdY.

(30)

This sum is over real variables X and Y and is weighted
by the complex function u(X, Y). Narrow beams are
shifted by X along abscissas and Y along ordinates. The
function u(X, Y) is identified with the inverse Fourier
transform of the ratio hB

inc/hb
inc , if the inverse Fourier

transform exists. Let us consider the specific case of
large and narrow beams with Gaussian shape,

hB
inc~kx , ky! 5 hB

0 expH 2
1

2
F S kx 2 kx

0

1/Bx
D 2

1 S ky 2 ky
0

1/By
D 2G J ,

(31)

hb
inc~kx , ky! 5 hb

0 expH 2
1

2
F S kx 2 kx

0

1/bx
D 2

1 S ky 2 ky
0

a/by
D 2G J ,

(32)
centered at plane waves with amplitude hB

0 and hb
0 and

wave-vector coordinates kx
0 and ky

0. Bx , bx and By , by
are the spatial root mean squares of beams along the x
and y axes. Since the incident field is exclusively com-
posed of propagating waves, narrow beams cannot be set
arbitrarily narrow, in particular at high mean incident
angle. So bx and by must be large enough for the Gauss-
ian amplitudes of the plane waves to be weak for the graz-
ing angles and negligible for wave numbers kx

2 1 ky
2

> k2. The inverse Fourier transform exists and is writ-
ten as

u~X, Y ! 5
hB

0 /hb
0

2p

exp~ikxX 1 ikyY !

~Bx
2 2 bx

2!1/2~By
2 2 by

2!1/2

3 expX2
1

2 H S X

~Bx
2 2 bx

2!1/2D 2

1 S Y

~By
2 2 by

2!1/2D 2J C. (33)

In practice, a finite number of narrow beams is consid-
ered, so the sum over X and Y is discretized and bounded:

HB
inc~x, y, z ! 5 DXDY (

n52N

Nn

(
m52Nm

Nm

unm

3 Hb
inc~x 2 nDX, y 2 mDY, z !, (34)

with unm 5 u(nDX, mDY). The rebuilding of the cur-
rent (or the scattered field) follows the same rule as for
the incident field:

jB~x, y, z ! 5 DXDY (
n52Nn

Nn

(
m52Nm

Nm

unm

3 jb~x 2 nDX, y 2 mDY, z !. (35)

Numerical experimentation has shown that a good repre-
sentation of the large beam is achieved with values of DX
and DY between 1.5 and 2.5 times root mean squares bx
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and by . With the narrow beam extending approximately
6 root mean squares, this means an overlapping of two
thirds on each axis.

Beam decomposition is naturally well suited to parallel
computation. As a matter of fact, after the rough surface
is divided and weights for the decomposition are evalu-
ated, each step (computation of the incident field on the
surface, building the matrices, solving the system, and
computing the scattered field) is completely independent
for each narrow beam. Then scattered fields just have to
be summed. This scheme is particularly adapted to the
distributed-memory parallel environment. We’ve used
the message passing interface (MPI) library to dispatch
each narrow beam on a processor. Computing time is al-
most divided by the number of processors. Results on
aluminum surfaces (see Section 3) have been computed
with WMPI, the Windows MPI implementation, on a clus-
ter of five PC’s.

3. RESULTS AND DISCUSSION
The GMRes/BiCGStab configuration has initially been
implemented with the MPI beam decomposition in
FORTRAN 90 language on a two-Xeon-Pentium-II–450-
MHz-processor PC.

We first show a validation of our program by comparing
a Monte Carlo simulation of the field scattered by a me-
tallic randomly rough surface with millimeter-wave ex-
periments. In this frequency range, the perfectly con-
ducting model is generally assumed to be accurate.
Surfaces have both Gaussian height distribution and
Gaussian correlation function, with the following statisti-
cal properties: a height root mean square of one wave-
length and a correlation radius of two wavelengths. For
Gaussian surfaces, empirical rules, based on numerical
experiments dealing with 1-D surfaces, say that at least
ten correlation lengths must be illuminated for each
sample of the Monte Carlo process. Generalizing this
rule to the 2-D case, 130 square surfaces have each been
illuminated by a beam with 1/e width Bx 5 By 5 4 wave-
lengths and mean incidence angle 20°. With such a
beam, a 26-wavelength side square was sampled, with six
points per wavelength. Under these conditions, the
number of unknowns is approximately 50,000. To reduce
this number, the beams have been decomposed into 25
narrow beams, leading to 14,000 unknowns for each scat-
tering problem, and, since the neighborhood distance is
set to 3 wavelengths, the size of the strong-matrix RAM
becomes 200 Mo. Average numbers of iterations are 5.3
for BiCGStab (with a restart parameter of 2) and 7.5 for
GMRes. Average computing times are 35 min for a nar-
row beam and 15 h (divided by the number of processors)
for a large beam.

