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Grating theory: new equations in Fourier space
leading to fast converging
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Using theorems of Fourier factorization, a recent paper [J. Opt. Soc. Am. A 13, 1870 (1996)] has shown that the
truncated Fourier series of products of discontinuous functions that were used in the differential theory of
gratings during the past 30 years are not converging everywhere in TM polarization. They turn out to be
converging everywhere only at the limit of infinitely low modulated gratings. We derive new truncated equa-
tions and implement them numerically. The computed efficiencies turn out to converge about as fast as in the
TE-polarization case with respect to the number of Fourier harmonics used to represent the field. The fast
convergence is observed on both metallic and dielectric gratings with sinusoidal, triangular, and lamellar pro-
files as well as with cylindrical and rectangular rods, and examples are shown on gratings with 100% modu-
lation. The new formulation opens a new wide range of applications of the method, concerning not only grat-
ings used in TM polarization but also conical diffraction, crossed gratings, three-dimensional problems,
nonperiodic objects, rough surfaces, photonic band gaps, nonlinear optics, etc. The formulation also concerns
the TE polarization case for a grating ruled on a magnetic material as well as gratings ruled on anisotropic
materials. The method developed is applicable to any theory that requires the Fourier analysis of continuous
products of discontinuous periodic functions; we propose to call it the fast Fourier factorization method.
© 2000 Optical Society of America [S0740-3232(00)01910-4]
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1. INTRODUCTION
Stable numerical results concerning diffraction grating
efficiencies were first obtained on dielectric gratings1,2

used as grating couplers for integrated optics at the be-
ginning of the 1970’s. When the same formalism was ap-
plied to metallic gratings used in the visible and near-
infrared regions, good converging results were obtained
for TE polarization, but in TM polarization a poor conver-
gence was observed with respect to the number of spectral
orders (propagating and evanescent) retained in the com-
putation. Moreover, depending on the groove depth and
the ohmic conductivity of the metal, numerical instabili-
ties appeared above a given truncation parameter; they
gave results that violated the energy-balance criterion
and severely limited the use of the differential method for
TM polarization and metallic gratings. These numerical
difficulties had already been pointed out3 in 1974. Since
they were felt to be linked with the numerical integration
process that is used in the differential theory, a lot of un-
published work was devoted to getting rid of these insta-
bilities by changing the integration algorithm, modifying
the set of equations to integrate, changing the sense of
the integration process, using asymptotic expansion of the
field, etc. but all the attempts turned out to be unsuccess-
ful. Some small progress occurred in 1980 (Ref. 4) by us-
ing two simultaneous counterruning numerical integra-
0740-3232/2000/101773-12$15.00 ©
tion processes, which enabled the author of Ref. 4 to
analyze gratings two times deeper than those analyzed
through the classical formulation. However, this im-
provement did not really eliminate the problem, and the
differential theory of gratings was felt to be severely lim-
ited in its application range in dealing with highly reflect-
ing metals.

This serious drawback had a happy consequence,
namely, that it forced the authors of the theory to find an-
other range of applications in which it could be useful.
This new range was in the UV and x-ray spectral
region5–7; it took many years to convince the scientific
community of the necessity of requiring Maxwell equa-
tions in a spectral domain that was assumed to be free of
polarization effects. Indeed, the preliminary studies
done7 in view of optimizing the recently launched x-ray–
Multi-Mirror mission (XMM telescope) proved the neces-
sity of using the electromagnetic theory at wavelengths l
as small as 0.8 nm, which led to l/d ratios (d is groove
spacing) smaller than 4 3 1024. Thus nowadays most
synchrotron beam lines and X–UV spectroscopic missions
are optimized with the differential theory of gratings.
Despite this success, many years elapsed before any sig-
nificant improvement occurred, and the origin of the dif-
ficulties of the differential method was not clearly under-
stood. Some authors8 claimed to have found the
2000 Optical Society of America
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limitation of the theory in the sense that the propagation
equations that are at the basis of the theory could be
false, but their arguments appeared to be wrong.9 In
fact, understanding the problem was difficult, because the
numerical instabilities have two independent origins that
enhance each other: (1) the numerical contamination of
the results due to growing exponential functions associ-
ated with evanescent orders during the integration pro-
cess and (2) the poor convergence of the Fourier series of
some components of the electromagnetic field in TM po-
larization. Of course, the numerical contamination ag-
gravates the slowness of the convergence of the series,
while the poor convergence requires the use of larger dif-
ferential sets, which aggravates the numerical contami-
nation. The numerical contamination is not limited to
the TM polarization case and metallic gratings. Indeed,
it may appear even for dielectric gratings used in TE po-
larization, but in that case it begins to appear for a criti-
cal modulation ratio a/d (a is groove depth) close to unity,
the critical value decreasing when the refractive index
grows in modulus and the number of Fourier components
of the field increases. This explains the fact that numeri-
cal contamination was not seen in the first studies dealing
with medium modulated gratings and that it appears
sooner on metallic gratings than on dielectric ones, except
in the X–UV region, in which all refractive indices are
close to unity. After ten years of silence, in the 1990’s a
great amount of work was done10–17 to get rid of the nu-
merical contamination that was due to growing exponen-
tial functions. Among these various approaches, the
S-matrix propagation algorithm15 seems to us the easiest
one to implement. There are various ways of defining
the S-matrix and the corresponding propagation algo-
rithm, which are not strictly equivalent in terms of ease of
use and stability. The way we developed the algorithm
in Ref. 18 turns out to be the most stable and is particu-
larly well suited to being coupled with the differential
theory. This method has completely eliminated the first
origin of the numerical problems, and it was a great sat-
isfaction to be able to integrate fields in thick holograms
along distances equal to thousands of wavelengths with-
out seeing any divergence in the numerical results. That
left only the second origin of the difficulties.

