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Abstract. The zero-order diffraction efficiency anomalies of a corrugated
dielectric waveguide are studied theoretically in detail. A new and surprising
phenomenon is observed: the efficiency changes from 0 to 100 per cent in the
vicinity of the excitation of guided waves. The fundamental parameters of the
system are found in the case where only one order is propagating and some of their
properties are shown. The behaviour of the efficiency curves is explained by a
phenomenological theory and a comparison with numerical rigorous results is
made.

1. Introduction
Dielectric coatings are often deposited on the top of metallic gratings in order to

protect the metal layer from oxidation and to increase the efficiency, most frequently
for aluminium gratings working in the ultraviolet. Sometimes they are used on the
top of silver gratings operating in the near infrared region.

The presence of a dielectric layer, however, may drastically change the behaviour
of the efficiency curves, as it has been pointed out by Palmer [1] for TE polarization
and by Cowan and Arakawa [2] for TM polarization.

The influence of a thick dielectric layer on the diffraction efficiency of a blazed
aluminium grating has been investigated experimentally by Hutley et al. [3] and the
results have been confirmed by a rigorous differential formalism [4]. The reason for
the appearance of new anomalies in the efficiency behaviour is the excitation of leaky
waves [5], supported by the dielectric layer.

On the other hand, corrugated gratings on the top of dielectric waveguides are
widely used in integrated optics as input or output couplers [6], filters, demulti-
plexers, etc. [7]. However, we are unaware of any detailed study of the diffraction
efficiency behaviour of three-layer dielectric gratings. The purpose of this paper is to
study the anomalies in the efficiency curves linked with the excitation of guided
waves from both numerical and phenomenological points of view. The peculiar
behaviour of such anomalies is explained by taking into account only the symmetry
properties of the system. Up to the phenomenology, the conclusions are valid for any
kind of system with a given symmetry which can support guided waves. A total
theoretical study of the dependence of the anomaly characteristics on the system
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Figure 1. Schematic representation of the three-layer dielectric structure.

parameters for a symmetrical corrugated waveguide is given. The computer code has
been developed in the Institute of Solid State Physics (Bulgaria). It is based on a
rigorous differential formalism of Chandezon et al. [8] for multicoated gratings. A
more precise analysis of the advantages and the restrictions of the method is
presented in [9].

2. Statement of the problem
Figure represents the most general structure studied in this paper. We consider

a system of three lossless dielectric regions 1, 3 and 2 in the rectangular coordinate
system Oxyz with refractive indices eI 2 , ((x, y))1 /2 and g1/2 respectively. We suppose
that s(x, y) is periodic in x with a period d and, in general, e(x, y) is piecewise constant.
A plane monochromatic wave with wavelength A and time dependence exp (- icot) is
incident at an angle 01 on region 3 from the side of region 1. We assume that d < i < 2d
so that an interval A'=(1- A d, l/d-1) exists of values of o = sin , where only the
zeroth order is diffracted.

For the two fundamental cases of polarization, TE (electric field E is parallel to
the Oz axis) and TM (magnetic field H is parallel to the Oz axis) we denote by F(x, y)
the projection of E or H on the 0z axis. Due to the translation invariance on the z axis,
the problem is a two-dimensional one.

In order to define the S-matrix it is more convenient to consider that two incident
waves illuminate the structure of figure 1: the first with a complex amplitude a1
under the incidence 01; the second with a complex amplitude a2 under the incidence
02 such that e21/2 sin02=s81/2 sin 0. The total field is given by

F(x,y) = al exp [ik(oax--f1 y)] +bl exp [ik(ocx+fily)] +F'i(x,y) for y >Yma., (1)

F(x, y) = a2 exp [ik(ax + fi2Y)] + b2 exp [ik(ax-fi2Y)] + F'(x, y) for y < Ymin, (2)

where =e 1/2sin0 1, Ij=/2cosO.j, k=2z/iA and F(x,y) are evanescent fields;
j=1,2.