It must be noted that for a perfectly conducting surface,
the energy balance between the incident and the scat-
tered field has to be satisfied. In our simulations, this
balance is not accurately checked. Between 5% and 9%
of the incident energy is lost. The stopping criteria of the
gradient methods are not to blame. A better accuracy
could be obtained with a tighter discretization and by en-
larging the sampled part of the surface. But the im-
provement is slow and its numerical cost is prohibitive.
Using more-elaborate test and basis functions could also
help.

Figures 1 and 2 show the bistatic coefficient (the scat-
tered field intensity normalized so that total scattered en-
ergy equals 4p) in the plane of incidence for Monte Carlo
simulation and millimeter-wave experiments. The
curves in Fig. 1, with TE incident waves (electric field per-
pendicular to the plane of incidence), show very good
agreement, especially in cross polarization, although os-
cillations remain despite use of 130 realizations. The
backscattering peaks also coincide very well, in both am-
plitude and width. The main discrepancy comes from
large scattering angles in co-polarization. In principle,
the scattered intensity should vanish at 690°, but the
way the surfaces have been sampled here does not allow
us to reach such an accuracy. This is more obvious in
Fig. 2 in TM polarization (magnetic field perpendicular to
the plane of incidence), where even more energy is scat-
tered into grazing directions. But the comparison of the
TM–TM co-polarized components requires some other

Fig. 1. Comparison of Monte Carlo simulation with experimen-
tal data on a perfectly conducting random rough surface: bi-
static coefficient in the plane of incidence, TE incidence.

Fig. 2. Comparison of Monte Carlo simulation with experimen-
tal data on a perfectly conducting random rough surface: bi-
static coefficient in the plane of incidence, TM incidence.
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comments. Indeed, it can be observed that the computed
result is always larger than the measured one, even be-
tween 230° and 30°. First, we are convinced that the
backscattering peak is missing in the experimental curve.
The second point concerns energy balance. Experimen-
tal results show much less energy in the plane of inci-
dence in TM than in TE polarization, whereas computa-
tions lead to the same amount of energy. This means
either that scattering outside the plane of incidence is
stronger than predicted by our computations or that there
is more absorption in the TM case, which makes the per-
fectly conducting model questionable. For instance, it is
known that in optics this concept is not relevant to the
scattering of p-polarized waves by 1-D surfaces coated
with common metals.

To address this question, we have used the impedance
approximation to study the same surface with the same
incident beam, but with finite conductivity. We have
chosen the optical index of aluminum at 650 nm to be n
5 1.3 1 7.0i. The imaginary part of this index is large
enough to ensure that the supports of operators M and P
are narrow compared with the oscillations of the surface
current. In Figs. 3 and 4, co-polarized and cross-
polarized bistatic coefficients in the plane of incidence are
plotted for both perfectly conducting and aluminum sur-
faces. Even though some oscillations remain, the curves
fit very well for TE incidence (Fig. 3), up to a multiplica-
tion factor (except possibly at large angles, but the small
values of the coefficients are probably not very accurate).
For co-polarization the factor equals, as for 1-D surfaces
in s polarization, the reflectivity of a flat surface: 0.91; it
is 0.76 for cross polarization. Under TM incidence (Fig.
4), the situation is more complicated for co-polarization.
Amazingly, the two curves coincide with the ratio 0.90
(also equal to the reflectivity of a flat surface) in the back-
ward direction, and with the ratio 0.76 in the forward di-
rection. As a result, taking the finite conductivity into
account drastically reduces the bistatic coefficient be-
tween 0° and 90°. This probably explains part of the dis-
crepancy with experimental data discussed above, since
the reflectivity of the metallic paint used in the experi-

Fig. 3. Comparison between a perfectly conducting and an alu-
minum random rough surface: bistatic coefficient of Monte
Carlo simulation in the plane of incidence, TE incidence.
ments was estimated by the authors to be 0.95. In con-
trast, the shape of the cross-polarized curves fit very well,
again with the ratio 0.76.