Concerning the poor convergence of the Fourier series,
recent papers19,20 proposed a reformulation of the propa-
gation equations, which constituted great progress for
lamellar profiles studied with the rigorous-coupled-wave
method. But the proposed change in the equations was
empirical and the origin of the improvement was not un-
derstood, and when one of the authors (M. N.) tried to use
it for sinusoidal profiles studied with the differential
theory, he did not see any improvement in the conver-
gence of the Fourier series of the field. The remarkable
work of Li21 provided a solid mathematical foundation for
a new formulation of the coupled-wave method. Using
three theorems of Fourier factorization, Li established the
extremely important following conclusion: Although the
propagation equations of the original differential theory
were exact—both those written in spatial variables and
those in discrete Fourier space—the latter ones become ill
suited as soon as they are truncated by any numerical
treatment. The truncated equations no longer preserve
the continuity of the appropriate field components across
the discontinuities of the permittivity function. Li pro-
posed appropriate factorization rules to preserve that con-
tinuity. In this paper we use these rules to establish new
propagation equations for the differential method that
can be truncated without any numerical problem. These
equations are established for arbitrary profiles, of which
equations given in Refs. 19 and 20 appear as particular
cases. Their advantages are shown here through nu-
merical results in various selected examples.

2. THE MATHEMATICAL PROBLEM IN THE
CLASSICAL FORMULATION
The notation used in this paper follows that used in the
original studies.3,22 A grating whose profile is given by
y 5 f(x) is lighted by a TM-polarized incident plane wave
of the form

Hz
i 5 A exp@i~a0x 2 b0 y !#,

which excites a total field Hz(x, y) that is pseudoperiodic
and is thus represented by its pseudo-Fourier series,

Hz~x, y ! 5 (
n52`

1`

Hn~ y !exp~ianx !,

where an 5 a0 1 nK, K 5 2p/d and d is the groove
spacing.

Inside the modulated area defined by 0 , y , a,
where a is the groove depth, the relative permittivity e is
periodic with respect to x. We thus introduce the peri-
odic function k2(x, y) 5 k0

2e(x, y), where k0 is the modu-
lus of the wave vector in vacuum. Using Maxwell equa-
tions in the sense of distributions, the basic propagation
equation for TM polarization can be established and is
written as

divS 1
k2~x, y !

grad
→

HzD 1 Hz 5 0. (1)

Indeed, this equation leads to a second-order differential
equation with first derivatives. Thus it is in fact trans-
formed into a set of two coupled first-order differential
equations. Let us establish these first-order differential
equations directly from Maxwell equations. From Max-
well equation curl(H) 5 2jveE and introducing Ẽx

5 Ex /( jvm0), Ẽy 5 Ey /( jvm0) (where v is the circular
frequency and m0 is the magnetic permittivity of vacuum),
we get

Ẽx~x, y ! 5
1

k2~x, y !

]Hz

]y
, (2)

Ẽy~x, y ! 5
21

k2~x, y !

]Hz

]x
. (3)

Equation (2) can be immediately inverted into

]Hz

]y
5 k2~x, y !Ẽx . (38)

On the other hand, the Maxwell equation curl(E)
5 jvm0H leads to ]Ẽy /]x 2 ]Ẽx /]y 5 Hz , and the use of
Eq. (3) gives
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]

]y
Ẽx 5 2Hz 1

]Ẽy

]x
5 2Hz 2

]

]x S 1

k2

]Hz

]x D . (4)

Equations (38) and (4) are the basic equations of the dif-
ferential theory of gratings. Introducing the pseudo-
Fourier components Hn and Ẽn of Hz and Ẽx plus the
Fourier components kn

2 of k2, we then write the equations
in the Fourier space:

dHn

dy
5 (

m52`

1`

~k2!n2mẼm , (5)

dẼn

dy
5 an (

m52`

1`

amS 1

k2D
n2m

Hm 2 Hn . (6)

At this level the equations are still rigorous insofar as the
summations over subscript m run over an infinite number
of terms. But for making computations, these series
have to be truncated from 2N to 1N limits, and all au-
thors who have worked on the differential theory have as-
sumed that such a process is valid provided that N is
large enough. The great merit of the work of Li21 was to
study the legitimacy of the truncation process and to
show that the equations derived from a truncation of Eqs.
(5) and (6) are exact almost everywhere, but not every-
where, a fact that makes a world of difference in the com-
putation.

Indeed, Eqs. (5) and (6) are derived from Eqs. (38) and
(4), assuming Laurent’s rule, which states that the Fou-
rier components hn of the product h(x) of two arbitrary
functions f(x) and g(x) is simply given by

hn 5 (
m52`

1`

fn2mgm .

To simplify the following calculations, we introduce
matrix notation. We designate by @ g# the vector con-
structed with the Fourier components of g(x) and by
@@ f ## the Toeplitz matrix whose (n, m) entry is fn2m .
Thus the preceding equation is simply written as

@h# 5 v f b@ g#. (7)

Here both the vectors and the Toeplitz matrix have infi-
nite size. The problem that we address is whether Eq.
(7) still holds when the vectors and the Toeplitz matrix
are truncated to a finite order N. The difficulty comes
from the fact that, depending on the kind of discontinui-
ties of functions f(x), and g(x), the truncation of Eq. (7)
will, or will not, introduce errors on the reconstructed
function h(x) obtained through its Fourier harmonics.
Li clearly derived three important conclusions21:

1. A product of two piecewise-smooth, bounded, periodic
functions that have no concurrent jump discontinuities
can be factorized by Laurent’s rule:

hn
~N ! 5 (

m52N

N

fn2mgm . (78)

2. A product of two piecewise-smooth, bounded, periodic
functions that have only pairwise-complementary jump
discontinuities cannot be factorized by Laurent’s rule, but
in most cases it can be factorized by the inverse rule:

hn
~N ! 5 (

m52N

N S V 1

f B
~N !D

n,m

21

gm . (8)

3. A product of two piecewise-smooth, bounded, periodic
functions that have concurrent but not complementary
jump discontinuities can be Fourier factorized neither by
Laurent’s rule nor by the inverse rule.