A particular case of the general system of figure 1 is the array of dielectric
cyclinders shown in figure 2 (a). In this paper, however, we shall deal mainly with the
periodic waveguide of figure 2 (b).
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Figure 2. Examples of different kinds of gratings: (a) dielectric cylinders, and (b) corrugated
dielectric waveguide.
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Figure 3. Diffraction efficiency of the zeroth reflected order of the sinusoidal grating, as
shown in figure 2(b). Parameters of the system are: nl=n2 =1, n3 =2-3, t=019,um,
h=0'04jum, d=0-37j#m and A=632-8nm, for TE polarization.

The diffraction efficiency I b/al 2 of the zero reflected order as a function of a,
called 'reflectance' R(a) is shown in figure 3 for one of such gratings. The results are
obtained using a single precision with 32 bits wordlength. For simplicity we show the
results only for TE polarization. It must be pointed out, however, that both the
computer code and the phenomenological theory work fairly well for the two
fundamental cases of polarization.

The parameters of the corrugated waveguide is chosen in such a way that only one
mode would propagate if the interfaces were plane. We see from figure 3 that in the
vicinity of the excitation of the guided wave the efficiency changes from 0 to 100 per
cent. To our knowledge such peculiar behaviour of the efficiency has not been
previously reported. Further we shall demonstrate that this surprising phenomenon
is characteristic for the general system of figure 1.
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3. S-matrix and the symmetry of the system

3.1. Properties of the S-matrix
If we denote by b the complex vector

b2fil' 2

and by a the complex vector

Ha l1/28

(a 2 fl
2 /

the S-matrix is defined by the linear relation

b = Sa, (3)

where S is a square matrix of size 2 with elements Sij i,j = 1, 2. We consider that the
wavelength A, the shape of the grating profile and the incides n1 are fixed. Therefore
the components of the S-matrix are a function of the only variable a = sin 0. Further
we deal with the analytical continuation of S(a) in the complex -plane at a certain
distance from the cut-off and from the Rayleigh anomalies in the domain Q of the
complex plane, containing A'.

From (1) and (2) it follows that the S-matrix is invariant by translation in x
because the dependence of the incident and the diffracted field in x is of one and the
same kind. Energy balance criterion implies that the energies of the incident and the
diffracted fields must be equal, when c is real. Therefore S is a unitary matrix:

Va real: S*()S(a) = I. (4)

Here I is a unit matrix, S*(a) = T1 [5(a)] is the adjoint of S, the operator T1 means a
transposition and the overbar complex conjugation.

It is well known that if S(a) is analytic and can be continued through the domain
Q of the complex plane, S*(a) is analytic too. Since S*(d)S(a) is an analytic matrix in
f), equal to I on a segment A' of the real axis, it is equal to I in the entire domain:

VOdasfl, S*(f)S(a)= I. (5)

Time reversal symmetry implies that the field F(x, y) satisfies the Maxwell equations
and the boundary conditions. Since Ei, i= 1, 2 is real, from (1) and (2) it follows that in
this case is changed by-a and bifil. Therefore

~~a = S( ~- ~)b, ~(6)

and from (3) and (5) we obtain

S(-a) = T [S (a )] . (7)

Equation (7) is the matrix representation of the reciprocity theorem.

3.2. Symmetry of the system
Let us now consider the properties of the S-matrix, determined from the

different kinds of symmetries of the structures of figure 4: symmetry with respect to a
point, symmetry with respect to a vertical axis and symmetry with respect to a
horizontal axis.
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Figure 4. Dielectric corrugated waveguides with (a) symmetry with respect to a centre of
symmetry; (b) symmetry with respect to a vertical axis; (c) symmetry with respect to a
horizontal axis.