It is also interesting to see what happens in the trans-
verse plane (Figs. 5 and 6). This plane is the section of
the three-dimensional (3-D) bistatic coefficient plot that is
perpendicular to the plane of incidence and that includes
the normal emergence. The curves have been symme-
trized, according to the isotropy of the surface statistics.
The most remarkable result concerns cross polarization.
Whatever the incident polarization, the ratio between the
bistatic coefficient from the aluminum surface and that
from the perfectly conducting one is always very close to
0.76, as in the plane of incidence. A more complete
analysis of the data shows that this remains true in all
directions. Of course, this number depends on the refrac-
tive index and on the geometrical parameters, but we
have no explanation for it yet. It must also be noted that
the co-polarized curves in Fig. 6 almost coincide up to the
reflectivity ratio. Such a behavior has already been ob-
served in the plane of incidence for TE polarization. We
conclude that this property holds when the electric field

Fig. 4. Comparison between a perfectly conducting and an alu-
minum random rough surface: bistatic coefficient of Monte
Carlo simulation in the plane of incidence, TM incidence.

Fig. 5. Comparison between a perfectly conducting and an alu-
minum random rough surface: bistatic coefficient of Monte
Carlo simulation in the transverse plane, TE incidence.
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lies in the horizontal plane. Finally, co-polarization in
the transverse plane for TE incidence (Fig. 5) exhibits a
decreasing ratio from normal (0.91) to grazing (0.76) di-
rection.

To estimate the extra amount of absorption due to sur-
face roughness, we integrated the bistatic coefficient over
the whole 3D plot, divided by the same for a perfect con-
ductor, and substracted this ratio from the reflectivity of
the metal. We found 6% for TM incidence and 5% for TE
incidence. This result points out the main difference
from 1-D surfaces under p polarization: Here absorption
is much lower because energy can escape from the plane
of incidence.

At this step, although all these results have to be con-
firmed by further numerical experiments, it stands out
that the behavior of metals such as aluminum in the vis-
ible range cannot be simply deduced from that of a per-
fectly conducting metal. Of course, the bistatic coeffi-
cients seem closely related, but except for waves with
horizontal electric fields that behave as s-polarized waves
in 2-D problems, the derivation is not obvious.

4. CONCLUSION
An original and efficient implementation of an impedance
approximation has been proposed for the rigorous solu-
tion of scattering by 2-D rough surfaces. Compared with
a more general approach devoted to dielectric media, it al-
lows one to deal accurately with materials with small skin
depths at low numerical cost. First, sampling at the
skin-depth scale is avoided, and second combining the
Stratton–Chu equations cancels the hypersingularity of
the kernel of the integral equation. We have solved some
problems that occur when the SMFSIA is used for deep
surfaces. GMRes is a stable substitute for relaxation
when the latter fails to converge, and the use of the flat-
surface matrix is no longer fruitful.

Our experience of scattering by 1-D rough surfaces has
shown that in p polarization, the concept of a perfectly
conducting surface is not relevant for predicting the scat-
tering from metallic rough surfaces in optics. Although
the results here for isotropic 2-D surfaces are quite differ-

Fig. 6. Comparison between a perfectly conducting and an alu-
minum random rough surface: bistatic coefficient of Monte
Carlo simulation in the transverse plane, TM incidence.
ent, illuminating with a TM incident wave has clearly
pointed out the difference between finite and infinite con-
ductivity. This explains why our simulations with a per-
fectly conducting model agree very well with experiments
in TE polarization and deteriorate in TM polarization.
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and Alcatel Space Industries for supporting G. Soriano’s
Ph.D. thesis. They also thank the Program National de
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diffraction à grand nombre de degrés de liberté,’’ Rapport
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