The use of the second conclusion allowed Li21 to derive
on a mathematical basis the equations previously pro-
posed in Refs. 19 and 20 in the case of lamellar profiles.
It can easily be verified that, for this simple profile, the
product k2Ẽx in Eq. (38) is continuous, since it is propor-
tional to the component of D normal to the profile; more-
over, in Eq. (4), 1/k2(]Hz /]x) is also continuous, since it is
proportional to Ey , which is, in this case, purely tangen-
tial. Thus the inverse rule [Eq. (8)] applies for both
equations. Unfortunately, for an arbitrary groove shape
the two above-mentioned products are no longer continu-
ous, and conclusion 3 applies. Our aim in this paper is to
reformulate the propagation equations in such a way that
conclusions 1 and 2 can be used.

3. NEW FORMULATION OF THE
DIFFERENTIAL THEORY
A. Derivation of the New Differential Set
Since Ex and Ey are never continuous functions at the
boundary of an arbitrary grating profile, we express these
components in terms of the tangential (Et) and the nor-
mal (En) component. To that end, let us introduce the
unit vector t of the tangent at the grating profile at a
point (x1 , y) as illustrated in Fig. 1. Its components are
simply given by

tx 5 cos u, ty 5 sin u,

where u is illustrated in Fig. 1 and is defined by tan u
5 d f/dx, u P @2p/2,1p/2#.

Thus Et and En are written as

Et 5 cos uEx 1 sin uEy , (9)

En 5 2sin uEx 1 cos uEy . (10)

In what follows, we use the following abbreviations:

c 5 cos u, s 5 sin u.

Fig. 1. Grating geometry and notation.
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Thus, inverting Eqs. (9) and (10) leads to

Ẽx 5 cẼt 2 sẼn , (11)

Ey 5 sEt 1 cEn , (12)

where the tilde means that the fields are divided by jvm0 .
At a given ordinate y, Eqs. (9) and (10) are valid only

for two values (x1 and x2) of x. However, we define func-
tions Et(x, y) and En(x, y) through a suitable continua-
tion of functions c(x) and s(x) explained in what follows.
This extension makes the present theory valid not only
for bare profiles but also for dielectric-coated gratings and
multilayer-coated gratings.

Equation (11) will first be used to calculate the nth
Fourier component of k2Ẽx in Eq. (38):

k2Ẽx 5 ck2Ẽt 2 sk2Ẽn . (13)

Let us study the continuity of the different terms in Eq.
(13). To that end, we extrapolate functions c(x) and s(x)
outside points x1 and x2 by continuous functions of x (in
fact, it suffices that c and s are continuous at the points
where Ex , Ey and k2 are discontinuous). In Eq. (13) the
first term on the right-hand side includes the product of
the discontinuous function k2 by a continuous function
Ẽt . Following conclusion 1 of Li, the Fourier component
of the product can be found through Laurent’s rule. Con-
cerning the second term, the product k2Ẽn is continuous,
while k2 and Ẽn are discontinuous; thus the calculation of
the Fourier components of the product requires the use of
conclusion 2, i.e., the use of inverse rule (8). We then get

@k2Ẽx# 5 vc bvk2b@Ẽt# 2 vs bv1/k2b21@Ẽn#. (14)

Analysis of the continuity of the terms appearing on the
right-hand side of Eq. (9) shows that the Fourier compo-
nents of Ẽt can be computed through Laurent’s rule:

@Ẽt# 5 vc b@Ẽx# 1 vs b@Ẽy#. (15)

In a similar way, Eq. (10) gives

@Ẽn# 5 2vs b@Ẽx# 1 vc b@Ẽy#. (16)

Equations (15) and (16) put into Eq. (14) lead to

@k2Ẽx# 5 ~ vc bvk2bvc b 1 vs bv1/k2b21vs b !@Ẽx#

1 ~ vc bvk2bvs b 2 vs bv1/k2b21vc b!@Ẽy#. (148)

At this level, one may wonder about the commutativity of
the various matrix products that appear in this equation.
The commutativity of the infinite Toeplitz matrices, es-
tablished in Appendix A, cannot be used on truncated ma-
trices. Moreover, the inverse of the Toeplitz matrix
v1/k2b is not a Toeplitz one. If we were dealing with in-
finite matrices, we would have v1/k2b21 5 vk2b, the com-
mutativity would hold for all products, and the multipli-
cative factor of @Ẽy# in Eq. (148) would vanish. This is
true except at the two ends of the main diagonal of the
matrix vk2b; see (Ref. 21, p. 1876). Concerning the mul-
tiplicative factor of @Ẽx#, we would have vc bvc b 5 vc2b,
vs bvs b 5 vs2b, and vc2b 1 vs2b 5 1, unit matrix. Thus
Eq. (148) would reduce to

@k2Ẽx# 5 vk2b@Ẽx#,
which is merely Laurent’s rule. The more complicated
form of Eq. (148) comes from the fact that for truncated
matrices, some previous simplifications do not hold.
However, we can put Eq. (148) into a simpler form by
working on Eq. (13) in a different way. Let us write it as

k2Ẽx 5 k2cẼt 2 k2sẼn ,

which implies that

@k2Ẽx# 5 vk2b@cẼt# 2 v1/k2b21@sẼn#.

Using Eqs. (9) and (10), we get

@k2Ẽx# 5 vk2b@c2Ẽx 1 csẼy# 1 v1/k2b21@s2Ẽx 2 csẼy#,

and the use of Laurent’s rule leads to

@k2Ẽx# 5 ~ vk2bvc2b 1 v1/k2b21vs2b !@Ẽx# 1 ~ vk2b

2 v1/k2b21!vcs b@Ẽy#.

Let us introduce matrices D, A, and B given by

D 5 ~ vk2b 2 v1/k2b21!, A 5 Dvc2b, B 5 Dvcs b.

We finally obtain

@k2Ẽx# 5 ~A 1 v1/k2b21!@Ẽx# 1 B@Ẽy#. (17)

Then Maxwell equation (3) leads to

@k2Ẽx# 5 S A 1 V 1

k2B 21D @Ẽx# 1 BF2
1

k2

]Hz

]x G . (178)

Here we arrive at the second key step of the theory. Be-
tween the last brackets of Eq. (178), the product
21/k2(]Hz /]x) is discontinuous for any arbitrary grating
profile, since it is equal to Ey . Moreover, both 1/k2 and
]Hz /]x are discontinuous at x1 and x2 . Thus the Fou-
rier components of the product can be obtained neither
through Laurent’s rule nor through the inverse rule. In
order to derive them, we calculate the Fourier compo-
nents of k2Ey along the same lines as for k2Ẽx . From
Eq. (12) we have

k2Ey 5 k2sEt 1 k2cEn ,

and the study of the continuity of the different products
gives

@k2Ey# 5 vk2b@sEt# 1 v1/k2b21@cEn#.