(a) Symmetry with respect to a point (figure 4(a))
Let the origin of the coordinate system be situated at the centre of symmetry. The

invariance about the origin implies that F(-x, -y) satisfies the Maxwell equations
and the boundary conditions. This is equivalent with the change in (1) and (2) of

-- t, aa 2, bb 2 with el=e2.

Applied to the S-matrix, this symmetry gives

T 2{ T1 [S(a)J} = S( - ), (8)

where the operator T2 means the transposition about the second diagonal of the
matrix. Using (7), we obtain:

T2 [S(X)] = S(a), (9)

which leads to Sll( ) = S2 2(a).

(b) Symmetry with respect to the vertical axis (figure 4 (b))
Due to the invariance of S-matrix by translation in x, we can take they axis as an

axis of symmetry so that F(- x, y) satisfies the Maxwell equations and the boundary
conditions. Now in (1) and (2) we have to change with -a thus S(- )=S(a) and
using (7) we obtain

T [S(a)] = S(a). (1 0)

Therefore, the S-matrix is symmetrical about the main diagonal: S12(a)=S21(00).
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(c) Symmetry with respect to the horizontal axis (figure 4 (c))
For this kind of symmetry F(x, -y) is a solution of the Maxwell equations and

the boundary conditions. Thus in (1) and (2)

al-±a2, bb 2, with l=2.

The S-matrix satisfies the relation

T { T2[S(a)]} =S(a, (11)

which implies that S-matrix is symmetrical about the two diagonals: S 11(a) = S22(a),

SI 2(0) = S 2 1(). It is worth noting that this symmetry is the most powerful one, since
it includes the properties of the symmetry with respect to the origin and the
symmetry with respect to the vertical axis. From this point of view it is impossible to
distinguish a grating with both symmetries (a) and (b) from the grating having
symmetry (c).

4. Phenomenological approach
Let us consider the corrugated waveguide of figure 2 (b). We assume a hypothesis

of continuity, i.e. if the grating depth tends towards zero, the field of the corrugated
waveguide propagating along the x axis tends to the mode field of the planar
waveguide, provided the thickness is above cut-off. The mode field in the outer
regions can be represented in the form

Fg(x,y)= h,,exp [ik(n,,x+ ],,y)] for Y>Ymax, (12)
n

FI(x,y)=Zh, exp[ik(x-fl2 ,,Y)] forY<Ymin, (13)
n

where in-Im=(n-m)/d, ]j, =( i_2)-/2 and as usually we assume that
Re (flj,.)+ Im (flj. n) >0 [10]. In the interval A'= (1 -A/d, 2/d- 1) more than one value
no of n cannot exist for which Re (1o.)eA'. The other In are such that if n Ono then
Re (I.)¢( - 1, 1). By comparing (12) and (13) with (1) and (2) it appears that the mode
represents a field containing diffracted waves without an incident wave. The
coefficientsfno, and h.o correspond to the amplitudes b1 and b2 . Therefore for n = no, n

is a pole of the S-matrix, which we denote by P.
In general this entails o" being a pole of all the elements and of the determinant of

the matrix. From (5) it is evident that

det [(aP)] = 0. (14)

For the corrugated waveguide of figure 2 (b) a pole aP is close to the real axis because
the propagation constant In must be real, when h tends to zero. In the domain Q of the
complex plane the coefficients of the S-matrix must have also a zero ci&, close to the
pole, because in the planar case (h = 0) the existence of the pole must be compensated
by a zero ( = aP) [10]. From this fundamental property the coefficients of the
S-matrix can be represented in the form:

Sij(a) = r'.,()[(a- j)/( - P)]. (15)

Assuming that the pole and the zeros are simple and that no other pole or zeros exist
in the domain Q we can expect that rFij(a)o are slowly varying functions even when is
close to aP and a,.. The values of Fii(o) can be approximated, at least for shallow
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gratings, with good accuracy with the reflection coefficient ~() and with the
transmission coefficient of the system without corrugation. The reflectance of the
three-layer system, however, is a periodically varying function of the thickness of the
middle layer t. We exclude the case of ((a) = 0 (at half wavelength optical thickness),
which requires special analysis.