Introducing Eqs. (9) and (10), we get

@k2Ey# 5 vk2b@csEx 1 s2Ey# 1 v1/k2b21@2csEx 1 c2Ey#.

Thus

@k2Ey# 5 vk2b~ vcs b@Ex# 1 vs2b@Ey# ! 1 v1/k2b21

3 ~2vcs b@Ex# 1 vc2b@Ey# !,

@k2Ey# 5 B@Ex# 1 ~ vk2b 2 A !@Ey#.

From this equation we deduce that

@Ey# 5 ~ vk2b 2 A !21~@k2Ey# 2 B@Ex# !, (18)

or

F 1

k2

]Hz

]x G 5 ~ vk2b 2 A !21~ia@Hz# 1 B@Ẽx# !, (188)

where a is a diagonal matrix with elements an .
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The use of Eqs. (38), (178), and (188) leads to the first
basic equation of the differential theory, and Eqs. (4) and
(188) lead to the second one:

F ]Hz

]y G 5 ~A 1 v1/k2b21 2 B~ vk2b 2 A !21B !@Ẽx#

2 B~ vk2b2A !21ia@Hz#, (19)

F ]Ẽx

]y
G 5 a~ vk2b 2 A !21a@Hz#

2 @Hz# 2 ia~ vk2b 2 A !21B@Ẽx#. (20)

B. Discussion of the New Equations
Despite their apparent complexity, Eqs. (19) and (20) al-
low us to discuss and explain several important points.

First, if we do not truncate the Fourier series of the
field (N → `), matrix D is null and so are matrices A and
B. Most of the terms in Eqs. (19) and (20) vanish, and
the equations reduce to Eqs. (5) and (6). We then con-
clude that the original untruncated equations written in
the Fourier space were rigorous. The problems that oc-
curred were due to truncation only.

Second, if the modulation ratio a/d of the grating tend
toward zero, u → 0. Thus c → 1, s → 0, which leads to
A 5 D and B 5 0. Equations (19) and (20) reduce to

F ]Hz

]y G 5 vk2b@Ẽx#, (58)

F ]Ẽx

]y
G 5 aV 1

k2Ba@Hz# 2 @Hz#. (68)

Equations (58) and (68) are the truncated form of Eqs. (5)
and (6). This shows that the original truncated equa-
tions in the Fourier space are exact only at the limit a/d
→ 0. It explains why, even on highly reflecting metals,
a good convergence was obtained provided that the modu-
lation was low enough. We always observed that the
higher the modulus of the permittivity of the metal, the
smaller the groove depth we could analyze numerically
with the original differential method. This comes from
the fact that the elements of A and B increase with ueu,
where e is the permittivity of the grating material. Thus
the additional terms in Eqs. (19) and (20) that were ne-
glected in Eqs. (58) and (68) play an increasing role when
s Þ 0.

Third, if e → 1 1 i0., as occurs for all materials in the
x-ray region, the discontinuity of e between space and the
grating material tends to zero. Thus all discontinuity
problems vanish and all Fourier components of products
can be factorized by Laurent’s rule (78). Indeed, it is easy
to verify that in that case A → 0, B → 0, since v1/k2b21

→ vk2b. We understand why Eqs. (58) and (68), which
have been used to study x-ray gratings for many years,
turned out to be a reliable tool in that region. The con-
vergence of the Fourier series of the field in TM polariza-
tion was about as good as for the TE case, even under cir-
cumstances in which results depart strongly from scalar
theory predictions, as occurs for gratings used under high
incidence.
Fourth, what happens for a lamellar profile? In that
case, for any ordinate y during the integration process, u
5 p/2, and thus c 5 0, s 5 1, A 5 0, B 5 0. Equations
(19) and (20) reduce to

F ]Hz

]y G 5 V 1

k2B 21

@Ẽx#, (21)

F ]Ẽx

]y
G 5 avk2b21a@Hz# 2 @Hz#. (22)

These equations are identical to Eqs. (58) and (68) except
that vk2b is replaced by v1/k2b21 and v1/k2b by vk2b21.
These are exactly the transformations that were proposed
by the authors of Refs. 19 and 20, which resulted in a
great improvement in the convergence of the Fourier se-
ries of the field for a lamellar grating. We are now in a
position to understand why, when we tried to use Eqs.
(21) and (22) to improve the convergence of the results on
a sinusoidal profile two years ago, we obtained no im-
provement. Indeed, for an arbitrary profile, Eqs. (21)
and (22) are as far from the exact Eqs. (19) and (20) as
Eqs. (58) and (68) are, and the concluding remark of Ref.
19 that claimed that the numerical approach that used
Eqs. (21) and (22) can be applied to any numerical tech-
niques using Fourier expansion is not stated. The same
remark applies to a similar affirmation done in Ref. 21 (p.
1875). Moreover, we explain why Lalanne found that in
the small depth limit,23 the conventional formulation of
the differential theory is better conditioned than his new
formulation, since at the limit the first one is rigorous.

The last point that the present work allows us to un-
derstand is the following one. Many researchers have ar-
gued that the poor convergence rate obtained with the
original differential method was inherent in the TM po-
larization case, since we then represent by a Fourier se-
ries a function that is continuous across the grating pro-
file but has a normal derivative discontinuous. On the
other hand, for TE polarization both the field and its nor-
mal derivative are continuous. The difference in rate of
convergence should be linked with the difference in regu-
larity of the unknown functions. This explanation was in
contradiction to the fact that when perfectly conducting
gratings were analyzed through the differential theory af-
ter a conformal mapping,24 no slow convergence was ob-
served for TM polarization, although the difficulty should
be expected to be stronger than for real metals. We now
know that the slow convergence was not inherent in the
case of polarization but was linked primarily with the
way in which the differential equations were truncated in
the original theory. The conformal mapping technique24

uses other equations that are not concerned with conclu-
sion 2 of Li.21

4. NUMERICAL RESULTS
The method has been implemented numerically and tried
on various profiles, for both dielectric and metallic grat-
ings. In order to appreciate the convergence of the re-
sults, we compare them with those obtained through the
integral formalism25 that was used with a number of dis-
cretization points—and terms in the kernel of the integral
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equations—high enough to have results stabilized to bet-
ter than the fifth digit. What is called the error in the
following is calculated by comparison with that reference.

Figure 2 shows the results for a lamellar dielectric
grating with high contrast; the modulation ratio a/d is
equal to unity, the fill-in ratio is 0.4, and the refractive
index is 2.5. The period d is 1 mm. It is lighted under
30° incidence angle by a 0.6328-mm wavelength. Figure
2 plots the logarithm of the relative mean square error as
a function of parameter N that defines the truncation, the
total number of the propagating and evanescent orders
being 2N 1 1. The error is defined as

1

Np
(
n51

Np S hn 2 h̃n

hn
D 2

,

with Np the number of propagating orders, hn the exact
efficiency in the nth propagating order computed with a
code based on the integral theory,25 and h̃n the corre-

Fig. 2. Convergence of the previous and new versions of the dif-
ferential theory for the case of a dielectric lamellar grating with
high contrast. Squares, old version of the differential theory for
TM polarization; open triangles, new version, TM polarization;
solid triangles, TE polarization.

Fig. 3. Convergence of the previous and new versions of the dif-
ferential theory, and the Lalanne and Morris19 equations for a
slanted (45°) lamellar grating. The grating material is the same
as in Fig. 2. Solid circles are obtained with Eqs. (21) and (22).
sponding efficiency computed through the methods for
which we tested the convergence.

The squares are obtained by using Eqs. (58) and (68),
and the open triangles are obtained by using Eqs. (19)
and (20), which in this case reduce to Eqs. (21) and (22).
As previously observed by Lalanne and Morris,19 a strong
improvement is obtained, an error of 1024 being reached
with N ' 10, i.e., 21 Fourier components of the field. In
that case, the convergence obtained with the new method
is even a little faster than the one obtained in TE polar-
ization, shown by solid triangles.

Of course, our basic equations (19) and (20) differ sig-
nificantly from those of Lalanne when c Þ 0, as illus-
trated in Fig. 3. Here we deal with a slanted lamellar
grating (also called a parallelogrammic grating), with a
slant angle of 45°. All other parameters are the same as
in Fig. 2 except the modulation a/d, which is equal to 0.6.
As observed, the convergence of Eqs. (21) and (22) is al-
most as bad as for the classical differential method. In
contrast, with the more general equations (19) and (20),
which take into account that both c and s are not null, the
convergence is much faster. It is worth noting that a
value close to 26 for the logarithm of the error is a very
good result since it means that among the Np propagating
orders, no order is computed with a relative error greater
than 1023 Np .

Let us move now to a deep sinusoidal profile with high
contrast. Deep sinusoidal profiles and cylindrical rod
gratings are the most difficult cases to compute, because
the tangential-to-the-profile vector changes its direction
from parallel to the x axis [for which the classical formu-
lation in Eqs. (58) and (68) holds] to parallel to the y axis
[for which the Lalanne formulation in Eqs. (21) and (22) is
rigorous] through all intermediate cases for which Eqs.
(19) and (20) apply. Moreover, the determination of the
matrix D has to be done at each step of the integration.
In contrast, according to the choice of c2 and cs presented
in Appendix B, their Fourier transform is done once for
the entire integration process. Figure 4 shows the error
obtained on a sinusoidal profile with the same optogeo-
metrical parameters as in Fig. 2. The superiority of the
new formulation over the previous one is evident, an error
close to 1024 being approached with N 5 8 (17 spectral

Fig. 4. Same as in Fig. 2, but for a sinusoidal profile.
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orders), which is very similar to the convergence rate of
TE polarization. Concerning the computation time, com-
parisons were done on a personal computer, with four
sublayers used in the S-matrix propagation algorithm
and 100 integration steps in each sublayer. With N
5 10 (a/d 5 1) the computation time is 1.6 s in TE po-
larization, 3.9 s in TM polarization analyzed with the
classical (previous) formulation, and 7.6 s in TM polariza-
tion analyzed with the present formulation. The ratio
close to 2 between the two formulation computation times
is negligible when one considers the gain of time resulting
from the faster convergence of the Fourier series, which,
first, reduces the computation time as N3 and, second, re-
duces the number of slices in the S-matrix propagation al-
gorithm.

In Fig. 5 we still deal with the deep sinusoidal grating,
but a good reflecting metal, namely, aluminum with re-
fractive index 1.3 1 i7.6, replaces the high-index dielec-
tric. As expected (and previously observed two years
ago), the formulation given by Eqs. (21) and (22) does not
bring any improvement in that case; it is even a little
worse than the classical one. On the other hand, the new
formulation leads to an error lower than 1024 when N

Fig. 5. Same as in Fig. 2, but for an aluminum sinusoidal pro-
file. The solid circles are obtained with Eqs. (21) and (22).

Fig. 6. Same as in Fig. 5, but for a triangular (echelette) profile
with 30° blaze angle, 90° apex angle.
. 24. The result is quite interesting for such a difficult
grating problem and leads to very reasonable computa-
tion times. Similar results are presented on an echelette
(triangular) grating with 30° blaze angle, 90° apex angle
in Fig. 6. The groove spacing, wavelength, and incidence
as well as the grating material are the same as in Fig. 5.
An error less than 1024 is obtained for N 5 27, i.e., 55
Fourier components, while both Eqs. (58), (68), and (21),
(22) do not converge. A better convergence is even ob-
tained (open squares) by writing the equations as sug-
gested at the end of Section 1 of Appendix B.