If Im (P) and Im () are weak, the arguments of ( - j)/( - P) undergo a
phase-shift of 27r when crosses the pole-zero domain on the real axis. This is
illustrated in figure 5 where the phase variation of b1 is calculated for the system of
figure 3. This result confirms the adequacy of the representation (15).

The unitarity of the S-matrix in the complex plane gives some relations between
the zeros. By developing (5) we obtain:

-)SI ()1 (0 + ~q21()2l~ 1 (1)S911(a)5ll~a)+32l~a)S~l~a)=l (16)

S1 2 ()S 1 2 () + S2 2 (i)S 2 2 (a) = 1 (17)

S 1 1 ()S 1 2 (a) + S2 1 (a)S 2 2 (a) = (18)

31 2(i)S1 () 
+

-22(d)S2 (C = 0. (19)(1 9)

Since S 1 2 (o~2 )=0, we deduce from (18) that either S2 1(a 2) or S2 2 (a12 ) must be
equal to zero. If S 2 2(01 2)=O the left-hand side of (17) would be nil, hence
S2 1 (a' 2 ) = 0. This relation together with (15) gives

aZ21 C=2 (20)

Similar considerations applied to (16), (19) and (15) lead to

22 =aIl- (21)

-u
0-o
L-

dr-

Figure 5. Variation of the argument of b1 in the vicinity of a resonance, shown in figure 3.
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The symmetry of the system imposes further restrictions on the zeros aij. For the
symmetry about the centre of symmetry, from (9) and (21) we obtain that the
reflection zero is real:

o1= 't1 -=-22222=ar- (22)
In the case of the symmetry about the vertical axis, from (10), (15) and (20) we find
that the transmission zero is real:

12=12=z2 _ z (23)al2= 0(1 X21 =-0(21 r It

The symmetry with respect to the horizontal axis includes the above kinds of
symmetries and thus both the reflection and the transmission zeros are real.

Some sequences for the system of equations (16)-(19) are discussed in [11] with
respect to the conservation relations. The phenomenological formula (15) enables us
to represent the behaviour of the grating efficiency in the vicinity of the resonance
anomaly if the positions of the pole and the zeros are known. In the Appendix a simple
geometrical relation between the positions of the pole and the zeros in the complex a
plane are given for a system with real zeros. To find them, a Newton iterative method
was used and the computer code developed by us had been generalized in order to
work for an arbitrary value of a in the complex plane.

Equations (22) and (23) explain the behaviour of the resonance anomaly in figure
3. The corrugated waveguide has a symmetry with respect to the origin and to the y
axis, so the reflectance R(a) and the transmittance T(a) are zero at real a= az and
a=a' respectively. If the waveguide is asymmetrical, but possesses a symmetry
about the vertical axis (e.g., symmetrical corrugation function), according to (23)
only the phenomenon of a zero transmission would occur, because cr is complex.
Numerical experiment fully confirms this statement. Figure 6 shows the good
agreement between the efficiency curves calculated by the rigorous theory and by the
phenomenological formula (15).

4~rn
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U

0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.32 
Figure 6. Resonance anomaly of the zero-order efficiency of a three-layer sinusoidal grating

near the excitation of the guided wave. The parameters of the waveguide are nl = 1,
n2 =1'6, n3 =2-3, t=0l ,um, h=0-02ym. The solid line is the calculated curve from
the rigorous electromagnetic theory, and the points are the results from (15)
with phenomenological parameters r = 02046, cP = 0286-i '0031, = 0-2874 and
ca = 02808-iO00366.
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5. Systematic study of symmetrical corrugated waveguide
The computer codes based on the rigorous electromagnetic theories [12] are

unable to give a priori information about the nature of the anomalies. On the other
hand we saw in the preceding section that the phenomenological study correctly
predicts not only the position but also the shape of the resonance anomaly. The aim
of this section is to present the dependences of caP, az, r and Rf on the parameters of
the system. In this way the behaviour of the efficiency in the vicinity of the excitation
of guided waves is completely determined.