In order to convince the reader of the potential of the
new formulation, we analyze numerically an effect that
was recently published26 and that has attracted a great
amount of interest in the scientific community. We con-
sider a rectangular rod grating. The rods are made with
silver. The groove spacing is 0.9 mm, the groove height is
0.2 mm, and the groove width is 0.02 mm. The rods lie on
a glass substrate with refractive index 1.44. The grating
is lighted under normal incidence, and Fig. 7 plots the

Fig. 7. Zero-order transmitted efficiency of a silver rectangular
rod grating lying on a glass substrate, as a function of the wave-
length. Filling ratio 0.978.

Fig. 8. Same as in Fig. 2, but for a cylindrical rod grating, r
5 d/2; solid circles are obtained with Eqs. (21) and (22). The
continuation of c2 is made according to Eq. (B5).
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zero-order transmitted intensity as a function of wave-
length. The groove width of 0.02 mm corresponds to a
filling ratio of 0.978, the same as for the two-dimensional

Fig. 9. Same as in Fig. 8, but for a metallic rod, r 5 d/4. Open
triangles, continuation of c2 according to Eq. (B5); diamonds,
continuation of c2 according to Eqs. (B7).

Fig. 10. Same as in Fig. 9, but for r 5 d/2.

Fig. 11. Convergence of the method on a highly conducting
sinusoidal grating; refractive index 0.1 1 i20.
grating consisting of small cylindrical holes in a metallic
sheet.26 Although our analysis relies on a one-
dimensional model of the phenomenon described in Ref.
26, the expected extraordinary transmission through sub-
wavelength hole arrays is found as well as the expected
peaks due to surface plasmons. Such a curve could not
have been obtained with the previous differential
methods.

Another interesting example is given in Fig. 8, which
shows the convergence rate of the transmission spectrum
obtained with a periodic array of cylindrical, dielectric
rods. The groove spacing is 1 mm, the radius r of the rods
is 0.5 mm, and their refractive index is 2.5. They are ly-
ing in vacuum and lighted under 30° incidence. This
case involves the most complicated geometry, in the sense
that during the integration process the tangential unit
vector varies from horizontal to vertical position. How-
ever, Eqs. (19) and (20) correctly handle the situation;
thus the new formulation has good potential for studying
two-dimensional photonic crystals. When the dielectric
rods are replaced by metallic ones, the convergence rate is
preserved for a rod radius of 0.25 mm (i.e., a/d 5 0.5)
(Fig. 9); however, better convergence (diamonds) is ob-
served when the functions cs and c2 are recalculated at
each step of the integration process, as discussed in Ap-
pendix B [Eqs. (B7) instead of Eq. (B5)]. When the cyl-
inders touch each other (r 5 d/2, i.e., a/d 5 1), for metal-
lic rods a slightly less rapid convergence is observed (Fig.
10), independent of the choice of the continuation of cs
and c2.

Concerning the performance of the method on highly
conducting metals, Fig. 11 shows the results obtained
with a 50% modulated sinusoidal grating (a/d 5 0.5)
made of a metal with refractive index equal to 0.1
1 i20. It illustrates the noncommutativity of the trun-
cated matrices that appear in our equations. The results
obtained by the classical differential method are pre-
sented only for TE polarization, because of the complete
failure of the method in TM polarization. The squares
were obtained assuming the commutativity of matrix D on
the one hand and matrices @@c2## and @cs# on the other
hand, as assumed in our recent previous paper.27 The
open triangles were obtained with Eqs. (19) and (20).
With N 5 24, i.e., 49 Fourier components, the diffraction
problem is accurately resolved with the present work,
whereas it is not so with our previous work, which does
not yet converge. This numerically verifies the noncom-
mutativity of the matrices. However, they commute in
the nontruncated limit. Numerical experience not pre-
sented here shows that the different formulations pre-
sented here and in Ref. 27 give almost identical results on
dielectric gratings and on aluminum gratings with not-so-
high reflectivity. However, Fig. 11 shows that the
present formulation is preferable, insofar as the grating
profile has no wedge, so that functions c(x) and s(x) are
continuous everywhere.

5. CONCLUSION
The beautiful work of Li21 has provided the mathematical
basis that was necessary to clarify and eliminate the last
remaining difficulty inherent in the differential theory of
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gratings. We now know that the poor convergence of the
Fourier series of the field was not inherent in the case of
TM polarization but was linked with the truncation of the
propagation equations that, in the original formulation,
led to a convergence almost everywhere. The new formu-
lation leads to a convergence everywhere, and although
both formulations are rigorous at the limit of infinite se-
ries, a great difference appears at the numerical level.

For the sake of clarity, we have presented only the
equations for TM polarization and bare gratings. But
our work is not limited to that case, and the present
method can also be applied to dielectric-coated and
multilayer-coated gratings. The method that we have
used to obtain the basic equations (19) and (20) can also
be used to reformulate the differential theory for conical
diffraction,22,28 crossed gratings,29,30 and, more generally,
three-dimensional objects. It is concerned with any nu-
merical work in science that requires Fourier factoriza-
tion of the continuous product of discontinuous functions,
so we propose to call it the fast Fourier factorization
method. Its consequences for the broad field of nonlinear
optics are immediate. In that field, many sophisticated
theories31 have been developed owing to the fact that the
differential theory was not converging in a satisfactory
way, a substantial effort that could have been saved by
the present work. The fast Fourier factorization method
will also benefit the rapidly developing domain of photo-
nic crystals.32 Indeed, this work will benefit many re-
searchers and engineers, since the differential theory of
gratings is the easiest one to teach. In contrast to the
other grating theories,33 which require sophisticated
mathematics, teaching the differential theory requires
only the knowledge of partial derivatives, Fourier series,
and matrix algebra. Thus it can be taught to under-
graduate students. It is a great satisfaction to have
arrived at the present result after a quarter of century of
effort.

APPENDIX A: COMMUTATIVITY OF THE
INFINITE TOEPLITZ MATRICES
CONSTRUCTED WITH FOURIER
COMPONENTS OF PERIODIC FUNCTIONS
We illustrate the commutativity on the example of the
product vk2bvc b, where both matrices have infinite dimen-
sions.

Let us consider

e 5 vc bvk2b,

whose (n, m) entry is given by

en,m 5 (
p52`

1`

cn2p~k2!p2m .

Thus

en,m 5 (
p52`

1`

cn2m2~ p2m !~k2!p2m . (A1)

Defining p8 5 p 2 m, we obtain
en,m 5 (
p852`

1`

cn2m2p8~k2!p8 . (A2)

Let us now consider the nth Fourier component gn of
the product k2(x)c(x), which is equal to c(x)k2(x). We
thus have

gn 5 (
r52`

1`

kn2r
2 cr 5 (

s52`

1`

cn2s~k2!s .

Thus Eq. (A2) can be changed into

en,m 5 (
r52`

1`

~k2!n2m2rcr .

Defining t 5 r 1 m, from which r 5 t 2 m, we obtain

en,m 5 (
t52`

1`

~k2!n2m2t1mct2m 5 (
t52`

1`

~k2!n2tct2m .

The latter expression is the (n, m) entry of the product
vk2bvc b, which establishes the commutativity.

The commutativity holds for all Toeplitz matrices such
as vk2b, vc b, vs b, constructed with the Fourier compo-
nents of a periodic function, provided that the matrices
are infinite. The transformation from Eq. (A1) to Eq.
(A2) cannot be done for truncated matrices, and the dem-
onstration no longer holds. Moreover, it is easy to under-
stand that when we work on truncated matrices, it is bet-
ter, for convergence purposes, to write the various
products with the Toeplitz matrices of discontinuous
quantities on the left. If, for example, k2 is discontinu-
ous while c is continuous, we have

@k2c#~N ! 5 vk2b@c# 5 (
m52N

1N

kn2m
2 cm , (A3)

@k2c#~N ! 5 @ck2#~N !

5 vc b@k2# 5 (
m52N

1N

cn2mkm
2 . (A4)

Equation (A3) makes use of 2N 1 1 Fourier components
cm and 2(2N 1 1) 2 1 Fourier components of k2,
whereas it is the reverse for Eq. (A4). Since the Fourier
components of a continuous function decrease as 1/m2

whereas those of a discontinuous function decrease as
1/m, when m → `, Eq. (A4) more severely truncates the
Fourier series, which decreases more slowly. Thus Eq.
(A3) is preferable. This simple observation is used to ob-
tain Eqs. (17) and (18).

APPENDIX B: CALCULATION OF TOEPLITZ
MATRICES vc2b AND vcsb
This appendix explains how to calculate the Toeplitz ma-
trices vc2b and vcsb for various common grating profiles.
The simplest case of lamellar profile, which leads to Eqs.
(21) and (22) will not be addressed here.

The quantities c and s are defined only at points x1 and
x2 , while Eqs. (11) and (12) have to be valid at any ab-
scissa x. This requires the definition of functions c(x)
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and s(x) that take the correct values c and s at x1 and x2

and verify that c2 1 s2 5 1, ;x. This condition, which
is obvious on the grating profile, is not so evident outside
it. We have to remember that c and s are the compo-
nents of a unit vector t, which was used to define the co-
ordinate transformation in Eqs. (9), (10) or (11), (12). In
these equations we choose to preserve the metrics [other-
wise elements of a metric tensor would appear in Eqs.
(9)–(12)], so t must remain a unit vector everywhere; thus
c2 1 s2 5 1, ;x. Failure to do so would result in Et and
En components such that Et

2 1 En
2 Þ E2. Moreover, in

obtaining Eqs. (17) we have made use of the relation
vs b2 5 1 2 vc2b.

The continuation of functions c(x) and s(x) should be
done in such a way that functions are obtained that are
continuous at the discontinuities x1 and x2 of k2(x, y).
In what follows, we stick to these rules in defining c2(x)
and c(x)s(x) for different profiles. When possible, c2 and
cs are chosen to be continuous functions ;x in order to en-
sure faster convergence of their Fourier series. Of
course, our choices are not the only possible ones, but it is
worth noting that any time the grating profile is given by
a function y 5 f(x), our choices make the theory utiliz-
able for multilayer-coated gratings.

1. Triangular Profile
The triangular profile is illustrated in Fig. 12, which in-
troduces some new notation. The blaze angle is u, and
the second base angle uB (u, uB . 0). For any ordinate y
during the integration process, we have

at point ~x1 , y !: c 5 cos uB , s 5 2sin uB ,

at point ~x2 , y !: c 5 cos u, s 5 sin u.

We recall that in order to Fourier analyze with respect to
x the functions c and s, which are defined only at points x1
and x2 , we have to extend their definition over the entire
period d. This can be done in any conventional way, by
using a continuous or a discontinuous continuation. The
only important point to remember is that for use of the
inverse rule to be allowed, the continued function must be
continuous at the discontinuity points of k2(x, y) (i.e., at
x1 and x2), while it may be discontinuous anywhere else.
Since c and s take two different values at x1 and x2 , we
propose to choose as continuation the following step func-
tions:

c~x ! 5 cos uB , ;x P @0, b#, (B1)

5 cos u, ;x P ]b, d],

s~x ! 5 2sin uB , ;x P @0, b#,

5 sin u, ;x P ]b, d]. (B2)

We note that for y 5 0, x1 5 b 5 x2 , but since the profile
has no plateau, the function k2(x, 0) is continuous. Thus
no problem occurs in calculating the Fourier components
of k2(x, 0)c2 or k2(x, 0)cs, since conclusion 1 of Li21 still
applies.

The Fourier components of the step functions c2 and cs
are then determined only once for the entire integration
process by the standard fast Fourier transform method,
from which we construct the Toeplitz matrices vc2b and
vcsb. We note, however, that since c(x) and s(x) are dis-
continuous at x 5 b, the remark made at the end of Ap-
pendix A does not apply. Other ways of writing the ma-
trix products, e.g., the one presented in Ref. 27, may give
a convergence slightly faster than the one obtained with
Eqs. (19) and (20).