As a particular example we consider a sinusoidal grating of figure 2 (b) with a
period d=037pm, wavelength of the incident wave = 0-6328/pm and refractive
indices n1 =n2 = 1, n3 =2-3, so that only the zero-order is diffracted. Figure 7(a)
shows the dependence of the phenomenological parameter r on the waveguide
thickness t for several groove depth h. With increasing h both r and R decrease (figure
7 (b)). The reflectance R is smaller than r since in the investigated case I , I <I C . The
investigation of aP, t and ct is carried out in the interval of t (figure 8) where no
anomaly interaction exists and thus the alteration of r is small. The position of the
pole (figure 8 (a)) is always close to the point of excitation of the waveguide mode.
Without corrugation Re (aP) = z= = fl/k-A/d, Im(a p)= 0 (figure 8(b)) and, of
course, in the efficiency curve no anomaly occurs. This represents the well known
fact that without corrugation the incident wave cannot excite a waveguide mode.

A trajectory of the pole for several depths of the grating is shown in figure 9. With
increasing the depth of the grating the imaginary part of the pole increases, while
Re (aP) decreases. This is not surprising since the losses of the guided wave,
proportional to Im (), is enhanced by the scattering by the grating. Moreover,
figure 10 shows that for small values of h the difference A= Z-a' and Im (aP) rise
proportional to h2 . The parameters of the system are independent of the sign of h,
thus the linear term must be equal to zero.

Appendix
Let us suppose that for the diffraction system:

(i) poles and zeros exist,
(ii) in the investigated domain of parameters the pole and the zeros are simple,

and
(iii) the symmetry provides that both reflection and transmission zeros are real.

The reflectance and the transmittance of the zero-order are given by

_1 ;2 ~_- 2
R(a) = r(a) TO 2 T()= T() - 1. (A 1)

The energy balance on the real axis of a requires that

R(a) + T () = 1. (A 2)

t The coefficients r(c) = I r 1 (a)1 
2 and c(a) = IF2 1() 2 represent 'phenomenological reflec-

tion' and 'transmission' which in the case without anomaly directly correspond to the
efficiences of the zeroth reflected or transmitted order.
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Figure 7. (a) The parameter r as a function of the waveguide thickness t at a normal
incidence. (b) Dependence of r and R on the grating depth h at = 0, the waveguide
thickness is t = 0-19 #m.
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Figure 8. Variation of the real part of the pole (light full line), transmission zero a' (broken

line 1) and reflection zero e (broken line 2), (a) as a function of t for h = 0-04 #m, and (b)
as a function of h for t = 0-19 pm. The curve (/k - /d) for the planar system is shown by
the bold curve.
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0.24 0.26 0.28 0.30 0.32 Re p

Figure 9. Trajectory of the pole corresponding to a guided wave for a sinusoidal coated
grating when the groove depth is varied.

U 20 40 60 hlnm]

Figure 10. Variation of the distinction between the zeros and variation of the imaginary part
of the pole as a function of the groove depth; t=O 019 m.
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I

C ~A z Re 
r At

Figure 11. Geometrical relations between ap, X:, ca, r and in the -complex plane for a
system with real zeros.

Since R(a) and T(a) are non-negative,

_R =0, R(t)= 1,
0 a af (A 3)

OT = 0, T (cc) =1.

Substitution of (A 1) into (A 3), taking into account the condition (ii)
(r(a) ; constant, r(a) z constant) yields that the pole and the zeros are located in the
apexes of a rectangular triangle (figure 11). This simple geometrical rule enables one
to calculate the values of the reflectance and of the transmittance in the domain of
anomaly if only the position of the pole and one of the zeros are known.
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