2. Trapezoidal Profile
The trapezoidal profile is a triangular one truncated at
top and bottom (Fig. 13); thus c and s have the same val-
ues as in the previous section. Care must be taken when
we choose the discontinuity point of their extension, since
now for y 5 0, x1 5 b, where k2(x, 0) is discontinuous.
We thus can replace b in Eqs. (B1) and (B2) with any ab-
sissa l between b and b8, the extremities of the lower pla-
teau.

Thus c(x) and s(x) are written as

c~x ! 5 cos uB ;x P @0, l#,

5 cos u, ;x P @l, d#, (B3)

s~x ! 5 2sin uB , ;x P ]0, l],

5 sin u, ;x P ]l, d]. (B4)

Numerical results have shown that the convergence rate
does not significantly depend on the choice of l between b
and b8.

3. Sinusoidal Profile
The sinusoidal profile is given by y 5 f(x) [ (a/2)(1
1 cos Kx), K 5 2p/d. Using the definition of u illus-
trated in Fig. 1, we obtain

tan u 5
df

dx
5 2

pa

d
sin Kx.

Then

c~x1! 5
1

~1 1 tan2 u!1/2 5
1

@1 1 ~p2a2!/d2 sin2~Kx1!#1/2 .

Since Kx1 5 cos21(2y/a21), we get

Fig. 12. Geometrical parameters of an echelette profile.

Fig. 13. Geometrical parameters of a trapezoidal profile.
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cos~Kx1! 5
2y

a
2 1,

sin2~Kx1! 5 1 2 S 2y
a

2 1 D 2

5
4y
a S 1 2

y
a D .

Finally,

c~x1!
1

@1 1 K2y~a 2 y !#1/2 [ c~x2!.

In a similar way,

s~x1! 5
tan u

~1 1 tan2 u !1/2

5
K@ y~a 2 y !#1/2

@1 1 K2y~a 2 y !#1/2 5 2s~x2!.

From these values we deduce that

c2~x1! 5 c2~x2! 5
1

1 1 K2y~a 2 y !
,

cs~x1! 5 2 cs~x2! 5
K@ y~a 2 y !#1/2

1 1 K2y~a 2 y !
,

and these functions can be continued over the entire pe-
riod in the following way.

We can choose for c2(x) a continuous function equal to

1/~1 1 tan2 u! 5 1/~1 1 f82!

5 1Y S 1 1
p2a2

d2 sin2 Kx D ,

which gives the correct values for x 5 x1 and x 5 x2 .
For cs(x) we choose the continuous function tan u/(1
1 tan2 u), equal to f8/(1 1 f82), i.e., to

2
pa

d
sin~Kx !Y S 1 1

p2a2

d2 sin2 Kx D .

Such a continuation is suitable, because c2 and cs do not
depend on y, and their Fourier transform is made only
once for the entire integration process.

It is interesting to note that the continuation that we
proposed for triangular and trapezoidal profiles is a par-
ticular case of the present continuation, for which tan u
5 df/dx is a constant with respect to x in the intervals
@0, l# and @l, d#.

Any arbitrary profile given by a function y 5 f(x) can
be analyzed along the same lines. On the other hand,
phase gratings with continuous change of refractive index
along the period are not affected by the present study.
They can be perfectly analyzed through the previous for-
mulation of the differential method.

4. Cylindrical Rod Grating
The parametric equations of the central circle illustrated
in Fig. 14 are written as

x 5
a

2
cos f,
y 5
a

2
~1 1 sin f!.

Since with the chosen orientation we have tx } 2dx/df,
ty } 2dy/df, we get

c~x1! 5 c~x2! }
a

2
sin f } y 2

a

2
,

s~x1! 5 2s~x2! } 2@ y~a 2 y !#1/2.

After normalization, we finally have (taking into account
that r 5 a/2)

c~x1! 5 c~x2!

5 ~ y 2 a/2!Y FS y 2
a

2 D 2

1 y~a 2 y !G1/2

5
y 2 r

r
,

s~x1! 5 2s~x2!

5 2@ y~a 2 y !#1/2Y FS y 2
a

2 D 2

1 y~a 2 y !G1/2

5
x1

r
.

As for the other profiles, there are many possible defi-
nitions of c and s for each x. We choose two of them to
make a numerical test of the convergence rate. The first
choice is determined so as to be independent of the verti-
cal coordinate y, so that the Fourier transform is made
only once. For values of x such that 2r , x , r,

c2~x ! 5 1 2 x2/r2, (B5)

cs~x ! 5 6$c2~x !@1 2 c2~x !#%1/2. (B6)

Outside the interval 2r , x , r, c2 5 cs 5 0. Al-
though good enough for dielectric rods, this choice leads to
some problems for metallic rods (see Fig. 9).

Our second choice of the way the functions are contin-
ued takes into account that the lowest (and the highest)
part of the cylinder resembles a shallower sinusoidal
grating, while its middle part looks like a lamellar grat-
ing. The function c2(x) is defined in the following man-
ner:

Fig. 14. Geometrical parameters of a cylindrical rod grating.
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c2~x ! 5 ~ y 2 r !2/r2,

cs~x ! 5 2sign~x !~ y 2 r !@ y~2r 2 y !#1/2/r2. (B7)

However, in this case, cs(x) has a jump at x 5 0. It is
possible to make another choice to ensure that both c2

and cs are continuous functions of x:

c2~x1! 5 c2~x2! 5 ~ y 2 r !2/r2,

c2~0 ! 5 c2~d/2! 5 c2~d !

5 H 1, u y 2 ru . 2r/3

0, u y 2 ru , 2r/3
. (B8)

Between the points 0, x1 , d/2, x2 , and d, the function
c2(x) is defined by using linear interpolation. Then cs(x)
is determined by Eq. (B6). As observed in Figs. 9 and 10
(solid diamonds), this choice [Eq. (B8)] results in a more
regular convergence than the two other choice [Eqs. (B5)
and (B6), open triangles; and Eqs. (B7), open diamonds].

Corresponding author M. Nevière can be reached at the
address on the title page or by e-mail, neviere@loe.univ-
3mrs.fr.

*Present address, Laboratoire d’Electromagnétisme,
Microondes et Optoélectronique, École Nationale Supér-
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